中文
Announcement
More
Progress in Chemistry 2024, Vol. 36 Issue (1): 48-66 DOI: 10.7536/PC230529 Previous Articles   Next Articles

• Review •

Covalent Organic Frameworks for Proton Exchange Membranes

Weiyu Zhang, Jie Li, Hong Li, Jiaqi Ji, Chenliang Gong(), Sanyuan Ding   

  1. College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: gongchl@lzu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(21975112)
Richhtml ( 27 ) PDF ( 233 ) Cited
Export

EndNote

Ris

BibTeX

Covalent organic frameworks (COFs), as a new type of organic porous materials, are highly crystalline and orderly porous, exhibiting functional modifiability, structural tunability and high stability. The regular pore channels of COFs can accommodate a variety of proton carriers and proton donors to build continuous and stable proton transport channels, playing a great role in both aqueous and anhydrous proton conduction. The application of COFs to the field of proton exchange membranes is of great research significance and value. In this paper, the characteristics of different types of proton exchange membranes, such as COFs solid electrolyte membranes, polymer matrix-COFs composite membranes, COFs self-supporting membranes and the modification methods to improve the performance of COFs proton exchange membranes are summarized from the aspects of COFs as proton exchange membranes for low temperature fuel cells and high temperature fuel cells, respectively. The relevant representative research of COFs in the field of fuel cell proton exchange membranes in recent years is reviewed. Finally, the application prospects of COFs proton exchange membranes are discussed and prospected.

Contents

1 Introduction

2 Covalent organic frameworks

2.1 Structure of COFs

2.2 Synthesis of COFs and COFs membrane

2.3 Application of COFs

3 COFs fuel cell proton exchange membrane

3.1 COFs low-temperature fuel cell proton exchange membranes

3.2 COFs high-temperature fuel cell proton exchange membranes

4 Conclusion and outlook

Fig. 1 Topology diagrams for designing COFs[31]. Copyright 2019, Springer Nature
Fig. 2 Synthesis methods of COFs
Fig. 3 Top-down strategies for preparing COFs nanosheets
Fig. 4 Bottom-up strategies for preparing COFs membranes (a) Solvothermal synthesis[38] (b) Laminar assembly polymerization[44] (c) Interfacial polymerization[41]. Ref 38, Copyright 2011, American Association for the Advancement of Science; Ref 44, Copyright 2019, American Association for the Advancement of Science; Ref 41, Copyright 2023, American Chemical Society
Fig. 5 Applications of COFs[54,55,60]. ref 54, Copyright 2018, Royal Society of Chemistry; ref 55, Copyright 2011, American Chemical Society; ref 60, Copyright 2023, American Chemical Society
Fig. 6 (a)Synthetic route of NKCOFs; (b)The hexagonal structural of NKCOFs; (c~f)The side views of NKCOFs, resulting from the eclipsed AA stacking[66]. Copyright 2019, Wiley-VCH
Fig. 7 (a) The synthesis of EB-COF:Br; (b) Top views and side views of the offset AA stacking structure of the EB-COF:Br;(c) Schematic of PW12O403? doping in COF[67]. Copyright 2016, American Chemical Society
Fig. 8 (a)Schematic of proton transfer in composite membranes; (b)SEM images of the cross sections of Nafion membrane and Nafion/H3PO4@S1-15 composite membrane[71]. Copyright 2016, Elsevier
Fig. 9 Synthetic route of SNW-1 and Z-COF[72]
Fig. 10 Structural illustration of SCONs and Nafion molecule[73]. Copyright 2019, Elsevier
Fig. 11 Schematic of proton transfer in SPEEK/HPW@COF composite membranes[74]. Copyright 2020, Elsevier
Fig. 12 (a)Schematic illustration of IPC-COF membrane assembly and pore structures; (b)SEM image of IPC-COF; (c)XRD pattern of IPC-COF; (d)Swelling ratio versus IEC value from IPC-COF membrane and existing PEMs as reported in the literature[76]. Copyright 2020, Wiley-VCH
Fig. 13 Illustration of DABA-TFP-COF-NS synthesis process in single solution-phase[77]. Copyright 2022, Wiley-VCH
Fig. 14 (a~d)Schematic representation of the synthesis of COFMs; (e)PXRD patterns of as-obtained PTSA@COFMs and those obtained after washing with water[78]. Copyright 2018, Wiley-VCH
Table 1 Properties of different COFs proton exchange membranes
Fig. 15 (a)The synthesis of TPB-DMeTP-COF; (b)The structure of one hexagonal macrocycle; (c)The structure of a 1D channel (grey, C;green, N;CH3 units and H are omitted for clarity); (d)Nitrogen sorption isotherms of TPB-DMeTP-COF measured at 77 K (circle, adsorption; triangle, desorption)[83]. Copyright 2020, Spring Nature
Fig. 16 (a)The synthesis of TPT-COF; (b)Top and side views of the corresponding refined crystal structures of TPT-COF with the antiparallel stacking model (gray, blue, and white spheres represent C, N, and H atoms, respectively); (c)The PXRD patterns of TPT-COF[84]. Copyright 2022, Wiley-VCH
Fig. 17 (a)Structure of and synthetic route to TB-COF and PIL-TB-COF (b)Schematic illustration of the proton transfer in PIL-TB-COF[87]. Copyright 2022, Royal Society of Chemistry
Fig. 18 (a)Reaction for the in situ growth of COFs in OPBI solution; (b)SEM image of pristine OPBI membrane; (c)SEM image of 40%-COF-OPBI composite membrane[93]. Copyright 2022, Elsevier
Table 2 Properties of different COFs HTPEMs
[1]
Qu E L, Hao X F, Xiao M, Han D M, Huang S, Huang Z H, Wang S J, Meng Y Z. J. Power Sources, 2022, 533: 231386.
[2]
Steele B C H, Heinzel A. Nature, 2001, 414(6861): 345.

doi: 10.1038/35104620
[3]
Kusoglu A, Weber A Z. Chem. Rev., 2017, 117(3): 987.

doi: 10.1021/acs.chemrev.6b00159 pmid: 28112903
[4]
Prykhodko Y, Fatyeyeva K, Hespel L, Marais S. Chem. Eng. J., 2021, 409: 127329.

doi: 10.1016/j.cej.2020.127329
[5]
Wainright J S, Wang J T, Weng D, Savinell R F, Litt M. J. Electrochem. Soc., 1995, 142(7): L121.
[6]
Heo Y, Im H, Kim J. J. Membr. Sci., 2013, 425/426: 11.
[7]
He G H, Yan X M, Wu X M, Hu Z W, Du L G. Membr. Sci. Technol., 2011, 31(3): 140.
(贺高红, 焉晓明, 吴雪梅, 胡正文, 杜立广. 膜科学与技术, 2011, 31(3): 140.).
[8]
Vilčiauskas L, Tuckerman M E, Bester G, Paddison S J, Kreuer K D. Nat. Chem., 2012, 4(6): 461.

doi: 10.1038/nchem.1329 pmid: 22614380
[9]
Osamu N, Teruo K, Isao O, Yoshizo M. Chem. Lett., 1979, 8(1): 17.

doi: 10.1246/cl.1979.17
[10]
Chen Z P, Ren W C, Gao L B, Liu B L, Pei S F, Cheng H M. Nat. Mater., 2011, 10(6): 424.

doi: 10.1038/nmat3001
[11]
Duan C C, Tong J H, Shang M, Nikodemski S, Sanders M, Ricote S, Almansoori A, O’Hayre R. Science, 2015, 349(6254): 1321.

doi: 10.1126/science.aab3987
[12]
Wang F, Zuo Z C, Li L, Li K, He F, Jiang Z Q, Li Y L. Angew. Chem. Int. Ed., 2019, 58(42): 15010.

doi: 10.1002/anie.201910588 pmid: 31478303
[13]
Yang F, Xu G, Dou Y B, Wang B, Zhang H, Wu H, Zhou W, Li J R, Chen B L. Nat. Energy, 2017, 2(11): 877.

doi: 10.1038/s41560-017-0018-7
[14]
Chandra S, Kundu T, Kandambeth S, BabaRao R, Marathe Y, Kunjir S M, Banerjee R. J. Am. Chem. Soc., 2014, 136(18): 6570.

doi: 10.1021/ja502212v pmid: 24758195
[15]
Guo Z C, Shi Z Q, Wang X Y, Li Z F, Li G. Coord. Chem. Rev., 2020, 422: 213465.

doi: 10.1016/j.ccr.2020.213465
[16]
Côté A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166.

doi: 10.1126/science.1120411
[17]
Wu X W, Hong you-lee, Xu B Q, Nishiyama Y, Jiang W, Zhu J W, Zhang G, Kitagawa S, Horike S. J. Am. Chem. Soc., 2020, 142(33): 14357.

doi: 10.1021/jacs.0c06474
[18]
Han R Y, Wu P Y. ACS Appl. Mater. Interfaces, 2018, 10(21): 18351.

doi: 10.1021/acsami.8b04311
[19]
Kandambeth S, Dey K, Banerjee R. J. Am. Chem. Soc., 2019, 141(5): 1807.

doi: 10.1021/jacs.8b10334 pmid: 30485740
[20]
Zhuang Z, Shi H, Kang J, Liu D. Mater. Today Chem., 2021, 22: 100573.
[21]
Uribe-Romo F J, Hunt J R, Furukawa H, Klöck C, O’Keeffe M, Yaghi O M. J. Am. Chem. Soc., 2009, 131(13): 4570.

doi: 10.1021/ja8096256 pmid: 19281246
[22]
Uribe-Romo F J, Doonan C J, Furukawa H, Oisaki K, Yaghi O M. J. Am. Chem. Soc., 2011, 133(30): 11478.

doi: 10.1021/ja204728y pmid: 21721558
[23]
Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008, 47(18): 3450.

doi: 10.1002/anie.v47:18
[24]
Yu S Y, Mahmood J, Noh H J, Seo J M, Jung S M, Shin S H, Im Y K, Jeon I Y, Baek J B. Angew. Chem. Int. Ed., 2018, 57(28): 8438.

doi: 10.1002/anie.v57.28
[25]
Kandambeth S, Mallick A, Lukose B, Mane M V, Heine T, Banerjee R. J. Am. Chem. Soc., 2012, 134(48): 19524.

doi: 10.1021/ja308278w pmid: 23153356
[26]
Zhuang X D, Zhao W X, Zhang F, Cao Y, Liu F, Bi S, Feng X L. Polym. Chem., 2016, 7(25): 4176.

doi: 10.1039/C6PY00561F
[27]
Jin E Q, Asada M, Xu Q, Dalapati S, Addicoat M A, Brady M A, Xu H, Nakamura T, Heine T, Chen Q H, Jiang D L. Science, 2017, 357(6352): 673.

doi: 10.1126/science.aan0202
[28]
Alahakoon S B, Diwakara S D, Thompson C M, Smaldone R A. Chem. Soc. Rev., 2020, 49(5): 1344.

doi: 10.1039/c9cs00884e pmid: 32073066
[29]
Guan X Y, Chen F Q, Fang Q R, Qiu S L. Chem. Soc. Rev., 2020, 49(5): 1357.

doi: 10.1039/C9CS00911F
[30]
Guan X Y, Chen F Q, Qiu S L, Fang Q R. Angew. Chem. Int. Ed., 2023, 62(3): e202213203.

doi: 10.1002/anie.v62.3
[31]
Banerjee T, Haase F, Trenker S, Biswal B P, Savasci G, Duppel V, Moudrakovski I, Ochsenfeld C, Lotsch B V. Nat. Commun., 2019, 10: 2689.

doi: 10.1038/s41467-019-10574-6 pmid: 31217421
[32]
Campbell N L, Clowes R, Ritchie L K, Cooper A I. Chem. Mater., 2009, 21(2): 204.

doi: 10.1021/cm802981m
[33]
Biswal B P, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R. J. Am. Chem. Soc., 2013, 135(14): 5328.

doi: 10.1021/ja4017842
[34]
Wang H, Zeng Z T, Xu P, Li L S, Zeng G M, Xiao R, Tang Z Y, Huang D L, Tang L, Lai C, Jiang D N, Liu Y, Yi H, Qin L, Ye S J, Ren X Y, Tang W W. Chem. Soc. Rev., 2019, 48(2): 488.

doi: 10.1039/c8cs00376a pmid: 30565610
[35]
Berlanga I, Ruiz-González M L, González-Calbet J M, Fierro J L G, Mas-Ballesté R, Zamora F. Small, 2011, 7(9): 1207.

doi: 10.1002/smll.201002264 pmid: 21491587
[36]
Chandra S, Kandambeth S, Biswal B P, Lukose B, Kunjir S M, Chaudhary M, Babarao R, Heine T, Banerjee R. J. Am. Chem. Soc., 2013, 135(47): 17853.

doi: 10.1021/ja408121p pmid: 24168521
[37]
Khayum M A, Kandambeth S, Mitra S, Nair S B, Das A, Nagane S S, Mukherjee R, Banerjee R. Angew. Chem. Int. Ed., 2016, 55(50): 15604.

doi: 10.1002/anie.201607812 pmid: 27862737
[38]
Colson J W, Woll A R, Mukherjee A, Levendorf M P, Spitler E L, Shields V B, Spencer M G, Park J, Dichtel W R. Science, 2011, 332(6026): 228.

doi: 10.1126/science.1202747 pmid: 21474758
[39]
Li Y S, Chen W B, Xing G L, Jiang D L, Chen L. Chem. Soc. Rev., 2020, 49(10): 2852.

doi: 10.1039/D0CS00199F
[40]
Feldblyum J I, McCreery C H, Andrews S C, Kurosawa T, Santos E J G, Duong V, Fang L, Ayzner A L, Bao Z N. Chem. Commun., 2015, 51(73): 13894.

doi: 10.1039/C5CC04679C
[41]
Dey K, Pal M, Rout K C, Kunjattu H S, Das A, Mukherjee R, Kharul U K, Banerjee R. J. Am. Chem. Soc., 2017, 139(37): 13083.

doi: 10.1021/jacs.7b06640
[42]
Ali Khan N, Zhang R N, Wu H, Shen J L, Yuan J Q, Fan C Y, Cao L, Olson M A, Jiang Z Y. J. Am. Chem. Soc., 2020, 142(31): 13450.

doi: 10.1021/jacs.0c04589
[43]
Liu K J, Qi H Y, Dong R H, Shivhare R, Addicoat M, Zhang T, Sahabudeen H, Heine T, Mannsfeld S, Kaiser U, Zheng Z K, Feng X L. Nat. Chem., 2019, 11(11): 994.

doi: 10.1038/s41557-019-0327-5
[44]
Zhong Y, Cheng B R, Park C, Ray A, Brown S, Mujid F, Lee J U, Zhou H, Suh J, Lee K H, Mannix A J, Kang K, Sibener S J, Muller D A, Park J. Science, 2019, 366(6471): 1379.

doi: 10.1126/science.aax9385 pmid: 31699884
[45]
Shinde D B, Sheng G, Li X, Ostwal M, Emwas A H, Huang K W, Lai Z P. J. Am. Chem. Soc., 2018, 140(43): 14342.

doi: 10.1021/jacs.8b08788
[46]
Li Y, Zhang M C, Guo X H, Wen R, Li X, Li X F, Li S J, Ma L J. Nanoscale Horiz., 2018, 3(2): 205.

doi: 10.1039/C7NH00172J
[47]
Zwaneveld N A A, Pawlak R, Abel M, Catalin D, Gigmes D, Bertin D, Porte L. J. Am. Chem. Soc., 2008, 130(21): 6678.

doi: 10.1021/ja800906f pmid: 18444643
[48]
Russell J C, Blunt M O, Garfitt J M, Scurr D J, Alexander M, Champness N R, Beton P H. J. Am. Chem. Soc., 2011, 133(12): 4220.

doi: 10.1021/ja110837s pmid: 21370872
[49]
Dienstmaier J F, Medina D D, Dogru M, Knochel P, Bein T, Heckl W M, Lackinger M. ACS Nano, 2012, 6(8): 7234.

doi: 10.1021/nn302363d pmid: 22775491
[50]
Wang R, Zhou Y S, Zhang Y, Xue J, Caro J, Wang H H. Adv. Mater., 2022, 34(44): 2204894.

doi: 10.1002/adma.v34.44
[51]
Liu M H, Liu Y X, Dong J C, Bai Y C, Gao W Q, Shang S C, Wang X Y, Kuang J H, Du C S, Zou Y, Chen J Y, Liu Y Q. Nat. Commun., 2022, 13: 1411.

doi: 10.1038/s41467-022-29050-9
[52]
He Y S, Lin X G, Chen J H, Guo Z Y, Zhan H B. ACS Appl. Mater. Interfaces, 2020, 12(37): 41942.

doi: 10.1021/acsami.0c11022
[53]
Zhai S X, Lu Z R, Ai Y N, Jia X Y, Yang Y M, Liu X, Tian M, Bian X M, Lin J, He S J. J. Power Sources, 2023, 554: 232332.
[54]
Fan H W, Mundstock A, Gu J H, Meng H, Caro J. J. Mater. Chem. A, 2018, 6(35): 16849.
[55]
Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011, 133(49): 19816.

doi: 10.1021/ja206846p
[56]
Pachfule P, Acharjya A, Roeser J, Langenhahn T, Schwarze M, Schomäcker R, Thomas A, Schmidt J. J. Am. Chem. Soc., 2018, 140(4): 1423.

doi: 10.1021/jacs.7b11255 pmid: 29287143
[57]
Shinde D B, Aiyappa H B, Bhadra M, Biswal B P, Wadge P, Kandambeth S, Garai B, Kundu T, Kurungot S, Banerjee R. J. Mater. Chem. A, 2016, 4(7): 2682.
[58]
Zhang Q N, Dong S D, Shao P P, Zhu Y H, Mu Z J, Sheng D F, Zhang T, Jiang X, Shao R W, Ren Z X, Xie J, Feng X, Wang B. Science, 2022, 378(6616): 181.

doi: 10.1126/science.abm6304
[59]
Xu H, Tao S S, Jiang D L. Nat. Mater., 2016, 15(7): 722.

doi: 10.1038/nmat4611
[60]
Bag S, Sasmal H S, Chaudhary S P, Dey K, Blätte D, Guntermann R, Zhang Y Y, Položij M, Kuc A, Shelke A, Vijayaraghavan R K, Ajithkumar T G, Bhattacharyya S, Heine T, Bein T, Banerjee R. J. Am. Chem. Soc., 2023, 145(3): 1649.

doi: 10.1021/jacs.2c09838
[61]
Kreuer K D, Paddison S J, Spohr E, Schuster M. Chem. Rev., 2004, 104(10): 4637.

doi: 10.1021/cr020715f
[62]
Yang Y, Zhang P H, Hao L Q, Cheng P, Chen Y, Zhang Z J. Angewandte Chemie Int. Ed., 2021, 60(40): 21838.

doi: 10.1002/anie.v60.40
[63]
Yin Z Y, Geng H B, Yang P F, Shi B B, Fan C Y, Peng Q, Wu H, Jiang Z Y. Int. J. Hydrog. Energy, 2021, 46(52): 26550.
[64]
Meng Z, Aykanat A, Mirica K A. Chem. Mater., 2019, 31(3): 819.

doi: 10.1021/acs.chemmater.8b03897
[65]
Peng Y W, Xu G D, Hu Z G, Cheng Y D, Chi C L, Yuan D Q, Cheng H S, Zhao D. ACS Appl. Mater. Interfaces, 2016, 8(28): 18505.

doi: 10.1021/acsami.6b06189
[66]
Yang Y, He X Y, Zhang P H, Andaloussi Y H, Zhang H L, Jiang Z Y, Chen Y, Ma S Q, Cheng P, Zhang Z J. Angew. Chem. Int. Ed., 2020, 59(9): 3678.

doi: 10.1002/anie.201913802 pmid: 31833630
[67]
Ma H P, Liu B L, Li B, Zhang L M, Li Y G, Tan H Q, Zang H Y, Zhu G S. J. Am. Chem. Soc., 2016, 138(18): 5897.

doi: 10.1021/jacs.5b13490
[68]
Guo Z C, You M L, Wang Z J, Li Z F, Li G. ACS Appl. Mater. Interfaces, 2022, 14(13): 15687.

doi: 10.1021/acsami.2c02298
[69]
Montoro C, Rodríguez-San-Miguel D, Polo E, Escudero-Cid R, Ruiz-González M L, Navarro J A R, Ocón P, Zamora F. J. Am. Chem. Soc., 2017, 139(29): 10079.

doi: 10.1021/jacs.7b05182 pmid: 28669183
[70]
Sun X, Song J H, Ren H Q, Liu X Y, Qu X W, Feng Y, Jiang Z Q, Ding H L. Electrochimica Acta, 2020, 331: 135235.

doi: 10.1016/j.electacta.2019.135235
[71]
Yin Y H, Li Z, Yang X, Cao L, Wang C B, Zhang B, Wu H, Jiang Z Y. J. Power Sources, 2016, 332: 265.
[72]
Li Y, Wu H, Yin Y H, Cao L, He X Y, Shi B B, Li J Z, Xu M Z, Jiang Z Y. J. Membr. Sci., 2018, 568: 1.
[73]
Yao J, Xu G X, Zhao Z M, Guo J, Li S H, Cai W W, Zhang S B. Int. J. Hydrog. Energy, 2019, 44(45): 24985.
[74]
Fan C Y, Wu H, Li Y, Shi B B, He X Y, Qiu M, Mao X L, Jiang Z Y. Solid State Ion., 2020, 349: 115316.

doi: 10.1016/j.ssi.2020.115316
[75]
Liu L, Yin L Y, Cheng D M, Zhao S, Zang H Y, Zhang N, Zhu G S. Angew. Chem. Int. Ed., 2021, 60(27): 14875.

doi: 10.1002/anie.v60.27
[76]
Cao L, Wu H, Cao Y, Fan C Y, Zhao R, He X Y, Yang P F, Shi B B, You X D, Jiang Z Y. Adv. Mater., 2020, 32(52): 2005565.

doi: 10.1002/adma.v32.52
[77]
Huang T, Jiang H F, Douglin J C, Chen Y, Yin S Y, Zhang J F, Deng X J, Wu H, Yin Y, Dekel D R, Guiver M D, Jiang Z Y. Angewandte Chemie Int. Ed., 2023, 62(4): e202209306.

doi: 10.1002/anie.v62.4
[78]
Sasmal H S, Aiyappa H B, Bhange S N, Karak S, Halder A, Kurungot S, Banerjee R. Angew. Chem. Int. Ed., 2018, 57(34): 10894.

doi: 10.1002/anie.v57.34
[79]
Sun P, Li Z F, Wang C G, Wang Y, Cui W H, Pei H C, Yin X Y. J Mater Eng, 2021, 49(1): 23.
(孙鹏, 李忠芳, 王传刚, 王燕, 崔伟慧, 裴洪昌, 尹晓燕. 材料工程, 2021, 49(1): 23.).

doi: 10.11868/j.issn.1001-4381.2019.001097
[80]
Li W, Liu W, Zhang J, Wang H N, Lu S F, Xiang Y. Adv. Funct. Mater., 2023, 33(6): 2210036.

doi: 10.1002/adfm.v33.6
[81]
Hao L Q, Jia S P, Qiao X L, Lin E, Yang Y, Chen Y, Cheng P, Zhang Z J. Angewandte Chemie Int. Ed., 2023, 62(6): e202217240.

doi: 10.1002/anie.v62.6
[82]
Chandra S, Kundu T, Dey K, Addicoat M, Heine T, Banerjee R. Chem. Mater., 2016, 28(5): 1489.

doi: 10.1021/acs.chemmater.5b04947
[83]
Tao S S, Zhai L P, Dinga Wonanke A D, Addicoat M A, Jiang Q H, Jiang D L. Nat. Commun., 2020, 11: 1981.

doi: 10.1038/s41467-020-15918-1
[84]
Jiang G X, Zou W W, Ou Z Y, Zhang L H, Zhang W F, Wang X J, Song H Y, Cui Z M, Liang Z X, Du L. Angewandte Chemie Int. Ed., 2022, 61(35): e202208086.

doi: 10.1002/anie.v61.35
[85]
Li J, Wang J, Wu Z Z, Tao S S, Jiang D L. Angew. Chem. Int. Ed., 2021, 60(23): 12918.

doi: 10.1002/anie.v60.23
[86]
Chen S H, Wu Y, Zhang Y, Zhang W X, Fu Y, Huang W B, Yan T, Ma H P. J. Mater. Chem. A, 2020, 8(27): 13702.
[87]
Guo Y, Zou X Y, Li W Z, Hu Y, Jin Z Y, Sun Z, Gong S C, Guo S Y, Feng Y. J. Mater. Chem. A, 2022, 10(12): 6499.
[88]
Wu X W, Liu Z Y, Guo H, Hong you-lee, Xu B Q, Zhang K, Nishiyama Y, Jiang W, Horike S, Kitagawa S, Zhang G. ACS Appl. Mater. Interfaces, 2021, 13(31): 37172.

doi: 10.1021/acsami.1c09157
[89]
Wang S L, Wei X, Li Z Y, Liu Y Q, Wang H T, Zou L, Lu D W, Hassan Akhtar F, Wang X B, Wu C J, Luo S J. Sep. Purif. Technol., 2022, 301: 122004.

doi: 10.1016/j.seppur.2022.122004
[90]
Seng L K, Masdar M S, Shyuan L K. Membranes, 2021, 11(10): 728.

doi: 10.3390/membranes11100728
[91]
Nambi Krishnan N, Konovalova A, Aili D, Li Q F, Park H S, Jang J H, Kim H J, Henkensmeier D. J. Membr. Sci., 2019, 588: 117218.
[92]
Peng J W, Wang P, Yin B B, Fu X Z, Wang L, Luo J L, Peng X J. J. Membr. Sci., 2021, 640: 119775.
[93]
Peng J W, Fu X Z, Liu D, Luo J L, Wang L, Peng X J. J. Membr. Sci., 2022, 655: 120603.
[1] Ziqing Wang, Jinfeng Du, Futai Lu, Qiliang Deng. Tetraphenylethene-Based Covalent Organic Frameworks (COFs): Design, Synthesis and Applications [J]. Progress in Chemistry, 2024, 36(1): 67-80.
[2] Yunchao Ma, Yuxin Yao, Yue Fu, Chunbo Liu, Bo Hu, Guangbo Che. Progress of Covalent Organic Frameworks in Iodine Capture [J]. Progress in Chemistry, 2023, 35(7): 1097-1105.
[3] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[4] Li Tingting, Li Haibin, Liu Binghui, Zhao Chengji, Li Haolong. Proton Exchange Membranes Based on All-Carbon Backbone Aromatic Polymers [J]. Progress in Chemistry, 2023, 35(11): 1559-1578.
[5] Yang Haoling, Xu Kunyu, Zhang Qi, Tao Liang, Yang Zihao, Dong Zhaoxia. Modified Nafion Membrane in Vanadium Redox Flow Battery [J]. Progress in Chemistry, 2023, 35(11): 1595-1612.
[6] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[7] Yu Bai, Shuanjin Wang, Min Xiao, Yuezhong Meng, Chengxin Wang. Phosphoric Acid Based Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2021, 33(3): 426-441.
[8] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
[9] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[10] Suyan Zhao, Chang Liu, Hao Xu, Xiaobo Yang. Two-Dimensional Covalent Organic Frameworks Photocatalysts [J]. Progress in Chemistry, 2020, 32(2/3): 274-285.
[11] Anrui Zhang, Yuejie Ai. Structure Control of Covalent Organic Frameworks(COFs) and Their Applications in Environmental Chemistry [J]. Progress in Chemistry, 2020, 32(10): 1564-1581.
[12] Xingwang Lan, Guoyi Bai. Covalent Organic Framework Catalytic Materials: CO2 Conversion and Utilization [J]. Progress in Chemistry, 2020, 32(10): 1482-1493.
[13] Ting Wang, Rui Xue, Yuli Wei, Mingyue Wang, Hao Guo, Wu Yang. Development and Applications of Covalent Organic Frameworks(COFs) Materials: Gas Storage, Catalysis and Chemical Sensing [J]. Progress in Chemistry, 2018, 30(6): 753-764.
[14] Chengjiang Zhang, Xiaoyan Yuan, Zeli Yuan, Yongke Zhong, Zhuomin Zhang, Gongke Li. Covalent Organic Framework Materials Based on Schiff-Base Reaction [J]. Progress in Chemistry, 2018, 30(4): 365-382.
[15] Xi Liang, Cheng Wang, Yijie Lei, Yadi Liu, Bo Zhao, Feng Liu. Potential Applications of Metal Organic Framework-Based Materials for Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2018, 30(11): 1770-1783.