中文
Announcement
More
Progress in Chemistry 2024, Vol. 36 Issue (3): 430-447 DOI: 10.7536/PC230720 Previous Articles   Next Articles

• Review •

Covalent Organic Frameworks as Cathode Materials for Metal Ion Batteries

Wenbo Zhou, Xiaoman Li, Min Luo()   

  1. State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: luominjy@nxu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(21965027); Central Guidance on Local Science and Technology Development Fund of Ningxia Province(2023FRD05031); National First-rate Discipline Construction Project of Ningxia: Chemical Engineering and Technology(NXY-LXK2017A04)
Richhtml ( 6 ) PDF ( 86 ) Cited
Export

EndNote

Ris

BibTeX

Covalent organic frameworks (COFs) are porous organic materials with periodic two-dimensional or three-dimensional network structures consisting of two or more organic molecules connected by covalent bonds. COFs have attracted considerable interest in energy storage due to their beneficial properties, including low skeletal density, high surface area, high porosity, structural designability and functional modifiability. COFs offer unique advantages as positive electrode materials for metal ion batteries due to their rich redox active sites and open framework structure. However, their application in energy storage is limited by challenges such as poor conductivity, low energy density, limited number of available active sites, and blockage of ion transport channels. This article provides a comprehensive review of recent research on COFs as positive electrode materials for metal ion batteries, discussing their types, design strategies, and synthesis methods. Additionally, it presents an overview of the electrochemical energy storage mechanisms from the perspective of different active groups, and the applications of COFs in various metal ion batteries. Finally, it highlights the prospects and challenges of using COFs in energy storage.

Contents

1 Introduction

2 Types of COFs

2.1 B-C containing

2.2 C-N containing

2.3 C=N containing

2.4 C=C containing

3 Synthesis method of COFs

3.1 Solvothermal synthesis

3.2 Ionic thermal synthesis

3.3 Microwave-assisted synthesis

3.4 Mechanochemical synthesis

3.5 Sonochemical synthesis

4 Microstructure design strategy for COFs

4.1 Introduction of redox active sites

4.2 Crystallinity adjustment

4.3 Interlayer stripping strategy

5 Application of COFs in different metal ion batteries

5.1 Lithium-ion batteries

5.2 Sodium-ion batteries

5.3 Potassium-ion batteries

5.4 Aqueous zinc batteries

6 Conclusion and prospect

Table 1 Performance comparison of representative electrode materials in metal ion batteries
Fig. 1 Timeline of COFs as cathode materials for metal-ion batteries (COF-1 [32], BPOE-COF [33], DTP-ANDI-COF [34], HqTp-COF [35], DAAQ-COF@CNT [36])
Fig. 2 Differentiation of COFs types according to different connection keys
Fig. 3 Schematic diagram of chemical synthesis of different type
Fig. 4 The synthesis and structure diagram of Cz-BD COF and Cz-DHBD COF [62]
Fig. 5 Ionic thermal synthesis of CTF-2[64]
Fig. 6 Microwave radiation synthesis TpPa-1[66]
Fig. 7 Mechanical grinding synthesis TpPa-1, TpPa-2, TpBD [67]
Fig. 8 Sonocheical synthesis of imide COF and its two-dimensional pore diagram [69]
Table 2 Performance indexes of COFs synthesized by different methods
Fig. 9 (a) Synthetic route of 2, 7-diaminopyrene-4, 5, 9, 10-tetraone (PTO-NH2); (b) schematic diagram of BT-PTO COF synthesis [83]
Fig.10 (a) Synthesis diagram of COF-TMT-BT; (b) charge/discharge curves at different current densities; (c) long-term cycling performance; (d) HOMO and LUMO orbitals of COF-TMT-BT repetitive unit [29]
Fig. 11 (a) Diagram of the structure of HATTA-COF; (b) the rate performance of the HATTA; (c) charge/discharge curves at different current densities; (d) long-term cycling performance at 25 A·g-1 [87]
Fig.12 (a) Diagram of the composition of COFs; (b) the surface of carbon nanotubes outside channel structure diagram; (c) long-term cycling performance; (d) structural evolution during lithification [88]
Fig. 13 (a) Synthesis and structure diagram of TAQ-BQ; (b) out-of-situ FT-IR; (c) charge/discharge curves at different current densities; (d) long-term cycling performance at 1 A ·g-1[89]
Fig. 14 Schematic diagram of DAAQ-COF nanosheets stacked layer by layer with different thickness by physical stripping method [36]
Fig. 15 (a) The structure diagram of E-TFPB-COF after stripping; (b) Long-term cyclic performance of E-TFPB-COF; (c) The magnification performance of E-TFPB-COF [97]
Table 3 COFs application in different metal ion battery cathode material
Name of the COFs Batteries Voltage
Window (V)
Discharge specific
capacity (mAh·g-1)
Cycle life (capacity retention/cycle/rate) ref
TPPDA-CuPor-COF
USTB-6-COF@G
BFPPQ-COF@CNT
IISERP-COF22
COF-N
TAQ-BQ-COF
HAQ-COF
S@TAPT-COF
GOPH-COF
BT-PTO-COF
TP-TA-COF
SCNMC-COF
TFPPy-ICTO-COF
HATN-HHTP@CNT
HATN-HHTP@CNT
BAV-COF-Br-
HATN-AQ-COF
TPF-1S-COF
DAPO-TpOMe-COF
TPDA-PMDA-COF
HTAQ-COF
PT-COF50
E-TP-COF
TPPDA-PI-COF
NTCDI-COF
PICOF-1
F-COF
TP-COF/CNTs
QPP-FAC-Pc-COF
COF-CRO
Tp-DANT-COF
PI-ECOFs/rGO
PD-NDI-Lp
PPTODB-COF
PIBN-G
TpBpy-COF
LIBs
LIBs
LIBs
AZIBs
MIBs
AZIBs
AZIBs
SIBs
AZIBs
AZIBs
LIBs
LIBs
LIBs
LIBs
KIBs
SIBs
LIBs
LIBs
LIBs
LIBs
AZIBs
LIBs
LIBs
LIBs
LIBs
SIBs
KIBs
KIBs
KIBs
LIBs
LIBs
LIBs
LIBs
LIBs
LIBs
AIBs
1.5~4.2
1.2~3.9
1.7~3.3
0.2~1.6
0.3~2.5
0.4~1.6
0.26~1.5
1.5~3.2
0.2~1.6
0.4~1.5
1.2~4.3
3.6~4.2
0.05~3.0
1.2~3.8
1.2~3.8
1.4~3.9
1.2~3.9
0.01~3
1.5~4.2
1.2~4.3
0.1~1.45
1.5~3.5
1.5~3.5
2.6~4.1
1.5~3.5
0.01~3
0.01~3
0.01~3
0.01~3
0.5~4.5
1.5~4.0
1.5~3.5
1.5~3.5
1.5~3.5
1.5~3.5
0.01~2.3
142/0.06 A·g-1
285/0.2 C
87.5/0.2 C
690/1.5 A·g-1
120/0.05 A·g-1
208/0.1 A·g-1
339/0.1 A·g-1
109/0.1 A·g-1
70.2/0.015 A·g-1
225/0.1 A·g-1
207/0.2 A·g-1
160.5/1 C
338/0.1 A·g-1
231/0.05 A·g-1
218/0.1 A·g-1
152/0.05 A·g-1
319/0.5 C
1563/0.08 C
81.9/0.1 A·g-1
233/0.5 A·g-1
305/0.04 A·g-1
280/0.2 A·g-1
110/0.2 A·g-1
47/0.2 A·g-1
212/0.1 A·g-1
237/0.1 C
248/0.05 A·g-1
290/0.1 A·g-1
424/0.05 A·g-1
268/0.1 C
144.4/0.34 C
124/0.1 C
77/0.5 C
198/0.02 A·g-1
271/0.1 C
307/0.1 A·g-1
85%/3000/1 A·g-1
70%/6000/5 C
86%/600/5 C
83%/6000/5 A·g-1
99%/300/0.2 A·g-1
87%/1000/1 A·g-1
99%/10000/5 A·g-1
76%/2000/2 A·g-1
82%/500/0.015 A·g-1
98%/10000/5 A·g-1
93%/1500/5A·g-1
87.5%/200/1 C
100%/1000/1 A·g-1
100%/6900/0.5 A·g-1
86.5%/2400/0.5 A·g-1
76.5%/500/0.25 A·g-1
80%/3000/10 C
43.5%/1000/2 C
94%/200/0.1 A·g-1
57.1%/1800/5 A·g-1
87%/1000/2 A·g-1
82%/3000/2 A·g-1
87.3%/500/0.2 A·g-1
65%/3000/1 A·g-1
86%/1500/2 A·g-1
84%/175/0.3 C
99.7%/5000 /1 A·g-1
80%/500/0.2 A·g-1
99.9%/10000/2 A·g-1
99%/100/0.1 C
95%/600/7.5 C
72.6%/300/1 C
80%/400/2.5 C
68.3%/150/0.02 A·g-1
86%/300/5 C
100%/13000/2 A·g-1
98
99
100
101
102
88
103
104
105
82
106
107
108
109
109
110
26
111
112
27
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
Fig. 16 (a) Schematic diagram of HATN-AQ-COF synthesis; (b) the electrochemical redox mechanism of HATN-AQ-COF; (c) charge/discharge profiles for varied current densities; (d) long-term cycling performance of HATN-AQ-COF[26]
Fig. 17 (a) Schematic diagram of HATN-AQ-COF synthesis; (b) the electrochemical redox mechanism of HATN-AQ-COF; (c) long-term cycling performance of TH-COF; (d) long-term cycling performance of TH-COF at 5 C and 20 C [132]
Fig. 18 (a) Schematic diagram of Aza-COF synthesis; (b) Aza-COF aperture was predicted by the model; (c) rate performance of Aza-COF; (d) long-term cycling performance of Aza-COF[135]
Fig. 19 (a) The chemical structure and possible electrochemical redox mechanism of TQBQ-COF; (b) Discharge/charge profiles of TQBQ-COF electrode at 0.02 A·g-1; (c) In-situ FTIR spectra of TQBQ-COF; (d) the C1s XPS spectra of TQBQ-COF electrodes at different charge/discharge states; (e) rate performance of TQBQ-COF; (f) long-term cycling performance of TQBQ-COF [28]
Fig. 20 (a) Schematic illustration of synthesis of the DAAQ-COF and DAAQ-COF@CNT; (b) rate performances of the DAAQ-COF and DAAQ-COF@CNT; (c) long-term cycling performance of DAAQ-COF@CNT; (d) electrochemical redox mechanism of DAAQ-COF@CNT in charge and discharge process [140]
Fig. 21 (a) Schematic diagram of synthesis and structure of Tp-PTO-COF; (b) Charge/discharge curves at different current densities; (c) Long-term cycling performance at 2 A·g-1[25]
[1]
Jafta C J. Curr. Opin. Electrochem., 2022, 36: 101130.
[2]
Nayak P K, Yang L T, Brehm W, Adelhelm P. Angew. Chem. Int. Ed., 2018, 57(1): 102.
[3]
Fu N, Xu Y T, Zhang S, Deng Q, Liu J, Zhou C J, Wu X W, Guo Y G, Zeng X X. J. Energy Chem., 2022, 67: 563.

doi: 10.1016/j.jechem.2021.08.057
[4]
Li X M, Wang X Y, Ma L T, Huang W. Adv. Energy Mater., 2022, 12(37): 2202068.

doi: 10.1002/aenm.v12.37
[5]
Kotal M, Jakhar S, Roy S, Sharma H K. J. Energy Storage, 2022, 47: 103534.

doi: 10.1016/j.est.2021.103534
[6]
Yang Y J, Zhou J B, Wang L L, Jiao Z, Xiao M Y, Huang Q A, Liu M M, Shao Q S, Sun X L, Zhang J J. Nano Energy, 2022, 99: 107424.

doi: 10.1016/j.nanoen.2022.107424
[7]
Cheng N, Ren L, Xu X, Du Y, Dou S X. Mater. Today Phys., 2020, 15: 100289.
[8]
Shea J J, Luo C. ACS Appl. Mater. Interfaces, 2020, 12(5): 5361.

doi: 10.1021/acsami.9b20384
[9]
Kong L J, Zhong M, Shuang W, Xu Y H, Bu X H. Chem. Soc. Rev., 2020, 49(8): 2378.

doi: 10.1039/C9CS00880B
[10]
Yang Y X, Zhang C H, Zhao G F, An Q, Mei Z Y, Sun Y J, Xu J, Wang X F, Guo H. Adv. Energy Mater., 2023, 2300725.
[11]
Zhang C H, Yang Y X, Sun Y J, Duan L Y, Mei Z Y, An Q, Jing Q, Zhao G F, Guo H. Sci. China Mater., 2023, 66(7): 2591.

doi: 10.1007/s40843-022-2396-x
[12]
Rivera-Lugo Y Y, Félix-Navarro R M, Trujillo-Navarrete B, Reynoso-Soto E A, Silva-Carrillo C, Cruz-Gutiérrez C A, Quiroga-González E, Calva-Yáñez J C. Fuel, 2021, 287: 119463.

doi: 10.1016/j.fuel.2020.119463
[13]
Gao X, Wu H W, Li W J, Tian Y, Zhang Y, Wu H, Yang L, Zou G Q, Hou H S, Ji X B. Small, 2020, 16(5): 1905842.

doi: 10.1002/smll.v16.5
[14]
Wang R Q, Chen T, Cao Y J, Wang N, Zhang J X. Ionics, 2021, 27(4): 1559.

doi: 10.1007/s11581-020-03880-3
[15]
Wu L, Huang S Z, Dong W D, Li Y, Wang Z H, Mohamed H S H, Li Y, Su B L. J. Colloid Interface Sci., 2021, 594: 531.

doi: 10.1016/j.jcis.2021.03.032
[16]
Soundharrajan V, Sambandam B, Kim S, Mathew V, Jo J, Kim S, Lee J, Islam S, Kim K, Sun Y K, Kim J. ACS Energy Lett., 2018, 3(8): 1998.

doi: 10.1021/acsenergylett.8b01105
[17]
Zhou J, Shan L T, Wu Z X, Guo X, Fang G Z, Liang S Q. Chem. Commun., 2018, 54(35): 4457.

doi: 10.1039/C8CC02250J
[18]
Tang H, Xiong F Y, Jiang Y L, Pei C Y, Tan S S, Yang W, Li M S, An Q Y, Mai L Q. Nano Energy, 2019, 58: 347.

doi: 10.1016/j.nanoen.2019.01.053
[19]
Xue Y, Zheng L L, Wang J, Zhou J G, Yu F D, Zhou G J, Wang Z B. ACS Appl. Energy Mater., 2019, 2(4): 2982.

doi: 10.1021/acsaem.9b00564
[20]
Yao H, Bao X L, Ye S D, Sheng S Q, Chen Q, Meng L L, Yang J. Mater. Lett., 2023, 341: 134232.

doi: 10.1016/j.matlet.2023.134232
[21]
Qiao S Y, Dong S H, Yuan L L, Li T, Ma M, Wu Y F, Hu Y Z, Qu T, Chong S K. J. Alloys Compd., 2023, 950: 169903.

doi: 10.1016/j.jallcom.2023.169903
[22]
Song T Y, Yao W J, Kiadkhunthod P, Zheng Y P, Wu N Z, Zhou X L, Tunmee S, Sattayaporn S, Tang Y B. Angew. Chem. Int. Ed., 2020, 59(2): 740.

doi: 10.1002/anie.v59.2
[23]
Du C Y, Zhang Z H, Li X L, Luo R J, Ma C, Bao J, Zeng J, Xu X, Wang F, Zhou Y N. Chem. Eng. J., 2023, 451: 138650.

doi: 10.1016/j.cej.2022.138650
[24]
Wang S, Wang Q Y, Shao P P, Han Y Z, Gao X, Ma L, Yuan S, Ma X J, Zhou J W, Feng X, Wang B. J. Am. Chem. Soc., 2017, 139(12): 4258.

doi: 10.1021/jacs.7b02648
[25]
Ma D X, Zhao H M, Cao F, Zhao H H, Li J X, Wang L, Liu K. Chem. Sci., 2022, 13(8): 2385.

doi: 10.1039/D1SC06412F
[26]
Yang X Y, Gong L, Liu X L, Zhang P P, Li B W, Qi D, Wang K, He F, Jiang J Z. Angew. Chem. Int. Ed., 2022, 61: e202207043.

doi: 10.1002/anie.v61.31
[27]
Yao L Y, Ma C, Sun L B, Zhang D L, Chen Y Z, Jin E Q, Song X W, Liang Z Q, Wang K X. J. Am. Chem. Soc., 2022, 144(51): 23534.

doi: 10.1021/jacs.2c10534
[28]
Shi R J, Liu L J, Lu Y, Wang C C, Li Y X, Li L, Yan Z H, Chen J. Nat. Commun., 2020, 11: 178.

doi: 10.1038/s41467-019-13739-5
[29]
Peng H J, Huang S H, Montes-García V, Pakulski D, Guo H P, Richard F, Zhuang X D, Samorì P, Ciesielski A. Angew. Chem. Int. Ed., 2023, 62(10): e202216136.

doi: 10.1002/anie.v62.10
[30]
Cao Y, Wang M D, Wang H J, Han C Y, Pan F S, Sun J. Adv. Energy Mater., 2022, 12(20): 2200057.

doi: 10.1002/aenm.v12.20
[31]
Son E J, Kim J H, Kim K, Park C B. J. Mater. Chem. A, 2016, 4(29): 11179.

doi: 10.1039/C6TA03123D
[32]
Côté A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166.

doi: 10.1126/science.1120411
[33]
Sakaushi K, Hosono E, Nickerl G, Gemming T, Zhou H S, Kaskel S, Eckert J. Nat. Commun., 2013, 4: 1485.

doi: 10.1038/ncomms2481
[34]
Xu F, Jin S B, Zhong H, Wu D C, Yang X Q, Chen X, Wei H, Fu R W, Jiang D L. Sci. Rep., 2015, 5: 8225.

doi: 10.1038/srep08225
[35]
Khayum M A, Ghosh M, Vijayakumar V, Halder A, Nurhuda M, Kumar S, Addicoat M, Kurungot S, Banerjee R. Chem. Sci., 2019, 10(38): 8889.

doi: 10.1039/C9SC03052B
[36]
Gu S, Wu S F, Cao L J, Li M C, Qin N, Zhu J, Wang Z Q, Li Y Z, Li Z Q, Chen J J, Lu Z G. J. Am. Chem. Soc., 2019, 141(24): 9623.

doi: 10.1021/jacs.9b03467
[37]
Fujii S, Marqués-González S, Shin J Y, Shinokubo H, Masuda T, Nishino T, Arasu N P, Vázquez H, Kiguchi M. Nat. Commun., 2017, 8: 15984.

doi: 10.1038/ncomms15984
[38]
Li H Y, Tang M, Wu Y C, Chen Y, Zhu S L, Wang B, Jiang C, Wang E J, Wang C L. J. Phys. Chem. Lett., 2018, 9(12): 3205.

doi: 10.1021/acs.jpclett.8b01285
[39]
Li N, Chang Z, Huang H L, Feng R, He W W, Zhong M, Madden D G, Zaworotko M J, Bu X H. Small, 2019, 15(22): 1970118.

doi: 10.1002/smll.v15.22
[40]
Tao R, Yang T F, Wang Y, Zhang J M, Wu Z Y, Qiu L. Chem. Commun., 2023, 59(22): 3175.

doi: 10.1039/D2CC06573H
[41]
Feng X, Ding X S, Jiang D L. Chem. Soc. Rev., 2012, 41(18): 6010.

doi: 10.1039/c2cs35157a
[42]
Sun T, Xie J, Guo W, Li D S, Zhang Q C. Adv. Energy Mater., 2020, 10(19): 1904199.

doi: 10.1002/aenm.v10.19
[43]
Huang N, Wang P, Jiang D L. Nat. Rev. Mater., 2016, 1(10): 16068.

doi: 10.1038/natrevmats.2016.68
[44]
Geng K Y, Arumugam V, Xu H J, Gao Y N, Jiang D L. Prog. Polym. Sci., 2020, 108: 101288.

doi: 10.1016/j.progpolymsci.2020.101288
[45]
Yusran Y, Fang Q R, Valtchev V. Adv. Mater., 2020, 32(44): 2002038.

doi: 10.1002/adma.v32.44
[46]
El-Kaderi H M, Hunt J R, Mendoza-Cortés J L, Côté A P, Taylor R E, O’Keeffe M, Yaghi O M. Science, 2007, 316(5822): 268.

doi: 10.1126/science.1139915
[47]
Chen X D, Zhang H, Ci C G, Sun W W, Wang Y. ACS Nano, 2019, 13(3): 3600.

doi: 10.1021/acsnano.9b00165
[48]
Wei S H, Wang J W, Li Y Z, Fang Z B, Wang L, Xu Y X. Nano Res., 2023, 16(5): 6753.

doi: 10.1007/s12274-022-5366-3
[49]
Tang J Y, Su C, Shao Z P. Small Meth., 2021, 5(12): 2100945.

doi: 10.1002/smtd.v5.12
[50]
Ma X H, Kang J S, Wu Y W, Pang C H, Li S H, Li J P, Xiong Y H, Luo J H, Wang M Y, Xu Z. Trac Trends Anal. Chem., 2022, 157: 116793.

doi: 10.1016/j.trac.2022.116793
[51]
DeBlase C R, Silberstein K E, Truong T T, Abruña H D, Dichtel W R. J. Am. Chem. Soc., 2013, 135(45): 16821.

doi: 10.1021/ja409421d
[52]
Fang Q R, Zhuang Z B, Gu S, Kaspar R B, Zheng J, Wang J H, Qiu S L, Yan Y S. Nat. Commun., 2014, 5: 4503.

doi: 10.1038/ncomms5503
[53]
Zhang Y, Huang Z, Ruan B, Zhang X K, Jiang T, Ma N, Tsai F C. Macromol. Rapid Commun., 2020, 41(22): 2000402.

doi: 10.1002/marc.v41.22
[54]
Lu Y X. Seventh Edition of Organic Chemistry. Beijing: People's Medical Publishing House, 2008, 06.
(吕以仙. 有机化学第七版. 北京: 人民卫生出版社, 2008, 06.)
[55]
Liao L F, Li M Y, Yin Y L, Chen J, Zhong Q T, Du R X, Liu S L, He Y M, Fu W J, Zeng F. ACS Omega, 2023, 8(5): 4527.

doi: 10.1021/acsomega.2c06961
[56]
Uribe-Romo F J, Doonan C J, Furukawa H, Oisaki K, Yaghi O M. J. Am. Chem. Soc., 2011, 133(30): 11478.

doi: 10.1021/ja204728y
[57]
Jin E Q, Geng K Y, Lee K H, Jiang W M, Li J, Jiang Q H, Irle S, Jiang D L. Angew. Chem. Int. Ed., 2020, 59(29): 12162.

doi: 10.1002/anie.v59.29
[58]
Xu S Q, Wang G, Biswal B P, Addicoat M, Paasch S, Sheng W B, Zhuang X D, Brunner E, Heine T, Berger R, Feng X L. Angew. Chem. Int. Ed., 2019, 58(3): 849.

doi: 10.1002/anie.v58.3
[59]
Zhang F L, Dong X Y, Wang Y X, Lang X J. Small, 2023, 19(38): 2302456.

doi: 10.1002/smll.v19.38
[60]
Zhang C R, Cui W R, Yi S M, Niu C P, Liang R P, Qi J X, Chen X J, Jiang W, Liu X, Luo Q X, Qiu J D. Nat. Commun., 2022, 13: 7621.

doi: 10.1038/s41467-022-35435-7
[61]
Zhang C R, Qi J X, Cui W R, Chen X J, Liu X, Yi S M, Niu C P, Liang R P, Qiu J D. Sci. China Chem., 2023, 66(2): 562.

doi: 10.1007/s11426-022-1466-9
[62]
Abuzeid H R, EL-Mahdy A F M, Kuo S W. Microporous Mesoporous Mater., 2020, 300: 110151.

doi: 10.1016/j.micromeso.2020.110151
[63]
Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008, 47(18): 3450.

doi: 10.1002/anie.v47:18
[64]
Bojdys M J, Jeromenok J, Thomas A, Antonietti M. Adv. Mater., 2010, 22(19): 2202.

doi: 10.1002/adma.v22:19
[65]
Campbell N L, Clowes R, Ritchie L K, Cooper A I. Chem. Mater., 2009, 21(2): 204.

doi: 10.1021/cm802981m
[66]
Martínez-Visus Í, Ulcuango M, Zornoza B. Chem. Eur. J., 2023, 29(15): e202203907.

doi: 10.1002/chem.v29.15
[67]
Biswal B P, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R. J. Am. Chem. Soc., 2013, 135(14): 5328.

doi: 10.1021/ja4017842
[68]
Karak S, Kandambeth S, Biswal B P, Sasmal H S, Kumar S, Pachfule P, Banerjee R. J. Am. Chem. Soc., 2017, 139(5): 1856.

doi: 10.1021/jacs.6b08815
[69]
Zhao W, Yan P Y, Yang H F, Bahri M, James A M, Chen H M, Liu L J, Li B Y, Pang Z F, Clowes R, Browning N D, Ward J W, Wu Y, Cooper A I. Nat. Synth., 2022, 1(1): 87.

doi: 10.1038/s44160-021-00005-0
[70]
Yoo J, Cho S J, Jung G Y, Kim S H, Choi K H, Kim J H, Lee C K, Kwak S K, Lee S Y. Nano Lett., 2016, 16(5): 3292.

doi: 10.1021/acs.nanolett.6b00870
[71]
Kuhn P, Thomas A, Antonietti M. Macromolecules, 2009, 42(1): 319.

doi: 10.1021/ma802322j
[72]
Maschita J, Banerjee T, Savasci G, Haase F, Ochsenfeld C, Lotsch B V. Angew. Chem. Int. Ed., 2020, 59(36): 15750.

doi: 10.1002/anie.v59.36
[73]
Chen X D, Zhang H, Yan P, Liu B, Cao X H, Zhan C C, Wang Y W, Liu J H. RSC Adv., 2022, 12(18): 11484.

doi: 10.1039/D2RA01582J
[74]
Das G, Benyettou F, Sharama S K, Prakasam T, Gándara F, de la Peña-O’Shea V A, Saleh N, Pasricha R, Jagannathan R, Olson M A, Trabolsi A. Chem. Sci., 2018, 9(44): 8382.

doi: 10.1039/C8SC02842G
[75]
Zhao Y B, Guo L, Gándara F, Ma Y H, Liu Z, Zhu C H, Lyu H, Trickett C A, Kapustin E A, Terasaki O, Yaghi O M. J. Am. Chem. Soc., 2017, 139(37): 13166.

doi: 10.1021/jacs.7b07457
[76]
Yang H S, Du Y, Wan S, Trahan G D, Jin Y H, Zhang W. Chem. Sci., 2015, 6(7): 4049.

doi: 10.1039/C5SC00894H
[77]
Shinde D B, Aiyappa H B, Bhadra M, Biswal B P, Wadge P, Kandambeth S, Garai B, Kundu T, Kurungot S, Banerjee R. J. Mater. Chem. A, 2016, 4(7): 2682.

doi: 10.1039/C5TA10521H
[78]
Peng Y W, Xu G D, Hu Z G, Cheng Y D, Chi C L, Yuan D Q, Cheng H S, Zhao D. ACS Appl. Mater. Interfaces, 2016, 8(28): 18505.

doi: 10.1021/acsami.6b06189
[79]
Yang S T, Kim J, Cho H Y, Kim S, Ahn W S. RSC Adv., 2012, 2(27): 10179.

doi: 10.1039/c2ra21531d
[80]
Cao Y Y, He Y J, Gang H Y, Wu B C, Yan L J, Wei D, Wang H Y. J. Power Sources, 2023, 560: 232710.

doi: 10.1016/j.jpowsour.2023.232710
[81]
Liu X, Liu C F, Lai W Y, Huang W. Adv. Mater. Technol., 2020, 5(9): 2000154.

doi: 10.1002/admt.v5.9
[82]
Zhang X F, Xiao Z Y, Liu X F, Mei P, Yang Y K. Renew. Sustain. Energy Rev., 2021, 147: 111247.

doi: 10.1016/j.rser.2021.111247
[83]
Zheng S B, Shi D J, Yan D, Wang Q R, Sun T J, Ma T, Li L, He D, Tao Z L, Chen J. Angew. Chem. Int. Ed., 2022, 61(12): e202117511.

doi: 10.1002/anie.v61.12
[84]
Guo Z W, Ma Y Y, Dong X L, Huang J H, Wang Y G, Xia Y Y. Angew. Chem. Int. Ed., 2018, 130(36): 11911.

doi: 10.1002/ange.v130.36
[85]
Yusran Y, Fang Q R, Qiu S L. Isr. J. Chem., 2018, 58(9/10): 971.

doi: 10.1002/ijch.v58.9-10
[86]
Nagai A, Guo Z Q, Feng X, Jin S B, Chen X, Ding X S, Jiang D L. Nat. Commun., 2011, 2: 536.

doi: 10.1038/ncomms1542
[87]
Li J H, Huang L L, Lv H, Wang J L, Wang G, Chen L, Liu Y Y, Guo W, Yu F, Gu T T. ACS Appl. Mater. Interfaces, 2022, 14(34): 38844.

doi: 10.1021/acsami.2c10539
[88]
Lei Z D, Yang Q S, Xu Y, Guo S Y, Sun W W, Liu H, Lv L P, Zhang Y, Wang Y. Nat. Commun., 2018, 9: 576.

doi: 10.1038/s41467-018-02889-7
[89]
Lin Z R, Lin L, Zhu J Q, Wu W L, Yang X P, Sun X Q. ACS Appl. Mater. Interfaces, 2022, 14(34): 38689.

doi: 10.1021/acsami.2c08170
[90]
Ma T Q, Kapustin E A, Yin S X, Liang L, Zhou Z Y, Niu J, Li L H, Wang Y Y, Su J, Li J, Wang X G, Wang W D, Wang W, Sun J L, Yaghi O M. Science, 2018, 361(6397): 48.

doi: 10.1126/science.aat7679
[91]
Yao Z F, Zheng Y Q, Dou J H, Lu Y, Ding Y F, Ding L, Wang J Y, Pei J. Adv. Mater., 2021, 33(10): 2170075.

doi: 10.1002/adma.v33.10
[92]
Feng L, Wang K Y, Day G S, Ryder M R, Zhou H C. Chem. Rev., 2020, 120(23): 13087.

doi: 10.1021/acs.chemrev.0c00722
[93]
Yang J, Kang F Y, Wang X, Zhang Q C. Mater. Horiz., 2022, 9(1): 121.

doi: 10.1039/D1MH00809A
[94]
Liu M Y, Jiang K, Ding X, Wang S L, Zhang C X, Liu J, Zhan Z, Cheng G, Li B Y, Chen H, Jin S B, Tan B E. Adv. Mater., 2019, 31(19): 1807865.

doi: 10.1002/adma.v31.19
[95]
Vyas V S, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch B V. Nat. Commun., 2015, 6: 8508.

doi: 10.1038/ncomms9508
[96]
Thompson C M, Occhialini G, McCandless G T, Alahakoon S B, Cameron V, Nielsen S O, Smaldone R A. J. Am. Chem. Soc., 2017, 139(30): 10506.

doi: 10.1021/jacs.7b05555
[97]
Chen X D, Li Y S, Wang L, Xu Y, Nie A M, Li Q Q, Wu F, Sun W W, Zhang X, Vajtai R, Ajayan P M, Chen L, Wang Y. Adv. Mater., 2019, 31(29): 1901640.

doi: 10.1002/adma.v31.29
[98]
Gong L, Yang X Y, Gao Y, Yang G X, Yu Z H, Fu X Z, Wang Y H, Qi D D, Bian Y Z, Wang K, Jiang J Z. J. Mater. Chem. A, 2022, 10(31): 16595.

doi: 10.1039/D2TA03579K
[99]
Liu X L, Jin Y C, Wang H L, Yang X Y, Zhang P P, Wang K, Jiang J Z. Adv. Mater., 2022, 34(37): 2203605.

doi: 10.1002/adma.v34.37
[100]
Jia C, Duan A, Liu C, Wang W Z, Gan S X, Qi Q Y, Li Y J, Huang X Y, Zhao X. Small, 2023, 19(24): 2300518.

doi: 10.1002/smll.v19.24
[101]
Kushwaha R, Jain C, Shekhar P, Rase D, Illathvalappil R, Mekan D, Camellus A, Vinod C P, Vaidhyanathan R. Adv. Energy Mater., 2023, 13(34): 2301049.

doi: 10.1002/aenm.v13.34
[102]
Gui H D, Xu F. Mater. Lett., 2023, 346: 134549.

doi: 10.1016/j.matlet.2023.134549
[103]
Wang W X, Kale V S, Cao Z, Lei Y, Kandambeth S, Zou G D, Zhu Y P, Abouhamad E, Shekhah O, Cavallo L, Eddaoudi M, Alshareef H N. Adv. Mater., 2021, 33(39): 2103617.

doi: 10.1002/adma.v33.39
[104]
Shi J W, Tang W Y, Xiong B R, Gao F, Lu Q Y. Chem. Eng. J., 2023, 453: 139607.

doi: 10.1016/j.cej.2022.139607
[105]
Venkatesha A, Gomes R, Nair A S, Mukherjee S, Bagchi B, Bhattacharyya A J. ACS Sustainable Chem. Eng., 2022, 10(19): 6205.

doi: 10.1021/acssuschemeng.1c08678
[106]
Wu M M, Zhao Y, Zhao R Q, Zhu J, Liu J, Zhang Y M, Li C X, Ma Y F, Zhang H T, Chen Y S. Adv. Funct. Mater., 2022, 32(11): 2107703.

doi: 10.1002/adfm.v32.11
[107]
Saleem A, Majeed M K, Iqbal R, Hussain A, Naeem M S, Rauf S, Wang Y L, Javed M S, Shen J. Adv. Mater. Interfaces, 2022, 9(27): 2200800.

doi: 10.1002/admi.v9.27
[108]
Xu X Y, Zhang S Q, Xu K, Chen H Z, Fan X L, Huang N. J. Am. Chem. Soc., 2023, 145(2): 1022.

doi: 10.1021/jacs.2c10509
[109]
Li S W, Liu Y Z, Dai L, Li S, Wang B, Xie J, Li P F. Energy Storage Mater., 2022, 48: 439.
[110]
Tong Z Q, Wang H, Kang T X, Wu Y, Guan Z Q, Zhang F, Tang Y B, Lee C S. J. Energy Chem., 2022, 75: 441.

doi: 10.1016/j.jechem.2022.05.044
[111]
Qiu T Y, Tang W S, Han X, Li Y, Chen Z W, Yao R Q, Li Y Q, Wang Y H, Li Y G, Tan H Q. Chem. Eng. J., 2023, 466: 143149.

doi: 10.1016/j.cej.2023.143149
[112]
Meng Z Y, Zhang Y, Dong M Q, Zhang Y, Cui F M, Loh T P, Jin Y H, Zhang W, Yang H S, Du Y. J. Mater. Chem. A, 2021, 9(17): 10661.

doi: 10.1039/D0TA10785A
[113]
Liu Q, Xiao J, Chen, Yan W, Ma, Yi W, Lu, Hui M, Zhang, Bao Z, Yang. National Natural Science Foundation of China, 2023, 21975034.
[114]
Gao H, Neale A R, Zhu Q, Bahri M, Wang X, Yang H F, Xu Y J, Clowes R, Browning N D, Little M A, Hardwick L J, Cooper A I. J. Am. Chem. Soc., 2022, 144(21): 9434.

doi: 10.1021/jacs.2c02196
[115]
Zhao G F, Li H N, Gao Z H, Xu L F, Mei Z Y, Cai S, Liu T T, Yang X F, Guo H, Sun X L. Adv. Funct. Mater., 2021, 31(29): 2101019.

doi: 10.1002/adfm.v31.29
[116]
Gu S, Hao R, Chen J J, Chen X, Liu K, Hussain I, Liu G Y, Wang Z Q, Gan Q M, Guo H, Li M Q, Zhang K L, Lu Z G. Mater. Chem. Front., 2022, 6(17): 2545.

doi: 10.1039/D2QM00578F
[117]
Luo D R, Zhang J, Zhao H Z, Xu H, Dong X Y, Wu L Y, Ding B, Dou H, Zhang X G. Chem. Commun., 2023, 59(45): 6853.

doi: 10.1039/D3CC00700F
[118]
Shehab M K, Weeraratne K S, El-Kadri O M, Yadavalli V K, El-Kaderi H M. Macromol. Rapid Commun., 2023, 44(11): 2200782.

doi: 10.1002/marc.v44.11
[119]
Lee J Y, Lim H, Park J, Kim M S, Jung J W, Kim J, Kim I D. Adv. Energy. Mater., 2023, 13(26): 2300442.

doi: 10.1002/aenm.v13.26
[120]
Sun J L, Xu Y F, Li A, Tian R Q, Fei Y T, Chen B B, Zhou X S. ACS Appl. Nano Mater., 2022, 5(10): 15592.

doi: 10.1021/acsanm.2c03634
[121]
Yang X Y, Gong L, Wang K, Ma S H, Liu W P, Li B W, Li N, Pan H H, Chen X, Wang H L, Liu J M, Jiang J Z. Adv. Mater., 2022, 34(50): 2207245.

doi: 10.1002/adma.v34.50
[122]
Yang X Y, Hu Y M, Dunlap N, Wang X B, Huang S F, Su Z P, Sharma S, Jin Y H, Huang F, Wang X H, Lee S H, Zhang W. Angew. Chem. Int. Ed., 2020, 59(46): 20385.

doi: 10.1002/anie.v59.46
[123]
Yang D H, Yao Z Q, Wu D H, Zhang Y H, Zhou Z, Bu X H. J. Mater. Chem. A, 2016, 4(47): 18621.

doi: 10.1039/C6TA07606H
[124]
Wang Z L, Li Y J, Liu P J, Qi Q Y, Zhang F, Lu G L, Zhao X, Huang X Y. Nanoscale, 2019, 11(12): 5330-5335.

doi: 10.1039/C9NR00088G
[125]
Jhulki S, Feriante C H, Mysyk R, Evans A M, Magasinski A, Raman A S, Turcheniuk K, Barlow S, Dichtel W R, Yushin G, Marder S R. ACS Appl. Energy Mater., 2021, 4(1): 350.

doi: 10.1021/acsaem.0c02281
[126]
Yao C J, Wu Z Z, Xie J, Yu F, Guo W, Xu Z J, Li D S, Zhang S Q, Zhang Q C. ChemSusChem, 2020, 13(9): 2457.

doi: 10.1002/cssc.v13.9
[127]
Luo Z Q, Liu L J, Ning J X, Lei K X, Lu Y, Li F J, Chen J. Angew. Chem. Int. Ed., 2018, 57(30): 9443.

doi: 10.1002/anie.v57.30
[128]
Lu H Y, Ning F Y, Jin R, Teng C, Wang Y, Xi K, Zhou D S, Xue G. ChemSusChem, 2020, 13(13): 3447.

doi: 10.1002/cssc.v13.13
[129]
Mahmood N, Tang T Y, Hou Y L. Adv. Energy Mater., 2016, 6(17): 1600374.

doi: 10.1002/aenm.v6.17
[130]
Kim T H, Park J S, Chang S K, Choi S, Ryu J H, Song H K. Adv. Energy Mater., 2012, 2(7): 860.

doi: 10.1002/aenm.v2.7
[131]
Wu M M, Zhao Y, Sun B Q, Sun Z H, Li C X, Han Y, Xu L Q, Ge Z, Ren Y X, Zhang M T, Zhang Q, Lu Y, Wang W, Ma Y F, Chen Y S. Nano Energy, 2020, 70: 104498.

doi: 10.1016/j.nanoen.2020.104498
[132]
Liu Y, Cai X S, Chen D G, Qin Y, Chen Y, Chen J X, Liang C L. Int. J. Energy Res., 2022, 46(11): 15174.
[133]
Parker J F, Chervin C N, Pala I R, Machler M, Burz M F, Long J W, Rolison D R. Science, 2017, 356(6336): 415.

doi: 10.1126/science.aak9991
[134]
Choi J W, Aurbach D. Nat. Rev. Mater., 2016, 1(4): 16013.

doi: 10.1038/natrevmats.2016.13
[135]
Shehab M K, Weeraratne K S, Huang T, Lao K U, El-Kaderi H M. ACS Appl. Mater. Interfaces, 2021, 13(13): 15083.

doi: 10.1021/acsami.0c20915
[136]
Zhang X H, Yang D, Rui X H, Yu Y, Huang S M. Curr. Opin. Electrochem., 2019, 18: 24-30.
[137]
Pramudita J C, Sehrawat D, Goonetilleke D, Sharma N. Adv. Energy Mater., 2017, 7(24): 1602911.

doi: 10.1002/aenm.v7.24
[138]
Rajagopalan R, Tang Y G, Ji X B, Jia C K, Wang H Y. Adv. Funct. Mater., 2020, 30(12): 1909486.

doi: 10.1002/adfm.v30.12
[139]
Dhir S, Wheeler S, Capone I, Pasta M. Chem, 2020, 6(10): 2442.

doi: 10.1016/j.chempr.2020.08.012
[140]
Duan J, Wang W T, Zou D G, Liu J, Li N, Weng J Y, Xu L P, Guan Y, Zhang Y J, Zhou P F. ACS Appl. Mater. Interfaces, 2022, 14(27): 31234.

doi: 10.1021/acsami.2c04831
[141]
Xu C J, Li B H, Du H D, Kang F Y. Angew. Chem. Int. Ed., 2012, 51(4): 933.

doi: 10.1002/anie.v51.4
[142]
Lee B, Lee H R, Kim H, Chung K Y, Cho B W, Oh S H. Chem. Commun., 2015, 51(45): 9265.

doi: 10.1039/C5CC02585K
[143]
Pan H, Shao Y, Yan P, Cheng Y, Han K S, Nie Z, Wang C, Yang J, Li X, Bhattacharya P, Mueller K T, Liu J. Nat. Energy., 2016, 1(5): 1.

doi: 10.1038/ng0492-1
[144]
Yu P, Zeng Y X, Zhang H Z, Yu M H, Tong Y X, Lu X H. Small, 2019, 15(7): 1804760.

doi: 10.1002/smll.v15.7
[145]
Han S D, Rajput N N, Qu X H, Pan B F, He M N, Ferrandon M S, Liao C, Persson K A, Burrell A K. ACS Appl. Mater. Interfaces, 2016, 8(5): 3021.

doi: 10.1021/acsami.5b10024
[146]
Ma M C, Lu X F, Guo Y, Wang L C, Liang X J. Trac Trends Anal. Chem., 2022, 157: 116741.

doi: 10.1016/j.trac.2022.116741
[147]
Hong H, Guo X, Zhu J X, Wu Z X, Li Q, Zhi C Y. Sci. China Chem., 2023, 66: 1.

doi: 10.1007/s11426-022-1485-8
[148]
Liu Y, Zhou W Q, Teo W L, Wang K, Zhang L Y, Zeng Y F, Zhao Y L. Chem, 2020, 6(12): 3172.

doi: 10.1016/j.chempr.2020.08.021
[149]
Jarju J J, Lavender A M, Espiña B, Romero V, Salonen L M. Molecules, 2020, 25(22): 5404.

doi: 10.3390/molecules25225404
[150]
Bagheri A R, Aramesh N. J. Mater. Sci., 2021, 56(2): 1116.

doi: 10.1007/s10853-020-05308-9
[151]
Geng K Y, He T, Liu R Y, Dalapati S, Tan K T, Li Z P, Tao S S, Gong Y F, Jiang Q H, Jiang D L. Chem. Rev., 2020, 120(16): 8814.

doi: 10.1021/acs.chemrev.9b00550
[1] Ziqing Wang, Jinfeng Du, Futai Lu, Qiliang Deng. Tetraphenylethene-Based Covalent Organic Frameworks (COFs): Design, Synthesis and Applications [J]. Progress in Chemistry, 2024, 36(1): 67-80.
[2] Weiyu Zhang, Jie Li, Hong Li, Jiaqi Ji, Chenliang Gong, Sanyuan Ding. Covalent Organic Frameworks for Proton Exchange Membranes [J]. Progress in Chemistry, 2024, 36(1): 48-66.
[3] Yunchao Ma, Yuxin Yao, Yue Fu, Chunbo Liu, Bo Hu, Guangbo Che. Progress of Covalent Organic Frameworks in Iodine Capture [J]. Progress in Chemistry, 2023, 35(7): 1097-1105.
[4] Yunpeng Wu, Xiaofeng Wang, Benxian Li, Xudong Zhao, Xiaoyang Liu. Preparation of Heteroatom Doped Graphene and Its Application as Electrode Materials for Supercapacitors [J]. Progress in Chemistry, 2023, 35(7): 1005-1017.
[5] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[6] Xie Zhiying, Zheng Xinhua, Wang Mingming, Yu Haizhou, Qiu Xiaoyan, Chen Wei. Aqueous Zinc-ion Batteries [J]. Progress in Chemistry, 2023, 35(11): 1701-1726.
[7] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[8] Keke Guan, Wen Lei, Zhaoming Tong, Haipeng Liu, Haijun Zhang. Synthesis, Structure Regulating and the Applications in Electrochemical Energy Storage of MXenes [J]. Progress in Chemistry, 2022, 34(3): 665-682.
[9] Yumeng Wang, Rong Yang, Qijiu Deng, Chaojiang Fan, Suzhen Zhang, Yinglin Yan. Application of Bimetallic MOFs and Their Derivatives in Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 460-473.
[10] Geng Gao, Keyu Zhang, Qianwen Wang, Libo Zhang, Dingfang Cui, Yaochun Yao. Metal Oxalate-Based Anode Materials: A New Choice for Energy Storage Materials Applied in Metal Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 434-446.
[11] Feiran Wang, Fengjing Jiang. Ion-Conducting Membrane for Vanadium Redox Flow Batteries [J]. Progress in Chemistry, 2021, 33(3): 462-470.
[12] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
[13] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[14] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.
[15] Jian Li, Enshuang Zhang, Yuanyuan Liu, Hongyan Huang, Yuefeng Su, Wenjing Li. Preparation of the Ultralow Density Aerogel and Its Application [J]. Progress in Chemistry, 2020, 32(6): 713-726.