中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (3): 665-682 DOI: 10.7536/PC210301 Previous Articles   Next Articles

• Review •

Synthesis, Structure Regulating and the Applications in Electrochemical Energy Storage of MXenes

Keke Guan, Wen Lei, Zhaoming Tong, Haipeng Liu, Haijun Zhang()   

  1. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology,Wuhan 430081, China
  • Received: Revised: Online: Published:
  • Contact: Haijun Zhang
Richhtml ( 35 ) PDF ( 581 ) Cited
Export

EndNote

Ris

BibTeX

MXenes have attracted intensive research attention owing to its unique two-dimensional layered structure, high specific surface area, excellent conductivity, superior surface hydrophilicity and chemical stability. In recent years, selectively etching the A element layers from MAX phases by fluoride-containing etchants (HF, LiF-HCl, etc) is a common method to prepare multilayer MXenes with plentiful surface terminations. Due to the pollution problems of fluoride-containing etchants, at present, many studies have been reported on the use of more green and environmentally friendly fluorine-free etchants (NaOH, ZnCl2, etc) to etch MAX phases. The properties of MXenes are closely related to its structure. Additionally, it is found that the preparation methods have great impacts on the layer spacing and surface terminations of MXenes, consequently affecting its performance. Hence, this paper summarizes and compares the research progress of the preparation strategies, layer spacing and surface terminations regulation of MXenes. Then the applications of MXenes in electrochemical energy storage are outlined. Finally, the challenges and prospects for the future development of MXenes are also proposed.

Contents

1 Introduction

2 Preparation of MXenes

2.1 Preparation of MXenes by fluoride-containing etchants

2.2 Preparation of MXenes by fluoride-free etchants

3 Structure regulating of MXenes

3.1 Interlayer spacing regulating of MXenes

3.2 Surface terminations controlling of MXenes

4 The applications of MXenes in electrochemical energy storage

4.1 Supercapacitors

4.2 Lithium-ion batteries

4.3 Non-lithium-ion batteries

5 Conclusion and outlook

Fig.1 (a) The chemical elements for the synthesis of MXenes[22]; (b) Structure of MAX phases and the corresponding MXenes[21]
Table 1 The preparation process conditions for common 2D MXenes
Precursor MXenes Etchant Concentration T ( ℃) Time (h) Yield ref
Ti2AlC Ti2CTx HF 10 wt% RT 10 60% 30
V2AlC V2CTx HF 50 wt% RT 90 60% 31
Nb2AlC Nb2CTx HF 40 wt% 60 72 NA 32
Mo2Ga2C Mo2CTx HF 48wt%~51 wt% 55 160 NA 33
Mo2Ga2C Mo2CTx HF 48 wt% 140 96 NA 34
Ti2AlN Ti2NTx HF 5 wt% RT 24 NA 17
Ti3AlC2 Ti3C2Tx HF 10 wt% RT 24 NA 35
Ti3AlC2 Ti3C2Tx HF 50 wt% RT 2 100% 23,30
Ti3AlCN Ti3CNTx HF 30 wt% RT 18 80% 30
Zr3Al3C5 Zr3C2Tx HF 50 wt% RT 60 NA 36
Hf3Al(Si)4C6 Hf3C2Tx HF 35 wt% RT 60 73% 37
Mo2TiAlC2 Mo2TiC2Tx HF 50 wt% RT 48 100% 38
Mo2ScAlC2 (Mo2Sc)C2Tx HF 48 wt% 50 16 NA 39
V4AlC3 V4C3Tx HF 40 wt% RT 165 NA 40
Nb4AlC3 Nb4C3Tx HF 50 wt% RT 96 77% 41
Ta4AlC3 Ta4C3Tx HF 50 wt% RT 72 90% 30
Mo2Ti2AlC3 Mo2Ti2C3Tx HF 50 wt% 55 90 100% 38
Ti2AlN Ti2NTx HCl-KF 6 M HCl-7.0 mol KF 40 1 87% 17
V2AlC V2CTx HCl-NaF 12 M HCl-3.4 mol NaF 90 72 > 90% 42
Nb2AlC Nb2CTx HCl-NaBF4 12 M HCl-3.1 mol NaBF4 180 20 NA 32
Mo2Ga2C Mo2CTx HCl-LiF 12 M HCl-3 mol LiF 35 384 NA 43
Ti3AlCN Ti3CNTx HCl-LiF 6 M HCl-7.5 mol LiF 30 12 NA 44
Cr2TiAlC2 Cr2TiC2Tx HCl-LiF 6 M HCl-5 mol LiF 55 42 80% 38
Ti3AlC2 Ti3C2Tx HCl-LiF 6 M HCl-5 mol LiF 35 24 NA 45
Ti3AlC2 Ti3C2Tx HCl-LiF 6 M HCl-7.5 mol LiF 35 24 NA 45
Ti3AlC2 Ti3C2Tx HCl-LiF 9 M HCl-7.5 mol LiF 35 24 NA 46
Ti3AlC2 Ti3C2Tx HCl-LiF 9 M HCl-5 mol LiF 35 24 NA 47
Ti3AlC2 Ti3C2Tx HCl-LiF 6 M HCl-10 mol LiF 35 24 NA 48
Ti3AlC2 Ti3C2Tx HCl-LiF 9 M HCl-12 mol LiF 35 24 NA 14
Ti3AlC2 Ti3C2Tx HCl-NaBF4 12 M HCl-5.3 mol NaBF4 180 16 NA 32
Ti3AlC2 Ti3C2Tx NaHF2, KHF2, NH4HF2 1 M 60 8 NA 49,50
Ti4AlN3 Ti4N3Tx KF-LiF-NaF 59 wt% KF + 29 wt% LiF +
12 wt% NaF
550 0.5 NA 51
Ti3AlC2 Ti3C2Tx NaOH 27.5 M 270 12 92% 52
Ti3AlC2 Ti3C2Tx NH4Cl-TMA·OH 1 M NH4Cl + 0.2 M TMA·OH RT NA > 90% 53
Precursor MXenes Etchant Concentration T ( ℃) Time (h) Yield ref
Ti3AlC2,Ti2AlC, Ti2AlN, V2AlC Ti3C2Cl2, Ti2CCl2, Ti2NCl2, V2CCl2 ZnCl2 MAX:ZnCl2 = 1:6 (molar ratio) 550 5 NA 54
Ti3SiC2 Ti3C2Cl2 CuCl2 MAX:CuCl2 = 1:3 (molar ratio) 750 24 NA 55
Ti2AlC Ti2CCl2 CdCl2 MAX:CdCl2 = 1:3 (molar ratio) 650 - NA
Ta2AlC, Nb2AlC Ta2CCl2, Nb2CCl2 AgCl MAX:AgCl = 1:5 (molar ratio) 700 - NA
Ti3AlC2, Ti3ZnC2 Ti3C2Cl2 FeCl2, CoCl2, NiCl2, CuCl2, MAX :Salt = 1:3 (molar ratio) 700 - NA
Ti3AlC2 Ti3C2I, Ti3C2Br2 CuI, CuBr2 MAX:Salt = 1:6, 1:4 (molar ratio) 700 - NA
Fig.2 (a) XRD pattern for Ti3AlC2 MAX before (i) and after (ii) HF treatment, and the exfoliated Ti3C2Tx MXene nanosheets (iii)[23]; (b) SEM micrograph of Ti3AlC2 MAX before HF treatment[30]; (c) SEM micrograph of Ti3AlC2 MAX after HF treatment[30]; (d) Synthesis of Ti3C2Tx via two different routes using HCl-LiF as the etching solution[45]; (e) Schematic illustration of reaction between Ti3AlC2 and bifluorides[49]; (f) Schematic illustration of the synthesis of Ti4N3Tx by etching Ti4AlN3 in molten salts[51]
Fig.3 (a) Hydrothermal method in alkali for fluorine-free MXenes; (b) Formation of Ti3C2Tx MXene under various hydrothermal temperatures and NaOH concentrations (Red circles: MXene; black squares: MAX; blue triangles: sodium titanate (NTOs))[52]
Fig.4 (a) Schematic mechanism for etching of Ti2AlC in HCl aqueous electrolyte[66]; (b) Electrochemical etching of bulk Ti3AlC2 in the electrolyte of NH4Cl and tetramethylammonium hydroxide (TMA·OH)[53]
Fig.5 Schematic illustration of etching effect of Lewis acid in molten salts for fluoride-free MXenes[54]
Table 2 Advantages and disadvantages comparison of MXenes prepared by different etching methods
Table 3 The comparison of lattice parameter (c) of Ti3C2Tx via different intercalations
Fig.6 (a) Schematic illustration of the intercalation of TMA·OH between Ti3C2Tx layers[74]; (b) Schematic illustration of cation-intercalated Ti3C2Tx MXenes[79]; (c) Modified MXene by the cation intercalation and ion-exchange method[78]: (i) schematic illustration of the etching process of V2AlC and the cation intercalation behaviors, the corresponding (002) diffraction peaks of XRD and the SEM images of (ii) V2AlC, (iii) V2CTx, (iv) alkalizated V2CTx, and (v) V2CTx after Ca2+ intercalation; (d) Schematic illustration of the fabrication process of MXene nanosheets (i, ii), vacuum-dried dense MXene (D-MF) film (iii), freeze-dried porous MXene (3D-PMF) film (iv), and freeze-dried 3D porous MXene/CNTs (3D-PMCF) film (v), and (vi) XRD patterns corresponding to the three films[86]
Table 4 Summary of surface termination regulation methods for MXenes
Fig.7 (a) Schematic of n-butyllithium and alkali modified the surface terminations of MXene[46]; (b) Schematic illustration of the decomposition of O terminated MXenes[97]
Fig.8 (a) Schematic of K+ intercalation with surface terminations to modify Ti3C2Tx; (b) cycle voltammetry profiles at 1 mV·s-1 for different MXene-based electrodes in 1 M H2SO4; (c) Comparison of capacitance for MXene sheets (at scan rate of 1 mV·s-1 ), the total capacitance is separated into intercalation pseudocapacity and surface capacitive contributions; (d) capacitance retention test of 400-KOH-Ti3C2 electrode in 1 M H2SO4, inset shows galvanostatic cycling data collected 1 A·g-1[101]
Fig.9 (a) Schematic illustration of the fabrication process of PVP-Sn(Ⅳ)@Ti3C2 nanocomposites; (b) Charge-discharge profiles of the PVP-Sn(Ⅳ)@Ti3C2 electrode at different cycles with a current density of 216.5 mA·c m - 3 (0.1 A· g - 1); (c) Cycling performance and Coulombic efficiency of different electrodes at a current density of 216.5 mA·c m - 3 (0.1 A·g-1); (d) Rate performance of the PVP-Sn(Ⅳ)@Ti3C2 electrode[77]
Fig.10 (a) Schematic illustration of the synthesis of S atoms intercalated Ti3C2 MXene; (b) The cycling performance of Ti3C2, CTAB-Ti3C2, and CTAB-S@Ti3C2-450 electrodes at a current density of 0.1 A·g-1; (c) Rate performance of CT-S@Ti3C2-450 at different current densities; (d) The long cycling performance of CT-S@Ti3C2-450 at a current density of 10 A·g-1[125]
[1]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Nature, 2005, 438(7065): 197.

doi: 10.1038/nature04233
[2]
Lin L X, Sherrell P, Liu Y Q, Lei W, Zhang S W, Zhang H J, Wallace G G, Chen J. Adv. Energy Mater., 2020, 10(16): 1903870.

doi: 10.1002/aenm.201903870
[3]
Tian L, Li J Y, Liang F, Wang J K, Li S S, Zhang H J, Zhang S W. Appl. Catal. B, 2018, 225: 307.

doi: 10.1016/j.apcatb.2017.11.082
[4]
Liu H P, Lei W, Tong Z M, Li X J, Wu Z X, Jia Q L, Zhang S W, Zhang H J. Adv. Mater. Interfaces, 2020, 7(15): 2000494.

doi: 10.1002/admi.202000494
[5]
Meng Z, Stolz R M, Mendecki L, Mirica K A. Chem. Rev., 2019, 119(1): 478.

doi: 10.1021/acs.chemrev.8b00311
[6]
Huang Z, Zhang H J, Zhang S W. CrystEngComm, 2017, 19(22): 2971.

doi: 10.1039/C7CE00549K
[7]
Guan K K, Li J Y, Lei W, Wang H H, Tong Z M, Jia Q L, Zhang H J, Zhang S W. J. Materiomics, 2021, 7(5): 1131.

doi: 10.1016/j.jmat.2021.01.008
[8]
Tian L, Li J Y, Liang F, Chang S, Zhang H J, Zhang M Y, Zhang S W. J. Colloid Interface Sci., 2019, 536: 664.

doi: 10.1016/j.jcis.2018.10.098
[9]
Xuan X Y, Zhang Z H, Guo W L. Nanoscale, 2018, 10(17): 7898.

doi: 10.1039/C8NR00445E
[10]
Rosa M, Costa Bassetto V, Girault H H, Lesch A, Esposito V. ACS Appl. Energy Mater., 2020, 3(1): 1017.

doi: 10.1021/acsaem.9b02055
[11]
Sun L Q, Zhao Z C, Li S, Su Y P, Huang L, Shao N N, Liu F, Bu Y B, Zhang H J, Zhang Z T. ACS Appl. Nano Mater., 2019, 2(4): 2144.

doi: 10.1021/acsanm.9b00122
[12]
Shan Q Y, Guan B, Zhu S J, Zhang H J, Zhang Y X. RSC Adv., 2016, 6(86): 83209.

doi: 10.1039/C6RA18265H
[13]
Lei W, Xiao J L, Liu H P, Jia Q L, Zhang H J. Tungsten, 2020, 2: 217.

doi: 10.1007/s42864-020-00054-6
[14]
Zhou Y H, Maleski K, Anasori B, Thostenson J O, Pang Y K, Feng Y Y, Zeng K X, Parker C B, Zauscher S, Gogotsi Y, Glass J T, Cao C Y. ACS Nano, 2020, 14(3): 3576.

doi: 10.1021/acsnano.9b10066
[15]
Ghidiu M, Naguib M, Shi C, Mashtalir O, Pan L M, Zhang B, Yang J, Gogotsi Y, Billinge S J L, Barsoum M W. Chem. Commun., 2014, 50(67): 9517.

doi: 10.1039/C4CC03366C
[16]
Li X L, Li M, Yang Q, Li H F, Xu H L, Chai Z F, Chen K, Liu Z X, Tang Z J, Ma L T, Huang Z D, Dong B B, Yin X W, Huang Q, Zhi C Y. ACS Nano, 2020, 14(1): 541.

doi: 10.1021/acsnano.9b06866
[17]
Soundiraraju B, George B K. ACS Nano, 2017, 11(9): 8892.

doi: 10.1021/acsnano.7b03129
[18]
Wu Y J, Sun Y J, Zheng J F, Rong J H, Li H Y, Niu L. Chem. Eng. J., 2021, 404: 126565.

doi: 10.1016/j.cej.2020.126565
[19]
Pang J B, Mendes R G, Bachmatiuk A, Zhao L, Ta H Q, Gemming T, Liu H, Liu Z F, Rummeli M H. Chem. Soc. Rev., 2019, 48(1): 72.

doi: 10.1039/C8CS00324F
[20]
Shi J, Jiang B L, Li C, Yan F Y, Wang D, Yang C, Wan J J. Mater. Chem. Phys., 2020, 245: 122533.

doi: 10.1016/j.matchemphys.2019.122533
[21]
Peng J H, Chen X Z, Ong W J, Zhao X J, Li N. Chem, 2019, 5(1): 18.

doi: 10.1016/j.chempr.2018.08.037
[22]
Zhang C J, Ma Y L, Zhang X T, Abdolhosseinzadeh S, Sheng H W, Lan W, Pakdel A, Heier J, Nüesch F. Energy Environ. Mater., 2020, 3(1): 29.

doi: 10.1002/eem2.12058
[23]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37): 4248.

doi: 10.1002/adma.201102306
[24]
Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. Adv. Mater., 2014, 26(7): 992.

doi: 10.1002/adma.201304138
[25]
Xu C, Wang L B, Liu Z B, Chen L, Guo J K, Kang N, Ma X L, Cheng H M, Ren W C. Nat. Mater., 2015, 14(11): 1135.

doi: 10.1038/nmat4374
[26]
Geng D C, Zhao X X, Chen Z X, Sun W W, Fu W, Chen J Y, Liu W, Zhou W, Loh K P. Adv. Mater., 2017, 29(35): 1700072.

doi: 10.1002/adma.201700072
[27]
Hu M M, Hu T, Li Z J, Yang Y, Cheng R F, Yang J X, Cui C, Wang X H. ACS Nano, 2018, 12(4): 3578.

doi: 10.1021/acsnano.8b00676
[28]
Wang C D, Chen S M, Song L. Adv. Funct. Mater., 2020, 30(47): 2000869.

doi: 10.1002/adfm.202000869
[29]
Kim H, Wang Z W, Alshareef H N. Nano Energy, 2019, 60: 179.

doi: 10.1016/j.nanoen.2019.03.020
[30]
Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W. ACS Nano, 2012, 6(2): 1322.

doi: 10.1021/nn204153h
[31]
VahidMohammadi A, Hadjikhani A, Shahbazmohamadi S, Beidaghi M. ACS Nano, 2017, 11(11): 11135.

doi: 10.1021/acsnano.7b05350 pmid: 29039915
[32]
Peng C, Wei P, Chen X, Zhang Y L, Zhu F, Cao Y H, Wang H J, Yu H, Peng F. Ceram. Int., 2018, 44(15): 18886.

doi: 10.1016/j.ceramint.2018.07.124
[33]
Fredrickson K D, Anasori B, Seh Z W, Gogotsi Y, Vojvodic A. J. Phys. Chem. C, 2016, 120(50): 28432.

doi: 10.1021/acs.jpcc.6b09109
[34]
Deeva E B, Kurlov A, Abdala P M, Lebedev D, Kim S M, Gordon C P, Tsoukalou A, Fedorov A, Müller C R. Chem. Mater., 2019, 31(12): 4505.

doi: 10.1021/acs.chemmater.9b01105
[35]
Wang H W, Naguib M, Page K, Wesolowski D J, Gogotsi Y. Chem. Mater., 2016, 28(1): 349.

doi: 10.1021/acs.chemmater.5b04250
[36]
Zhou J, Zha X H, Chen F Y, Ye Q, Eklund P, Du S Y, Huang Q. Angew. Chem., 2016, 128(16): 5092.

doi: 10.1002/ange.201510432
[37]
Zhou J, Zha X H, Zhou X B, Chen F Y, Gao G L, Wang S W, Shen C, Chen T, Zhi C Y, Eklund P, Du S Y, Xue J M, Shi W Q, Chai Z F, Huang Q. ACS Nano, 2017, 11(4): 3841.

doi: 10.1021/acsnano.7b00030 pmid: 28375599
[38]
Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y, Barsoum M W. ACS Nano, 2015, 9(10): 9507.

doi: 10.1021/acsnano.5b03591 pmid: 26208121
[39]
Meshkian R, Tao Q Z, Dahlqvist M, Lu J, Hultman L, Rosen J. Acta Mater., 2017, 125: 476.

doi: 10.1016/j.actamat.2016.12.008
[40]
Tran M H, Schäfer T, Shahraei A, Dürrschnabel M, Molina-Luna L, Kramm U I, Birkel C S. ACS Appl. Energy Mater., 2018, 1(8): 3908.

doi: 10.1021/acsaem.8b00652
[41]
Zhao S S, Meng X, Zhu K, Du F, Chen G, Wei Y J, Gogotsi Y, Gao Y. Energy Storage Mater., 2017, 8: 42.
[42]
Liu F F, Zhou J, Wang S W, Wang B X, Shen C, Wang L B, Hu Q K, Huang Q, Zhou A G. J. Electrochem. Soc., 2017, 164(4): A709.

doi: 10.1149/2.0641704jes
[43]
Halim J, Kota S, Lukatskaya M R, Naguib M, Zhao M Q, Moon E J, Pitock J, Nanda J, May S J, Gogotsi Y, Barsoum M W. Adv. Funct. Mater., 2016, 26(18): 3118.

doi: 10.1002/adfm.201505328
[44]
Du F, Tang H, Pan L M, Zhang T, Lu H M, Xiong J, Yang J, Zhang C F. Electrochimica Acta, 2017, 235: 690.

doi: 10.1016/j.electacta.2017.03.153
[45]
Lipatov A, Alhabeb M, Lukatskaya M R, Boson A, Gogotsi Y, Sinitskii A. Adv. Electron. Mater., 2016, 2(12): 1600255.

doi: 10.1002/aelm.201600255
[46]
Chen X F, Zhu Y Z, Zhang M, Sui J Y, Peng W C, Li Y, Zhang G L, Zhang F B, Fan X B. ACS Nano, 2019, 13(8): 9449.

doi: 10.1021/acsnano.9b04301
[47]
Song Y Z, Sun Z T, Fan Z D, Cai W L, Shao Y L, Sheng G, Wang M L, Song L X, Liu Z F, Zhang Q, Sun J Y. Nano Energy, 2020, 70: 104555.

doi: 10.1016/j.nanoen.2020.104555
[48]
Yu M Z, Zhou S, Wang Z Y, Zhao J J, Qiu J S. Nano Energy, 2018, 44: 181.

doi: 10.1016/j.nanoen.2017.12.003
[49]
Feng A H, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, Song L X. Mater. Des., 2017, 114: 161.

doi: 10.1016/j.matdes.2016.10.053
[50]
Feng A H, Yu Y, Jiang F, Wang Y, Mi L, Yu Y, Song L X. Ceram. Int., 2017, 43(8): 6322.

doi: 10.1016/j.ceramint.2017.02.039
[51]
Urbankowski P, Anasori B, Makaryan T, Er D Q, Kota S, Walsh P L, Zhao M Q, Shenoy V B, Barsoum M W, Gogotsi Y. Nanoscale, 2016, 8(22): 11385.

doi: 10.1039/c6nr02253g pmid: 27211286
[52]
Li T F, Yao L L, Liu Q L, Gu J J, Luo R C, Li J H, Yan X D, Wang W Q, Liu P, Chen B, Zhang W, Abbas W, Naz R, Zhang D. Angew. Chem. Int. Ed., 2018, 57(21): 6115.

doi: 10.1002/anie.201800887
[53]
Yang S, Zhang P P, Wang F X, Ricciardulli A G, Lohe M R, Blom P W M, Feng X L. Angew. Chem. Int. Ed., 2018, 57(47): 15491.

doi: 10.1002/anie.201809662
[54]
Li M, Lu J, Luo K, Li Y B, Chang K K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P,Persson P O Å Du S Y, Chai Z F, Huang Z R, Huang Q. J. Am. Chem. Soc., 2019, 141(11): 4730.

doi: 10.1021/jacs.9b00574
[55]
Li Y B, Shao H, Lin Z F, Lu J, Liu L Y, Duployer B,Persson P O Å Eklund P, Hultman L, Li M, Chen K, Zha X H, Du S Y, Rozier P, Chai Z F, Raymundo-Piñero E, Taberna P L, Simon P, Huang Q. Nat. Mater., 2020, 19(8): 894.

doi: 10.1038/s41563-020-0657-0
[56]
Anasori B, Lukatskaya M R, Gogotsi Y. Nat. Rev. Mater., 2017, 2(2): 16098.

doi: 10.1038/natrevmats.2016.98
[57]
Zhan X X, Si C, Zhou J, Sun Z M. Nanoscale Horiz., 2020, 5(2): 235.

doi: 10.1039/C9NH00571D
[58]
Sun Z M, Li S, Ahuja R, Schneider J M. Solid State Commun., 2004, 129(9): 589.

doi: 10.1016/j.ssc.2003.12.008
[59]
Tang Y, Zhu J F, Yang C H, Wang F. J. Electrochem. Soc., 2016, 163(9): A1975.

doi: 10.1149/2.0921609jes
[60]
Xu K. Chem. Rev., 2014, 114 (23): 11503.

doi: 10.1021/cr500003w
[61]
Natu V, Pai R, Sokol M, Carey M, Kalra V, Barsoum M W. Chem, 2020, 6(3): 616.

doi: 10.1016/j.chempr.2020.01.019
[62]
Naguib M, Presser V, Tallman D, Lu J, Hultman L, Gogotsi Y, Barsoum M W. J. Am. Ceram. Soc., 2011, 94(12): 4556.

doi: 10.1111/j.1551-2916.2011.04896.x
[63]
Dong Y F, Wu Z S, Zheng S H, Wang X H, Qin J Q, Wang S, Shi X Y, Bao X H. ACS Nano, 2017, 11(5): 4792.

doi: 10.1021/acsnano.7b01165
[64]
Liu Y, Li Y X, Li F, Liu Y Z, Yuan X Y, Zhang L F, Guo S W. Electrochimica Acta, 2019, 295: 599.

doi: 10.1016/j.electacta.2018.11.003
[65]
Lukatskaya M R, Halim J, Dyatkin B, Naguib M, Buranova Y S, Barsoum M W, Gogotsi Y. Angew. Chem., 2014, 126(19): 4977.

doi: 10.1002/ange.201402513
[66]
Sun W, Shah S A, Chen Y, Tan Z, Gao H, Habib T, Radovic M, Green M J. J. Mater. Chem. A, 2017, 5(41): 21663.

doi: 10.1039/C7TA05574A
[67]
Pang S Y, Wong Y T, Yuan S G, Liu Y, Tsang M K, Yang Z B, Huang H T, Wong W T, Hao J H. J. Am. Chem. Soc., 2019, 141(24): 9610.

doi: 10.1021/jacs.9b02578
[68]
Fashandi H, Dahlqvist M, Lu J, Palisaitis J, Simak S I, Abrikosov I A, Rosen J, Hultman L, Andersson M, Lloyd Spetz A, Eklund P. Nat. Mater., 2017, 16(8): 814.

doi: 10.1038/nmat4896 pmid: 28459444
[69]
Wang S, Cheng J, Zhu S Y, Ma J Q, Qiao Z H, Yang J, Liu W M. Scr. Mater., 2017, 131: 80.

doi: 10.1016/j.scriptamat.2017.01.013
[70]
Mashtalir O, Naguib M, Mochalin V N, Dall'Agnese Y, Heon M, Barsoum M W, Gogotsi Y. Nat. Commun., 2013, 4(1): 1716.

doi: 10.1038/ncomms2664
[71]
Mashtalir O, Lukatskaya M R, Kolesnikov A I, Raymundo-Piñero E, Naguib M, Barsoum M W, Gogotsi Y. Nanoscale, 2016, 8(17): 9128.

doi: 10.1039/c6nr01462c pmid: 27088300
[72]
Mashtalir O, Lukatskaya M R, Zhao M Q, Barsoum M W, Gogotsi Y. Adv. Mater., 2015, 27(23): 3501.

doi: 10.1002/adma.201500604
[73]
Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y. Chem. Mater., 2017, 29(18): 7633.

doi: 10.1021/acs.chemmater.7b02847
[74]
Wang Z Q, Xuan J N, Zhao Z G, Li Q W, Geng F X. ACS Nano, 2017, 11(11): 11559.

doi: 10.1021/acsnano.7b06476
[75]
Luo J M, Zhang W K, Yuan H D, Jin C B, Zhang L Y, Huang H, Liang C, Xia Y, Zhang J, Gan Y P, Tao X Y. ACS Nano, 2017, 11(3): 2459.

doi: 10.1021/acsnano.6b07668
[76]
Lukatskaya M R, Mashtalir O, Ren C E, Dall'Agnese Y, Rozier P, Taberna P L, Naguib M, Simon P, Barsoum M W, Gogotsi Y. Science, 2013, 341(6153): 1502.

doi: 10.1126/science.1241488 pmid: 24072919
[77]
Luo J M, Tao X Y, Zhang J, Xia Y, Huang H, Zhang L Y, Gan Y P, Liang C, Zhang W K. ACS Nano, 2016, 10(2): 2491.

doi: 10.1021/acsnano.5b07333
[78]
Lu M, Zhang Y P, Chen J N, Han W J, Zhang W, Li H B, Zhang X, Zhang B S. J. Energy Chem., 2020, 49: 358.

doi: 10.1016/j.jechem.2020.03.002
[79]
Al-Temimy A, Prenger K, Golnak R, Lounasvuori M, Naguib M, Petit T. ACS Appl. Mater. Interfaces, 2020, 12(13): 15087.

doi: 10.1021/acsami.9b22122
[80]
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Nature, 2014, 516(7529): 78.

doi: 10.1038/nature13970
[81]
Magne D, Mauchamp V, Célérier S, Chartier P, Cabioc'H T. Phys. Chem. Chem. Phys., 2016, 18(45): 30946.

doi: 10.1039/C6CP05985F
[82]
Zhao M Q, Ren C G, Ling Z, Lukatskaya M R, Zhang C F, van Aken K L, Barsoum M W, Gogotsi Y. Adv. Mater., 2015, 27(2): 339.

doi: 10.1002/adma.201404140
[83]
Boota M, Anasori B, Voigt C, Zhao M Q, Barsoum M W, Gogotsi Y. Adv. Mater., 2016, 28(7): 1517.

doi: 10.1002/adma.201504705
[84]
Li J M, Wang H, Xiao X. Energy Environ. Mater., 2020, 3(3): 306.

doi: 10.1002/eem2.12090
[85]
Sun N, Guan Z, Zhu Q Z, Anasori B, Gogotsi Y, Xu B. Nano Micro Lett., 2020, 12(1): 89.

doi: 10.1007/s40820-020-00426-0
[86]
Zhang P, Zhu Q Z, Soomro R A, He S Y, Sun N, Qiao N, Xu B. Adv. Funct. Mater., 2020, 30(47): 2000922.

doi: 10.1002/adfm.202000922
[87]
Zhang P, Soomro R A, Guan Z, Sun N, Xu B. Energy Storage Mater., 2020, 29: 163.
[88]
Xie Y, Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y, Yu X Q, Nam K W, Yang X Q, Kolesnikov A I, Kent P R C. J. Am. Chem. Soc., 2014, 136(17): 6385.

doi: 10.1021/ja501520b pmid: 24678996
[89]
Harris K J, Bugnet M, Naguib M, Barsoum M W, Goward G R. J. Phys. Chem. C, 2015, 119(24): 13713.

doi: 10.1021/acs.jpcc.5b03038
[90]
Hope M A, Forse A C, Griffith K J, Lukatskaya M R, Ghidiu M, Gogotsi Y, Grey C P. Phys. Chem. Chem. Phys., 2016, 18(7): 5099.

doi: 10.1039/C6CP00330C
[91]
Xu D X, Li Z D, Li L S, Wang J. Adv. Funct. Mater., 2020, 30(47): 2000712.

doi: 10.1002/adfm.202000712
[92]
Hu T, Li Z J, Hu M M, Wang J M, Hu Q M, Li Q Z, Wang X H. J. Phys. Chem. C, 2017, 121(35): 19254.

doi: 10.1021/acs.jpcc.7b05675
[93]
Fu Z H, Zhang Q F, Legut D, Si C, Germann T C, Lookman T, Du S Y, Francisco J S, Zhang R F. Phys. Rev. B, 2016, 94(10): 104103.

doi: 10.1103/PhysRevB.94.104103
[94]
Xie Y, Kent P R C. Phys. Rev. B, 2013, 87(23): 235441.

doi: 10.1103/PhysRevB.87.235441
[95]
Tang Q, Zhou Z, Shen P W. J. Am. Chem. Soc., 2012, 134(40): 16909.

doi: 10.1021/ja308463r
[96]
Meng Q Q, Ma J L, Zhang Y H, Li Z, Zhi C Y, Hu A, Fan J. Nanoscale, 2018, 10(7): 3385.

doi: 10.1039/C7NR07649E
[97]
Xie Y, Dall'Agnese Y, Naguib M, Gogotsi Y, Barsoum M W, Zhuang H L, Kent P R C. ACS Nano, 2014, 8(9): 9606.

doi: 10.1021/nn503921j pmid: 25157692
[98]
Dall'Agnese Y, Lukatskaya M R, Cook K M, Taberna P L, Gogotsi Y, Simon P. Electrochem. Commun., 2014, 48: 118.

doi: 10.1016/j.elecom.2014.09.002
[99]
Karlsson L H, Birch J, Halim J, Barsoum M W,Persson P O Å. Nano Lett., 2015, 15(8): 4955.

doi: 10.1021/acs.nanolett.5b00737 pmid: 26177010
[100]
Lai S, Jeon J, Jang S K, Xu J, Choi Y J, Park J H, Hwang E, Lee S. Nanoscale, 2015, 7(46): 19390.

doi: 10.1039/C5NR06513E
[101]
Li J, Yuan X T, Lin C, Yang Y Q, Xu L, Du X, Xie J L, Lin J H, Sun J L. Adv. Energy Mater., 2017, 7(15): 1602725.

doi: 10.1002/aenm.201602725
[102]
Peng Q M, Guo J X, Zhang Q R, Xiang J Y, Liu B Z, Zhou A G, Liu R P, Tian Y J. J. Am. Chem. Soc., 2014, 136(11): 4113.

doi: 10.1021/ja500506k
[103]
Kamysbayev V, Filatov A S, Hu H C, Rui X, Lagunas F, Wang D, Klie R F, Talapin D V. Science, 2020, 369(6506): 979.

doi: 10.1126/science.aba8311 pmid: 32616671
[104]
Wang H B, Wu Y P, Zhang J F, Li G Y, Huang H J, Zhang X, Jiang Q G. Mater. Lett., 2015, 160: 537.

doi: 10.1016/j.matlet.2015.08.046
[105]
Halim J, Persson I, Eklund P,Persson P O Å Rosen J. RSC Adv., 2018, 8(64): 36785.

doi: 10.1039/C8RA07270A
[106]
Aslam M K, Niu Y B, Xu M W. Adv. Energy Mater., 2021, 11(2): 2000681.

doi: 10.1002/aenm.202000681
[107]
Bärmann P, Nölle R, Siozios V, Ruttert M, Guillon O, Winter M, Gonzalez-Julian J, Placke T. ACS Nano, 2021, 15(2): 3295.

doi: 10.1021/acsnano.0c10153 pmid: 33522794
[108]
Cao B, Liu H, Zhang P, Sun N, Zheng B, Li Y, Du H L, Xu B. Adv. Funct. Mater., 2021, 31(32): 2102126.

doi: 10.1002/adfm.202102126
[109]
Zhao Q, Zhu Q Z, Miao J W, Zhang P, Xu B. Nanoscale, 2019, 11(17): 8442.

doi: 10.1039/C8NR09653H
[110]
Zhao Q, Zhu Q Z, Liu Y, Xu B. Adv. Funct. Mater., 2021, 31(21): 2100457.

doi: 10.1002/adfm.202100457
[111]
Xu P, Xiao H, Liang X, Zhang T F, Zhang F C, Liu C H, Lang B B, Gao Q M. Carbon, 2021, 173: 135.

doi: 10.1016/j.carbon.2020.11.010
[112]
Zhu Q Z, Li J P, Simon P, Xu B. Energy Storage Mater., 2021, 35: 630.
[113]
Yu L Y, Hu L F, Anasori B, Liu Y T, Zhu Q Z, Zhang P, Gogotsi Y, Xu B. ACS Energy Lett., 2018, 3(7): 1597.

doi: 10.1021/acsenergylett.8b00718
[114]
Liu Y T, Zhang P, Sun N, Anasori B, Zhu Q Z, Liu H, Gogotsi Y, Xu B. Adv. Mater., 2018, 30(23): 1707334.

doi: 10.1002/adma.201707334
[115]
Zhang P, Zhu Q Z, Guan Z, Zhao Q, Sun N, Xu B. ChemSusChem, 2020, 13(6): 1621.

doi: 10.1002/cssc.201901497 pmid: 31318177
[116]
Zhao J B, Wen J, Xiao J P, Ma X Z, Gao J H, Bai L N, Gao H, Zhang X T, Zhang Z G. J. Energy Chem., 2021, 53: 387.

doi: 10.1016/j.jechem.2020.05.037
[117]
Dong Y F, Shi H D, Wu Z S. Adv. Funct. Mater., 2020, 30(47): 2000706.

doi: 10.1002/adfm.202000706
[118]
Hosaka T, Kubota K, Hameed A S, Komaba S. Chem. Rev., 2020, 120(14): 6358.

doi: 10.1021/acs.chemrev.9b00463
[119]
Liang Y L, Dong H, Aurbach D, Yao Y. Nat. Energy, 2020, 5(9): 646.

doi: 10.1038/s41560-020-0655-0
[120]
Kajiyama S, Szabova L, Sodeyama K, Iinuma H, Morita R, Gotoh K, Tateyama Y, Okubo M, Yamada A. ACS Nano, 2016, 10(3): 3334.

doi: 10.1021/acsnano.5b06958 pmid: 26891421
[121]
Gentile A, Ferrara C, Tosoni S, Balordi M, Marchionna S, Cernuschi F, Kim M H, Lee H W, Ruffo R. Small Methods, 2020, 4(9): 2000314.

doi: 10.1002/smtd.202000314
[122]
Liu F F, Liu Y C, Zhao X D, Liu X B, Fan L Z. J. Mater. Chem. A, 2019, 7(28): 16712.

doi: 10.1039/C9TA02212K
[123]
Li J H, Zhang J, Rui B L, Lin L, Chang L M, Nie P. Progress in Chemistry, 2019, 31(9): 1283.
(李佳慧, 张晶, 芮秉龙, 林丽, 常立民, 聂平. 化学进展, 2019, 31(9): 1283.).

doi: 10.7536/PC190219
[124]
Zhao R Z, Di H X, Wang C X, Hui X B, Zhao D Y, Wang R T, Zhang L Y, Yin L W. ACS Nano, 2020, 14(10): 13938.

doi: 10.1021/acsnano.0c06360
[125]
Luo J M, Zheng J H, Nai J W, Jin C B, Yuan H D, Sheng O W, Liu Y J, Fang R Y, Zhang W K, Huang H, Gan Y P, Xia Y, Liang C, Zhang J, Li W Y, Tao X Y. Adv. Funct. Mater., 2019, 29(10): 1808107.

doi: 10.1002/adfm.201808107
[126]
Sun N, Zhu Q Z, Anasori B, Zhang P, Liu H, Gogotsi Y, Xu B. Adv. Funct. Mater., 2019, 29(51): 1906282.

doi: 10.1002/adfm.201906282
[127]
Xu M, Lei S L, Qi J, Dou Q Y, Liu L Y, Lu Y L, Huang Q, Shi S Q, Yan X B. ACS Nano, 2018, 12(4): 3733.

doi: 10.1021/acsnano.8b00959
[1] Yumeng Wang, Rong Yang, Qijiu Deng, Chaojiang Fan, Suzhen Zhang, Yinglin Yan. Application of Bimetallic MOFs and Their Derivatives in Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 460-473.
[2] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[3] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.
[4] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.
[5] Zhan Wu, Xiaohan Li, Aowei Qian, Jiayu Yang, Wenkui Zhang, Jun Zhang. Electrochromic Energy-Storage Devices Based on Inorganic Materials [J]. Progress in Chemistry, 2020, 32(6): 792-802.
[6] Wenjun Zhao, Jiangzhou Qin, Zhifan Yin, Xia Hu, Baojun Liu. 2D MXenes for Photocatalysis* [J]. Progress in Chemistry, 2019, 31(12): 1729-1736.