中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (7): 1005-1017 DOI: 10.7536/PC220811 Previous Articles   Next Articles

• Review •

Preparation of Heteroatom Doped Graphene and Its Application as Electrode Materials for Supercapacitors

Yunpeng Wu1,2, Xiaofeng Wang1, Benxian Li1, Xudong Zhao1(), Xiaoyang Liu1()   

  1. 1 State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University,Changchun 130012, China
    2 School of Chemistry and Environmental Engineering, Changchun University of Science and Technology,Changchun 130022, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: liuxy@jlu.edu.cn(Xiaoyang Liu); xdzhao@jlu.edu.cn(Xudong Zhao)
  • Supported by:
    National Natural Science Foundation of China(22171101)
Richhtml ( 77 ) PDF ( 643 ) Cited
Export

EndNote

Ris

BibTeX

Owing to its vast surface area and remarkable electrical conductivity, graphene has attracted extensive attention in the realm of electrochemical energy storage. Nevertheless, its volumetric energy density as an electrode material is quite low, thus presenting certain difficulties in its application as an electrode material. Heteroatom doping is a viable approach to enhance the electrochemical properties of graphene, thereby augmenting the energy storage capability of graphene as an electrode material. This paper provides a summary of the preparation of heteroatom-doped graphene, examines how heteroatom doping affects graphene’s electrochemical properties, explores the application of graphene in supercapacitors, and finally looks ahead to the future development course of this research domain.

Contents

1 Introduction

2 Preparation of heteroatom doped graphene

2.1 Chemical vapor deposition (CVD)

2.2 Chemical synthesis

2.3 Mechanical ball milling

2.4 Hydrothermal

2.5 Other methods

3 Application of heteroatom doped graphene as electrode material for supercapacitor

3.1 Nitrogen doping

3.2 Boron doping

3.3 Phosphorus doping

3.4 Sulfur doping

3.5 Other heteroatoms doping

3.6 Co-doping

4 Conclusion and outlook

Fig.1 Trends in the amount of articles published about heteroatom-doped graphene
Fig.2 (a) Schematic illustration of the preparation process of NiNOG; (b) SEM image of NiNOG; (c) XPS spectra of NiNOG[40]. Copyright 2022, Elsevier
Fig.3 Schematic illustration of the hydrothermal treatment of GO coated MS in different conditions[49]. Copyright 2020, Chinese Chemical Society
Fig.4 Schematic of the preparation of (a) nitrogen doping graphene, and (b) phosphorus doping graphene by elemental superdoping[56,57] Copyright 2019, American Chemical Society; 2016, Springer
Fig.5 (a) Composition of a supercapacitor; (b, c) schematic of the charge storage mechanism of EDLC and PC
Fig.6 Schematic structures of N-6, N-5 and N-Q
Fig.8 Schematic diagram of phosphorus-containing structure in phosphorus-doped graphene
Fig.9 (a) SEM image of PGA; (b) cycle stability of PGA electrode at 1 A/g (Inset: CV profile for 1st and 10 000th cycle)[73]. Copyright 2020, ESG
Fig.10 Schematic diagram of Sulfur-containing structure in sulfur-doped graphene
Fig.11 Species and characteristics of doped atoms
Table 1 Performance of heteroatom-doped graphene as electrode materials for supercapacitors
Material Atom(s) Synthesis method/ React condition Dopant Carbon source Performance Ref
1 N-HtrGO N Hydrothermal/150℃, 12 h Urea GO 244 F/g at 50 mV/s, 105% at 2000 cycles 86
2 NHGNSs N Thermally annealed/ 360℃, 5 h NH3 GO 126 F/g at 1 A/g, 91% at 2000 cycles 66
3 PG-Ni N Thermally annealed/ 800℃, 2 h N2 GO 575 F/g at 0.5 A/g, 89.5% at 10 000 cycles 68
4 FNG N Ball milling/500 rpm, 24 h Melamine Expanded graphite 83.8 mF/cm2 at 0.6 mA/cm2, 93.8% at 5000 cycles 38
5 NG-DWCNT N CVD/ 1300℃ under Ar Urea Ethanol 563 F/g at 50 A/g, 94.35% at 5000 cycles 27
6 NGH N Hydrothermal/ 90℃, 4 h Carbamide GO 199.8 F/g at 2 A/g, 97% at 20000 cycles 87
7 NG N Hydrogel strategy Pyrrole GO 455.4 F/g at 1 A/g, 97.4% at 5000 cycles 88
8 BMG B Hydrothermal/180℃, 4 h Boric acid GO 336 F/g at 0.1 A/g, 98% at 5000 cycles 89
9 HTBAGO B Supercritical fluid processing/400℃, 1 h Boric acid GO 286 F/g at 1 A/g, 96% at 10 000 cycles 70
10 B-rGO B Electrochemical synthesis Boric acid GO 446 F/g at 0.1 A/g, 95.6% at 2000 cycles 90
11 BGNS B Solvothermal/150℃, 12 h Boric acid GO 125 F/g at 1 A/g, 83% at 2000 cycles 91
12 P-TRG P Thermal annealing/ 800℃, 30 min H3PO4 GO 115 F/g at 0.05 A/g, 97% at 5000 cycles 72
13 PO-graphene P Electrochemical synthesis (NH4)3PO4 Graphite rod 1634.2 F/g at 3.5 mA/cm2, 67% at 500 cycles 92
14 PGA P Solvothermal/150℃, overnight Phytic Acid GO 225.3 F/g at 1 A/g, 95% at 10 000 cycles 73
15 PGO P Supercritical fluid processing/400℃, 1 h Na3PO4 GO 518 F/g at 1 A/g, 98% at 5000 cycles 93
16 S-GEs S Electrochemical synthesis H2SO4 Pencil graphite 1833 mF/cm2 at 10 mA/cm2, 95% at 1000 cycles 74
17 S@G S Heat treatment/155℃, 8 h S Nanomesh graphene 257 F/g at 0.25 A/g, 87% at 10 000 cycles 94
18 S-rGO S Microwave-assisted synthesis/140℃, 30 min Na2S GO 237.6 F/g at 0.1 A/g, 113% at 5000 cycles 75
19 L-P LIG S Laser direct writing Polyethersulfone Lignin 22 mF/cm2 at 0.05 mA/cm2, 89.8% at 9000 cycles 95
20 Cl-RGOFs Cl Hydrothermal/180℃, 3 h HCl GO 210 F/g at 1 A/g, 94.3% at 5000 cycles 77
21 FGA F Hydrothermal/150℃, 12 h HF GO 279.8 F/g at 0.5 A/g, 94.3% at 5000 cycles 96
22 NiNOG Ni, N, O Ball milling/ 400 rpm, 10 h Ni(NO3)2·6H2O Melamine Graphite 532 F/g at 1 A/g, 87.5% at 10 000 cycles 40
23 NP-rGO N, P Supramolecular
polymerization
Melamine
Phytic acid
GO 416 F/g at 1 A/g, 94.63% at 10 000 cycles 97
24 s-SPG S, P Thermal activation/ 900℃, 1 h Phytic acid
Thioglycolic acid
GO 168 F/g at 1 A/g, 91.7% at 2000 cycles 54
25 N, S, PHHGO N, S, P Hydrothermal/ 140℃, 2 h NH4H2PO4
L-cysteine
GO 295 F/g at 1 A/g, 93.5% at 10 000 cycles 85
26 S, N-FLG N, S Microwave irradiation/900 W and 2.45 GHz for a few seconds H2SO4 HNO3 Graphite 298 F/g at 1 A/g, 95% at 10 000 cycles 84
[1]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.

doi: 10.1126/science.1102896 pmid: 15499015
[2]
Pan X R, Ji J H, Zhang N N, Xing M Y. Chin. Chemical Lett., 2020, 31(6): 1462.

doi: 10.1016/j.cclet.2019.10.002
[3]
Ares P, Novoselov K S. Nano Mater. Sci., 2022, 4(1): 3.
[4]
Han J H, Huang G, Wang Z L, Lu Z, Du J, Kashani H, Chen M W. Adv. Mater., 2018, 30(38): 1803588.

doi: 10.1002/adma.v30.38
[5]
Nandee R, Chowdhury M A, Shahid A, Hossain N, Rana M. Results Eng., 2022, 15: 100474.

doi: 10.1016/j.rineng.2022.100474
[6]
Sung Y Y, Vejayan H, Baddeley C J, Richardson N V, Grillo F, Schaub R. ACS Nano, 2022, 16(7): 10281.

doi: 10.1021/acsnano.1c11372
[7]
Luo H, Yu G. Chem. Mater., 2022, 34(8): 3588.

doi: 10.1021/acs.chemmater.1c04215
[8]
Zhu J Y, Wang L X, Gan X M, Tang T T, Qin F W, Luo W X, Li Q Q, Guo N N, Zhang S, Jia D Z, Song H H. Energy Storage Mater., 2022, 47: 158.
[9]
Mondal S, Das S R, Sahoo L, Dutta S, Gautam U K. J. Am. Chem. Soc., 2022, 144(6): 2580.

doi: 10.1021/jacs.1c10636
[10]
Guo T H, Wang H Y, Han W H, Zhang J, Wang C L, Ma T S, Zhang Z Q, Deng Z Q, Chen D, Xu W W, Liu X H, Huang L K, Hu Z Y, Zhu Y J. Nano Energy, 2022, 98: 107298.

doi: 10.1016/j.nanoen.2022.107298
[11]
Chen W Q, Xiao P S, Chen H H, Zhang H T, Zhang Q C, Chen Y S. Adv. Mater., 2019, 31(9): 1802403.

doi: 10.1002/adma.v31.9
[12]
Lin X R, Hu Y X, Hu K L, Lin X, Xie G Q, Liu X J, Reddy K M, Qiu H J. ACS Mater. Lett., 2022, 4(5): 978.
[13]
Yoshii T, Chida K, Nishihara H, Tani F. Chem. Commun., 2022, 58(22): 3578.

doi: 10.1039/D1CC07228E
[14]
Wang X W, Sun G Z, Routh P, Kim D H, Huang W, Chen P. Chem. Soc. Rev., 2014, 43(20): 7067.

doi: 10.1039/C4CS00141A
[15]
Tiwari S K, Mishra R K, Ha S K, Huczko A. ChemNanoMat, 2018, 4(7): 598.

doi: 10.1002/cnma.v4.7
[16]
Zhan D, Yan J X, Lai L F, Ni Z H, Liu L, Shen Z X. Adv. Mater., 2012, 24(30): 4055.

doi: 10.1002/adma.201200011
[17]
Yang Y L, Wu M G, Zhu X W, Xu H, Ma S, Zhi Y F, Xia H, Liu X M, Pan J, Tang J Y, Chai S P, Palmisano L, Parrino F, Liu J L, Ma J Z, Wang Z L, Tan L, Zhao Y F, Song Y F, Singh P, Raizada P, Jiang D L, Li D, Geioushy R A, Ma J Z, Zhang J T, Hu S, Feng R J, Liu G, Liu M H, Li Z H, Shao M F, Li N, Peng J H, Ong W J, Kornienko N, Xing Z Y, Fan X J, Ma J M. Chin. Chemical Lett., 2019, 30(12): 2065.

doi: 10.1016/j.cclet.2019.11.001
[18]
Shao G F, Ovsianytskyi O, Bekheet M F, Gurlo A. Chem. Commun., 2020, 56(3): 450.

doi: 10.1039/C9CC09092D
[19]
Vangelidis I, Bellas D V, Suckow S, Dabos G, Castilla S, Koppens F H L, Ferrari A C, Pleros N, Lidorikis E. ACS Photonics, 2022, 9(6): 1992.

doi: 10.1021/acsphotonics.2c00100 pmid: 35726242
[20]
Ye X H, Qi M, Yang H Y, Mediko F S, Qiang H, Yang Y L, He C Z. Chem. Eng. Sci., 2022, 247: 117017.

doi: 10.1016/j.ces.2021.117017
[21]
Chen K N, Wang Q R, Niu Z Q, Chen J. J. Energy Chem., 2018, 27(1): 12.

doi: 10.1016/j.jechem.2017.08.015
[22]
Wang Y M, Wu X L, Han Y Q, Li T X. J. Energy Storage, 2021, 42: 103053.

doi: 10.1016/j.est.2021.103053
[23]
Kumar R, Sahoo S, Joanni E, Singh R K, Maegawa K, Tan W K, Kawamura G, Kar K K, Matsuda A. Mater. Today, 2020, 39: 47.

doi: 10.1016/j.mattod.2020.04.010
[24]
Rösicke F, Gluba M A, Shaykhutdinov T, Sun G G, Kratz C, Rappich J, Hinrichs K, Nickel N H. Chem. Commun., 2017, 53(67): 9308.

doi: 10.1039/C7CC03951D
[25]
Sun X L, Zhang J, Wang X N, Zhang C Y, Hu P G, Mu Y B, Wan X B, Guo Z X, Lei S B. Chem. Commun., 2013, 49(87): 10317.

doi: 10.1039/c3cc45431b
[26]
Sealy C. Nano Today, 2022, 43: 101442.

doi: 10.1016/j.nantod.2022.101442
[27]
Muangrat W, Obata M, Htay M T, Fujishige M, Dulyaseree P, Wongwiriyapan W, Hashimoto Y. FlatChem, 2021, 29: 100292.

doi: 10.1016/j.flatc.2021.100292
[28]
Ion-Ebrşu D, Dorin Andrei R, Enache S, Căprărescu S, Negrilă C C, Jianu C, Enache A, Boeraşu I, Carcadea E, Varlam M, Varlam B Ş, Ren J W. Materials, 2021, 14(17): 4952.

doi: 10.3390/ma14174952
[29]
Ullah S, Liu Y, Hasan M, Zeng W W, Shi Q T, Yang X Q, Fu L, Ta H Q, Lian X Y, Sun J Y, Yang R Z, Liu L J, Rümmeli M H. Nano Res., 2022, 15(2): 1310.

doi: 10.1007/s12274-021-3655-x
[30]
Zhai Z H, Shen H L, Chen J Y, Li X M, Li Y F. ACS Appl. Mater. Interfaces, 2020, 12(2): 2805.

doi: 10.1021/acsami.9b17546
[31]
Arkhipova E A, Ivanov A S, Maslakov K I, Savilov S V. Electrochimica Acta, 2020, 353: 136463.

doi: 10.1016/j.electacta.2020.136463
[32]
Koehler F M, Stark W J. Acc. Chem. Res., 2013, 46(10): 2297.

doi: 10.1021/ar300125w
[33]
Amaro-Gahete J, Mora M, GutiÉrrez P, Cosano D, Esquivel D, Ruiz J R, JimÉnez-Sanchidrián C, García M C, Romero-Salguero F J. J. Phys. D: Appl. Phys., 2020, 53(43): 435202.

doi: 10.1088/1361-6463/aba069
[34]
Rio-Castillo A E, Merino C, Díez-Barra E, Vázquez E. Nano Res., 2014, 7(7): 963.

doi: 10.1007/s12274-014-0457-4
[35]
Yi M, Shen Z G. J. Mater. Chem. A, 2015, 3(22): 11700.

doi: 10.1039/C5TA00252D
[36]
Li H N, Zhang H M, Huang K K, Liang D, Zhao D D, Jiang Z Y. Ceram. Int., 2022, 48(12): 17171.

doi: 10.1016/j.ceramint.2022.02.273
[37]
LeÓn V, Rodriguez A M, Prieto P, Prato M, Vázquez E. ACS Nano, 2014, 8(1): 563.

doi: 10.1021/nn405148t
[38]
Wu Y P, Liu X Y, Xia D D, Sun Q S, Yu D Y, Sun S G, Liu X L, Teng Y F, Zhang W G, Zhao X D. Chin. Chemical Lett., 2020, 31(2): 559.

doi: 10.1016/j.cclet.2019.04.055
[39]
Wu Y P, Yu D Y, Feng Y, Han L Y, Liu X L, Zhao X D, Liu X Y. Chin. Chemical Lett., 2021, 32(12): 3841.

doi: 10.1016/j.cclet.2021.04.054
[40]
Liu L Y, Xie Z J, Du X M, Yu D Y, Yang B, Li B, Liu X Y. Chem. Eng. J., 2022, 430: 132815.

doi: 10.1016/j.cej.2021.132815
[41]
Tung V C, Allen M J, Yang Y, Kaner R B. Nat. Nanotechnol., 2009, 4(1): 25.

doi: 10.1038/nnano.2008.329
[42]
Wu Y P, Feng Y, He Z Y, Yu D Y, Xue Y, Liu X L, Han L Y, Zhao X D, Liu X Y. Chin. Chemical Lett., 2021, 32(11): 3596.

doi: 10.1016/j.cclet.2021.03.062
[43]
Ang P K, Wang S, Bao Q L, Thong J T L, Loh K P. ACS Nano, 2009, 3(11): 3587.

doi: 10.1021/nn901111s
[44]
Wu Y P, Sun Q S, Yu D Y, Teng Y F, Liu X L, Feng Y, Han L Y, Zhao X D, Liu X Y. Chem. Commun., 2020, 56(13): 2016.

doi: 10.1039/C9CC08887C
[45]
Jones S, Pramanik A, Kanchanapally R, Viraka Nellore B P, Begum S, Sweet C, Ray P C. ACS Sustainable Chem. Eng., 2017, 5(8): 7175.

doi: 10.1021/acssuschemeng.7b01351
[46]
He H J, Huang L H, Zhong Z J, Tan S Z. Appl. Surf. Sci., 2018, 441: 285.

doi: 10.1016/j.apsusc.2018.01.298
[47]
Zakaria M R, Omar M F, Zainol Abidin M S, Md Akil H, Al Bakri Abdullah M M. Compos. A Appl. Sci. Manuf., 2022, 154: 106756.

doi: 10.1016/j.compositesa.2021.106756
[48]
Long D H, Li W, Ling L C, Miyawaki J, Mochida I, Yoon S H. Langmuir, 2010, 26(20): 16096.

doi: 10.1021/la102425a
[49]
Ge J, Zhu H W, Yang Y, Xie Y F, Wang G, Huang J, Shi L A, Schmidt O G, Yu S H. CCS Chem., 2020, 2(2): 1.

doi: 10.31635/ccschem.020.201900073
[50]
Liu H, Zhang M M, Ma T J, Wang Y, Song Z X, Wang A, Huang Z Y. Chem. Eng. Sci., 2021, 238: 116613.

doi: 10.1016/j.ces.2021.116613
[51]
Zhao Z F, Liu Y, Wan F, Wang S, Zhang N N, Liu L L, Cao A Y, Niu Z Q. Chin. Chemical Lett., 2021, 32(2): 594.

doi: 10.1016/j.cclet.2020.11.047
[52]
Tao S, Wu D J, Chen S M, Qian B, Chu W S, Song L. Chem. Commun., 2018, 54(60): 8379.

doi: 10.1039/C8CC04255A
[53]
Sun P P, Li Z H, Zhang L, Dong C, Li Z J, Yao H C, Wang J S, Li G H. J. Alloys Compd., 2018, 750: 607.

doi: 10.1016/j.jallcom.2018.04.024
[54]
Yu X, Pei C G, Feng L G. Chin. Chemical Lett., 2019, 30(5): 1121.

doi: 10.1016/j.cclet.2019.01.009
[55]
Arvas M B, Gürsu H, Gencten M, Sahin Y. J. Energy Storage, 2021, 35: 102328.

doi: 10.1016/j.est.2021.102328
[56]
Lin L H, Fu L, Zhang K Y, Chen J, Zhang W L, Tang S L, Du Y W, Tang N J. ACS Appl. Mater. Interfaces, 2019, 11(42): 39062.

doi: 10.1021/acsami.9b11505
[57]
Liu Y, Shen Y T, Sun L T, Li J C, Liu C, Ren W C, Li F, Gao L B, Chen J, Liu F C, Sun Y Y, Tang N J, Cheng H M, Du Y W. Nat. Commun., 2016, 7: 10921.

doi: 10.1038/ncomms10921
[58]
Şahin M, Blaabjerg F, Sangwongwanich A. Energies, 2022, 15(3): 674.

doi: 10.3390/en15030674
[59]
Nithya V D. J. Energy Storage, 2021, 44: 103380.

doi: 10.1016/j.est.2021.103380
[60]
Abbas Q, Raza R, Shabbir I, Olabi A G. J. Sci. Adv. Mater. Devices, 2019, 4(3): 341.
[61]
Li Z S, Lin J P, Li B L, Yu C L, Wang H Q, Li Q Y. J. Energy Storage, 2021, 44: 103437.

doi: 10.1016/j.est.2021.103437
[62]
Cui L L, Xu H P, An Y R, Xu M C, Lei Z J, Jin X J. Adv. Powder Technol., 2022, 33(6): 103571.

doi: 10.1016/j.apt.2022.103571
[63]
Zhang Y, Lu J C, Li Y, Li B J, Ruan Z L, Zhang H, Hao Z L, Sun S J, Xiong W, Gao L, Chen L, Cai J M. Angewandte Chemie Int. Ed., 2022, 61(28): e202204736.
[64]
Cai J M, Pignedoli C A, Talirz L, Ruffieux P, Söde H, Liang L B, Meunier V, Berger R, Li R J, Feng X L, Müllen K, Fasel R. Nat. Nanotechnol., 2014, 9(11): 896.

doi: 10.1038/nnano.2014.184
[65]
Zhang Y, Yu Y, Xiao R, Du C, Wan L, Ye H, Chen J, Wang T L, Xie M J. J. Energy Storage, 2022, 54: 105299.

doi: 10.1016/j.est.2022.105299
[66]
Su F, Zheng S H, Liu F Y, Zhang X, Su F Y, Wu Z S. Chin. Chemical Lett., 2021, 32(2): 914.

doi: 10.1016/j.cclet.2020.07.025
[67]
Mishra R K, Choi G J, Sohn Y, Lee S H, Gwag J S. Chem. Commun., 2020, 56(19): 2893.

doi: 10.1039/D0CC00249F
[68]
He X X, Tang Z, Gao L L, Wang F Y, Zhao J P, Miao Z C, Wu X Z, Zhou J, Su Y, Zhuo S P. J. Electroanal. Chem., 2020, 871: 114311.

doi: 10.1016/j.jelechem.2020.114311
[69]
Agnoli S, Favaro M. J. Mater. Chem. A, 2016, 4(14): 5002.

doi: 10.1039/C5TA10599D
[70]
Balaji S S, Karnan M, Anandhaganesh P, Tauquir S M, Sathish M. Appl. Surf. Sci., 2019, 491: 560.

doi: 10.1016/j.apsusc.2019.06.151
[71]
Thirumal V, Pandurangan A, Jayavel R, Ilangovan R. Synth. Met., 2016, 220: 524.

doi: 10.1016/j.synthmet.2016.07.011
[72]
Wen Y Y, Wang B, Huang C C, Wang L Z, Hulicova-Jurcakova D. Chem. Eur. J., 2015, 21(1): 80.

doi: 10.1002/chem.201404779
[73]
Nie G S, Deng H C, Huang J, Wang C Y. Int. J. Electrochem. Sci., 2020, 15:12578.

doi: 10.20964/2020.12.32
[74]
Arvas M B, Gençten M, Sahin Y. Int. J. Energy Res., 2020, 44(3): 1624.

doi: 10.1002/er.v44.3
[75]
Rosli N H A, Lau K S, Winie T, Chin S X, Chia C H. Diam. Relat. Mater., 2021, 120: 108696.

doi: 10.1016/j.diamond.2021.108696
[76]
Wang H D, Narasaki M, Zhang Z W, Takahashi K, Chen J, Zhang X. Sci. Rep., 2020, 10: 17562.

doi: 10.1038/s41598-020-74618-4
[77]
Jiang H D, Ye X K, Zhu Y C, Yue Z Y, Wang L H, Xie J L, Wan Z Q, Jia C Y. ACS Sustainable Chem. Eng., 2019, 7(23): 18844.

doi: 10.1021/acssuschemeng.9b03810
[78]
Wang M, Chen L L, Zhou J Q, Xu L R, Li X Y, Li L J, Li X. J. Mater. Sci., 2019, 54(1): 483.

doi: 10.1007/s10853-018-2840-0
[79]
Cheng L L, Hu Y Y, Qiao D D, Zhu Y, Wang H, Jiao Z. Electrochimica Acta, 2018, 259: 587.

doi: 10.1016/j.electacta.2017.11.022
[80]
Jing C, Guo X L, Xia L H, Chen Y X, Wang X, Liu X Y, Dong B Q, Dong F, Li S C, Zhang Y X. Chem. Eng. J., 2020, 379: 122305.

doi: 10.1016/j.cej.2019.122305
[81]
Zhang L L, Chen H X, Lu X Y, Wang Y, Tan L L, Sui D P, Qi W. Appl. Surf. Sci., 2020, 529: 147022.

doi: 10.1016/j.apsusc.2020.147022
[82]
Khandelwal M, Van Tran C, Lee J, Bin In J. Chem. Eng. J., 2022, 428: 131119.

doi: 10.1016/j.cej.2021.131119
[83]
Pham V H, Hur S H, Kim E J, Kim B S, Chung J S. Chem. Commun., 2013, 49(59): 6665.

doi: 10.1039/c3cc43503b
[84]
Rotte N K, Naresh V, Muduli S, Reddy V, Srikanth V V S, Martha S K. Electrochimica Acta, 2020, 363: 137209.

doi: 10.1016/j.electacta.2020.137209
[85]
Liu J L, Zhu Y R, Chen X H, Yi W J. J. Alloys Compd., 2020, 815: 152328.

doi: 10.1016/j.jallcom.2019.152328
[86]
Lee H J, Abdellah A, Ismail F M, Gumeci C, Dale N, Parrondo J, Higgins D C. Electrochimica Acta, 2021, 397: 139241.

doi: 10.1016/j.electacta.2021.139241
[87]
Su W F, Gao D M, Zheng W C, Lu F, Liu J Y, Chen X C, Sha O, Chen L. Mater. Technol., 2020, 35(4): 195.

doi: 10.1080/10667857.2019.1662982
[88]
Jin Y N, Meng Y N, Fan W, Lu H Y, Liu T X, Wu S X. Electrochimica Acta, 2019, 318: 865.

doi: 10.1016/j.electacta.2019.06.107
[89]
Nankya R, Lee J, Opar D O, Jung H. Appl. Surf. Sci., 2019, 489: 552.

doi: 10.1016/j.apsusc.2019.06.015
[90]
Muthu R N, Tatiparti S S V. Energy Storage, 2020, 2(4): e134.
[91]
Naresh V, Bhattacharjee U, Martha S K. J. Alloys Compd., 2019, 797: 595.

doi: 10.1016/j.jallcom.2019.04.311
[92]
Zu L, Gao X, Lian H Q, Cai X M, Li C, Zhong Y, Hao Y C, Zhang Y F, Gong Z, Liu Y, Wang X D, Cui X G. Nanomaterials, 2018, 8(6): 417.

doi: 10.3390/nano8060417
[93]
Suresh Balaji S, Sandhiya M, Sathish M. J. Energy Storage, 2021, 33: 102085.

doi: 10.1016/j.est.2020.102085
[94]
Kan Y F, Ning G Q, Ma X L. Chin. Chemical Lett., 2017, 28(12): 2277.

doi: 10.1016/j.cclet.2017.11.026
[95]
Sun X Z, Liu X J, Li F. Appl. Surf. Sci., 2021, 551: 149438.

doi: 10.1016/j.apsusc.2021.149438
[96]
Jin T X, Chen J F, Wang C Y, Qian Y, Lu L M. J. Mater. Sci., 2020, 55(26): 12103.

doi: 10.1007/s10853-020-04821-1
[97]
Cheng H H, Yi F Y, Gao A M, Liang H F, Shu D, Zhou X P, He C, Zhu Z H. ACS Appl. Energy Mater., 2019, 2(6): 4084.

doi: 10.1021/acsaem.9b00204
[1] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[2] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[3] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[4] Keke Guan, Wen Lei, Zhaoming Tong, Haipeng Liu, Haijun Zhang. Synthesis, Structure Regulating and the Applications in Electrochemical Energy Storage of MXenes [J]. Progress in Chemistry, 2022, 34(3): 665-682.
[5] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[6] Yumeng Wang, Rong Yang, Qijiu Deng, Chaojiang Fan, Suzhen Zhang, Yinglin Yan. Application of Bimetallic MOFs and Their Derivatives in Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 460-473.
[7] Geng Gao, Keyu Zhang, Qianwen Wang, Libo Zhang, Dingfang Cui, Yaochun Yao. Metal Oxalate-Based Anode Materials: A New Choice for Energy Storage Materials Applied in Metal Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 434-446.
[8] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[9] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[10] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[11] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[12] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[13] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[14] Feiran Wang, Fengjing Jiang. Ion-Conducting Membrane for Vanadium Redox Flow Batteries [J]. Progress in Chemistry, 2021, 33(3): 462-470.
[15] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.