中文
Announcement
More
Progress in Chemistry 2024, Vol. 36 Issue (1): 67-80 DOI: 10.7536/PC230516 Previous Articles   Next Articles

• Review •

Tetraphenylethene-Based Covalent Organic Frameworks (COFs): Design, Synthesis and Applications

Ziqing Wang1, Jinfeng Du2, Futai Lu1,2(), Qiliang Deng1,2   

  1. 1 College of Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
    2 College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: lufutai@tust.edu.cn
  • Supported by:
    National Natural Science Foundation of China(2190080961)
Richhtml ( 32 ) PDF ( 408 ) Cited
Export

EndNote

Ris

BibTeX

Covalent organic frameworks (COFs) as a new class of crystalline porous materials are assembled by appropriate building blocks through covalent bonds. COFs have been utilized in many fields such as storage and separation of gases, catalysis, proton conduction, energy storage, optoelectronics, sensing and biomedicine due to their regular channels, high thermal stability, high crystallinity and adjustable structure. In recent years, tetraphenylethylene-based covalent organic frameworks (TPE-based COFs) have attracted much attention due to their obvious aggregation induced luminescence effect, simple synthesis and easy functionalization. In this paper, the construction units, topological structures, synthesis strategies and application progress of TPE-based COFs in different fields are briefly reviewed. Finally, the development prospects and possible challenges of TPE-based COFs are pointed out.

Contents

1 Introduction

2 Construction unit and topological structure of TPE-based COFs

3 Synthesis strategy of TPE-based COFs

4 Applications

4.1 Catalysis

4.2 Adsorption

4.2.1 Ions adsorption

4.2.2 Gas adsorption

4.2.3 Biomolecule adsorption

4.3 Sensors

4.3.1 Sensors for detecting explosives

4.3.2 Ion sensors

4.3.3 Acid-base sensors

4.3.4 Enantioselective sensors

4.3.5 Biosensors

4.4 Optoelectronic

4.4.1 Light emitting diode

4.4.2 Electrochemical energy storage

4.4.3 Others

4.5 Bio-related applications

5 Prospects and challenges

Fig. 1 Monomers for use in the synthesis of TPE-based COFs
Fig. 2 Building units successfully used for the synthesis of TPE-based COFs
Fig. 3 Linkages used in TPE-based COFs
Fig. 4 Topological structures of TPE-based COFs
Fig. 5 The synthetic route of TP-COF and the process of photocatalytic H2 evolution under visible light[55]
Fig. 6 (a) Gas adsorption of C3H8, C2H6, C2H4 and CH4 for NAT-COF at 273 K[65]; (b) The schematic diagram of breakthrough experiments in the columns packed with SCU-COF-2 powder[69]
Fig. 7 Fluorescence quenching experiments of the Py-TPE-COF upon addition of TNP (0-25 ppm) in acetone[72]
Fig. 8 (a) Al3+ sensing mechanism of COF-DHTA[75]; (b) Water, benzene, and toluene adsorption isotherms of the TTPE-COF at 293 K, and the fluorescence photographs under a 365 nm UV lamp[67]
Fig. 9 Fluorescence emission spectra of test paper fumigated by TFA at different times and optical photographs of test paper upon exposure to TFA vapour and TEA vapour (λex= 365 nm)[78]
Fig. 10 Decrease percentage upon exposure to α-pinene for 7@PVDF[80]
Fig. 11 Stern-Volmer plots of NUS-30 nanosheets being titrated with L-phenylalanine and AFM images of NUS-30 nanosheets[82]
Fig. 12 (a) The capacitor storage process of PT-COF[40]; (b) The energy-level diagram and schematic illustration of the PVSCs[39]
Fig. 13 Schematic illustration of the preparation of COFTFBE?PDAN@FeIIITA-PEI for luminescence imaging and ferroptosis in target tumor cells[86]
[1]
Luo J D, Xie Z L, Lam J W Y, Cheng L, Tang B Z, Chen H Y, Qiu C F, Kwok H S, Zhan X W, Liu Y Q, Zhu D B. Chem. Commun., 2001, (18): 1740.
[2]
Wen J, Huang Z, Hu S, Li S, Li W Y, Wang X L. J. Hazard. Mater., 2016, 318: 363.

doi: 10.1016/j.jhazmat.2016.07.004
[3]
Selvaraj M, Rajalakshmi K, Ahn D H, Yoon S J, Nam Y S, Lee Y, Xu Y G, Song J W, Lee K B. Anal. Chimica Acta, 2021, 1148: 238178.

doi: 10.1016/j.aca.2020.12.053
[4]
Zhan C, Zhang G X, Zhang D Q. ACS Appl. Mater. Interfaces, 2018, 10(15): 12141.

doi: 10.1021/acsami.7b14446
[5]
Zhang Y Y, Li Y X, Yang N, Yu X, He C H, Niu N, Zhang C Y, Zhou H P, Yu C, Jiang S C. Sens. Actuat. B Chem., 2018, 257: 1143.

doi: 10.1016/j.snb.2017.10.018
[6]
Wang Z Y, Gu Y, Liu J Y, Cheng X, Sun J Z, Qin A J, Tang B Z. J. Mater. Chem. B, 2018, 6(8): 1279.
[7]
Wang Y L, Liu H L, Chen Z, Pu S Z. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 245: 118928.

doi: 10.1016/j.saa.2020.118928
[8]
Palma-Cando A, Woitassek D, Brunklaus G, Scherf U. Mater. Chem. Front., 2017, 1(6): 1118.

doi: 10.1039/C6QM00281A
[9]
Lv W X, Yang Q T, Li Q, Li H Y, Li F. Anal. Chem., 2020, 92(17): 11747.

doi: 10.1021/acs.analchem.0c01796
[10]
Lin G W, Peng H R, Chen L, Nie H, Luo W W, Li Y H, Chen S M, Hu R R, Qin A J, Zhao Z J, Tang B Z. ACS Appl. Mater. Interfaces, 2016, 8(26): 16799.

doi: 10.1021/acsami.6b04924
[11]
Liao C W, Hsu Y C, Chu C C, Chang C H, Krucaite G, Volyniuk D, Grazulevicius J V, Grigalevicius S. Org. Electron., 2019, 67: 279.

doi: 10.1016/j.orgel.2018.12.025
[12]
Huang C G, Zhou S N, Chen C, Wang X Y, Ding R, Xu Y S, Cheng Z W, Ye Z Q, Sun L J, Wang Z J, Hu D Y, Jia X D, Zhang G Y, Gao S. Small, 2022, 18(47): 2205062.

doi: 10.1002/smll.v18.47
[13]
Su S, Ma Y F, Tian L M, Wang Z. Sci. Sin. Chimica, 2017, 47(9): 1075.
(苏姗, 马宇帆, 田立枚, 王卓. 中国科学: 化学, 2017, 47(9): 1075.).
[14]
Zhang C H, Wu Z T, Xie C X. ShanDong Chem. Ind., 2022, 51(19): 93.
( 张程昊, 吴中涛, 解从霞. 山东化工, 2022, 51(19): 93.).
[15]
Luo Y Q, Feng L, Zheng R L. AnHui Chem Ind, 2022, 48(4): 10.
(罗一权, 冯亮, 郑仁林. 安徽化工, 2022, 48(4): 10.).
[16]
Côté A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166.

doi: 10.1126/science.1120411
[17]
Côté A P, El-Kaderi H M, Furukawa H, Hunt J R, Yaghi O M. J. Am. Chem. Soc., 2007, 129(43): 12914.

doi: 10.1021/ja0751781
[18]
Hunt J R, Doonan C J, LeVangie J D, Côté A P, Yaghi O M. J. Am. Chem. Soc., 2008, 130(36): 11872.

doi: 10.1021/ja805064f
[19]
Waller P J, Gándara F, Yaghi O M. Acc. Chem. Res., 2015, 48(12): 3053.

doi: 10.1021/acs.accounts.5b00369
[20]
Rodríguez-San-Miguel D, Zamora F. Chem. Soc. Rev., 2019, 48(16): 4375.

doi: 10.1039/c9cs00258h pmid: 31310256
[21]
Liu R Y, Tan T K, Gong Y F, Chen Y Z, Li Z E, Xie S L, He T, Lu Z, Yang H, Jiang D L. Chem. Soc. Rev., 2021, 50(1): 120.

doi: 10.1039/D0CS00620C
[22]
Geng K Y, He T, Liu R Y, Dalapati S, Tan K T, Li Z P, Tao S S, Gong Y F, Jiang Q H, Jiang D L. Chem. Rev., 2020, 120(16): 8814.

doi: 10.1021/acs.chemrev.9b00550
[23]
Guo L L, Yang L, Li M Y, Kuang L J, Song Y H, Wang L. Coord. Chem. Rev., 2021, 440: 213957.

doi: 10.1016/j.ccr.2021.213957
[24]
Meng Z, Mirica K A. Chem. Soc. Rev., 2021, 50(24): 13498.

doi: 10.1039/D1CS00600B
[25]
Patial S, Soni V, Kumar A, Raizada P, Ahamad T, Pham X M, Van Le Q, Nguyen V H, Thakur S, Singh P. Environ. Res., 2023, 218: 114982.

doi: 10.1016/j.envres.2022.114982
[26]
Shi Y Q, Yang J L, Gao F, Zhang Q C. ACS Nano, 2023, 17(3): 1879.

doi: 10.1021/acsnano.2c11346
[27]
Corbett P T, Leclaire J, Vial L, West K R, Wietor J L, Sanders J K M, Otto S. Chem. Rev., 2006, 106(9): 3652.

doi: 10.1021/cr020452p pmid: 16967917
[28]
Jiang S Y, Gan S X, Zhang X, Li H, Qi Q Y, Cui F Z, Lu J, Zhao X. J. Am. Chem. Soc., 2019, 141(38): 14981.

doi: 10.1021/jacs.9b08017
[29]
Jin E Q, Geng K Y, Lee K H, Jiang W M, Li J, Jiang Q H, Irle S, Jiang D L. Angew. Chem., 2020, 132(29): 12260.

doi: 10.1002/ange.v132.29
[30]
Chen Z A, Wang K, Tang Y M, Li L, Hu X N, Han M X, Guo Z Y, Zhan H B, Chen B L. Angewandte Chemie Int. Ed., 2023, 62(1): e202213268.

doi: 10.1002/anie.v62.1
[31]
Nguyen H L, Hanikel N, Lyle S J, Zhu C H, Proserpio D M, Yaghi O M. J. Am. Chem. Soc., 2020, 142(5): 2218.

doi: 10.1021/jacs.9b13094 pmid: 31944678
[32]
Xiong Y F, Liao Q B, Huang Z P, Huang X, Ke C, Zhu H T, Dong C Y, Wang H S, Xi K, Zhan P, Xu F, Lu Y Q. Adv. Mater., 2020, 32(9): 1907242.

doi: 10.1002/adma.v32.9
[33]
Lan Y S, Han X H, Tong M M, Huang H L, Yang Q Y, Liu D H, Zhao X, Zhong C L. Nat. Commun., 2018, 9: 5274.

doi: 10.1038/s41467-018-07720-x
[34]
Kang X, Wu X W, Han X, Yuan C, Liu Y, Cui Y. Chem. Sci., 2020, 11(6): 1494.

doi: 10.1039/C9SC04882K
[35]
Nguyen H L, Gropp C, Ma Y H, Zhu C H, Yaghi O M. J. Am. Chem. Soc., 2020, 142(48): 20335.

doi: 10.1021/jacs.0c11064
[36]
EL-Mahdy A F M, Mohamed M G, Mansoure T H, Yu H H, Chen T, Kuo S W. Chem. Commun., 2019, 55(99): 14890.

doi: 10.1039/C9CC08107K
[37]
Gong L, Gao Y, Wang Y H, Chen B T, Yu B Q, Liu W B, Han B, Lin C X, Bian Y Z, Qi D D, Jiang J Z. Catal. Sci. Technol., 2022, 12(21): 6566.

doi: 10.1039/D2CY01326F
[38]
Xing X L, Liao Q B, Ahmed S A, Wang D N, Ren S B, Qin X, Ding X L, Xi K, Ji L N, Wang K, Xia X H. Nano Lett., 2022, 22(3): 1358.

doi: 10.1021/acs.nanolett.1c04633
[39]
Mohamed M G, Lee C C, EL-Mahdy A F M, Lüder J, Yu M H, Li Z, Zhu Z L, Chueh C C, Kuo S W. J. Mater. Chem. A, 2020, 8(22): 11448.
[40]
Patra B C, Bhattacharya S. Chem. Mater., 2021, 33(21): 8512.

doi: 10.1021/acs.chemmater.1c02973
[41]
Dalapati S, Jin E Q, Addicoat M, Heine T, Jiang D L. J. Am. Chem. Soc., 2016, 138(18): 5797.

doi: 10.1021/jacs.6b02700 pmid: 27108740
[42]
Liu Y Z, Diercks C S, Ma Y H, Lyu H, Zhu C H, Alshmimri S A, Alshihri S, Yaghi O M. J. Am. Chem. Soc., 2019, 141(1): 677.

doi: 10.1021/jacs.8b12177
[43]
Peng L, Sun J, Huang J, Song C Y, Wang Q K, Wang L Q, Yan H G, Ji M B, Wei D P, Liu Y Q, Wei D C. Chem. Mater., 2022, 34(7): 2886.

doi: 10.1021/acs.chemmater.1c02382
[44]
Chen X, Addicoat M, Jin E Q, Xu H, Hayashi T, Xu F, Huang N, Irle S, Jiang D L. Sci. Rep., 2015, 5: 14650.

doi: 10.1038/srep14650
[45]
Pang Z F, Xu S Q, Zhou T Y, Liang R R, Zhan T G, Zhao X. J. Am. Chem. Soc., 2016, 138(14): 4710.

doi: 10.1021/jacs.6b01244
[46]
Dong J Q, Li X, Peh S B, Yuan Y D, Wang Y X, Ji D X, Peng S J, Liu G L, Ying S M, Yuan D Q, Jiang J W, Ramakrishna S, Zhao D. Chem. Mater., 2019, 31(1): 146.

doi: 10.1021/acs.chemmater.8b03685
[47]
Zhang B, Mao H Y, Matheu R, Reimer J A, Alshmimri S A, Alshihri S, Yaghi O M. J. Am. Chem. Soc., 2019, 141(29): 11420.

doi: 10.1021/jacs.9b05626 pmid: 31276387
[48]
Han X H, Chu J Q, Wang W Z, Qi Q Y, Zhao X. Chin. Chemical Lett., 2022, 33(5): 2464.

doi: 10.1016/j.cclet.2021.11.066
[49]
Maschita J, Banerjee T, Lotsch B V. Chem. Mater., 2022, 34(5): 2249.

doi: 10.1021/acs.chemmater.1c04051
[50]
Li W, Wang R, Jiang H X, Chen Y, Tang A N, Kong D M. Talanta, 2022, 236: 122829.

doi: 10.1016/j.talanta.2021.122829
[51]
Li X H, Tang H J, Gao L, Chen Z Y, Li H J, Wang Y H, Yang K X, Lu S Y, Wang K M, Zhou Q, Wang Z L. Polymer, 2022, 241: 124474.

doi: 10.1016/j.polymer.2021.124474
[52]
Rogge S M J, Bavykina A, Hajek J, Garcia H, Olivos-Suarez A I, Sepúlveda-Escribano A, Vimont A, Clet G, Bazin P, Kapteijn F, Daturi M, Ramos-Fernandez E V, Llabrés i Xamena F X, Van Speybroeck V, Gascon J. Chem. Soc. Rev., 2017, 46(11): 3134.

doi: 10.1039/c7cs00033b pmid: 28338128
[53]
Banerjee T, Gottschling K, Savasci G, Ochsenfeld C, Lotsch B V. ACS Energy Lett., 2018, 3(2): 400.

doi: 10.1021/acsenergylett.7b01123 pmid: 29457140
[54]
Yan Y, He T, Zhao B, Qi K, Liu H F, Xia B Y. J. Mater. Chem. A, 2018, 6(33): 15905.
[55]
Xu Z L, Cui X, Li Y H, Li Y W, Si Z J, Duan Q. Appl. Surf. Sci., 2023, 613: 155966.

doi: 10.1016/j.apsusc.2022.155966
[56]
Sick T, Hufnagel A G, Kampmann J, Kondofersky I, Calik M, Rotter J M, Evans A, Döblinger M, Herbert S, Peters K, Böhm D, Knochel P, Medina D D, Fattakhova-Rohlfing D, Bein T. J. Am. Chem. Soc., 2018, 140(6): 2085.

doi: 10.1021/jacs.7b06081
[57]
Rotter J M, Weinberger S, Kampmann J, Sick T, Shalom M, Bein T, Medina D D. Chem. Mater., 2019, 31(24): 10008.

doi: 10.1021/acs.chemmater.9b02286
[58]
Yu H P, Zhang J Z, Yan X R, Wu C G, Zhu X R, Li B W, Li T F, Guo Q Q, Gao J F, Hu M J, Yang J. J. Mater. Chem. A, 2022, 10(20): 11010.
[59]
Lv H W, Sa R J, Li P Y, Yuan D Q, Wang X C, Wang R H. Sci. China Chem., 2020, 63(9): 1289.

doi: 10.1007/s11426-020-9801-3
[60]
He C, Si D H, Huang Y B, Cao R. Angewandte Chemie Int. Ed., 2022, 61(40): e202207478.

doi: 10.1002/anie.v61.40
[61]
Liu N, Shi L F, Han X H, Qi Q Y, Wu Z Q, Zhao X. Chin. Chemical Lett., 2020, 31(2): 386.

doi: 10.1016/j.cclet.2019.06.050
[62]
Gao Q, Li X, Ning G H, Xu H S, Liu C B, Tian B B, Tang W, Loh K P. Chem. Mater., 2018, 30: 1762.

doi: 10.1021/acs.chemmater.8b00117
[63]
Tian Y, Xu S Q, Qian C, Pang Z F, Jiang G F, Zhao X. Chem. Commun., 2016, 52(78): 11704.

doi: 10.1039/C6CC06637B
[64]
Zhang Q. Masteral Dissertation of Nanjing University, 2019.
(张奇. 南京大学硕士论文, 2019.)
[65]
Li J Y, He Y, Zou Y C, Yan Y, Song Z G, Shi X D. Chin. Chem. Lett., 2022, 33: 3017.

doi: 10.1016/j.cclet.2021.12.011
[66]
Chen L J, Gong C T, Wang X K, Dai F N, Huang M C, Wu X W, Lu C Z, Peng Y W. J. Am. Chem. Soc., 2021, 143(27): 10243.

doi: 10.1021/jacs.1c03739
[67]
Cui D, Ding X S, Xie W, Xu G J, Su Z M, Xu Y H, Xie Y Z. CrystEngComm, 2021, 23(33): 5569.

doi: 10.1039/D1CE00870F
[68]
Wang P, Xu Q, Li Z P, Jiang W M, Jiang Q H, Jiang D L. Adv. Mater., 2018, 30(29): 1801991.

doi: 10.1002/adma.v30.29
[69]
He L W, Chen L, Dong X L, Zhang S T, Zhang M X, Dai X, Liu X J, Lin P, Li K F, Chen C L, Pan T T, Ma F Y, Chen J C, Yuan M J, Zhang Y G, Chen L, Zhou R H, Han Y, Chai Z F, Wang S A. Chem, 2021, 7(3): 699.

doi: 10.1016/j.chempr.2020.11.024
[70]
Lu Z X, Liu Y X, Liu X L, Lu S H, Li Y, Yang S X, Qin Y, Zheng L Y, Zhang H B. J. Mater. Chem. B, 2019, 7(9): 1469.
[71]
Zhang W, Qiu L G, Yuan Y P, Xie A J, Shen Y H, Zhu J F. J. Hazard. Mater., 2012, 221/222: 147.
[72]
Gao Q, Li X, Ning G H, Leng K, Tian B B, Liu C B, Tang W, Xu H S, Loh K P. Chem. Commun., 2018, 54(19): 2349.

doi: 10.1039/C7CC09866A
[73]
Faheem M, Aziz S, Jing X F, Ma T T, Du J Y, Sun F X, Tian Y Y, Zhu G S. J. Mater. Chem. A, 2019, 7(47): 27148.
[74]
Ding H M. Doctoral Dissertation of Wuhan University, 2018.
(丁慧敏. 武汉大学博士论文, 2018.).
[75]
Xiu J, Zhang N, Li C, Salah A, Wang G. Microporous Mesoporous Mater., 2021, 316: 110979.

doi: 10.1016/j.micromeso.2021.110979
[76]
Zheng M X, Yao C, Xie W, Xu Y H, Hu H. Bull. Chem. Soc. Jpn., 2021, 94(8): 2133.

doi: 10.1246/bcsj.20210121
[77]
Cui F Z, Xie J J, Jiang S Y, Gan S X, Ma D L, Liang R R, Jiang G F, Zhao X. Chem. Commun., 2019, 55(31): 4550.

doi: 10.1039/C9CC01548E
[78]
Gong W, Dong Y J, Liu C Y, Shi H L, Yin M X, Li W J, Song Q B, Zhang C. Dyes Pigments, 2022, 204: 110464.

doi: 10.1016/j.dyepig.2022.110464
[79]
Wu X C, Zhang X D, Li Y J, Wang B W, Li Y, Chen L G. J. Mater. Sci., 2021, 56(3): 2717.
[80]
Wu X W, Han X, Xu Q S, Liu Y H, Yuan C, Yang S, Liu Y, Jiang J W, Cui Y. J. Am. Chem. Soc., 2019, 141(17): 7081.

doi: 10.1021/jacs.9b02153
[81]
Song L L, Gao W Q, Wang S W, Bi H Q, Deng S Y, Cui L, Zhang C Y. Sens. Actuat. B Chem., 2022, 373: 132751.

doi: 10.1016/j.snb.2022.132751
[82]
Dong J Q, Li X, Peh S B, Yuan Y D, Wang Y X, Ji D X, Peng S J, Liu G L, Ying S M, Yuan D Q, Jiang J W, Ramakrishna S, Zhao D. Chem. Mater., 2019, 31(1): 146.

doi: 10.1021/acs.chemmater.8b03685
[83]
Li G R, Tian W C, Zhong C, Yang Y X, Lin Z A. ACS Appl. Mater. Interfaces, 2022, 14(18): 21750.

doi: 10.1021/acsami.2c04391
[84]
Ding H M, Li J, Xie G H, Lin G Q, Chen R F, Peng Z K, Yang C L, Wang B S, Sun J L, Wang C. Nat. Commun., 2018, 9: 5234.

doi: 10.1038/s41467-018-07670-4
[85]
Sun Q, Aguila B, Lan P C, Ma S Q. Adv. Mater., 2019, 31(19): 1900008.

doi: 10.1002/adma.v31.19
[86]
You J, Yuan F, Cheng S S, Kong Q Q, Jiang Y L, Luo X Z, Xian Y Z, Zhang C L. Chem. Mater., 2022, 34(15): 7078.

doi: 10.1021/acs.chemmater.2c01726
[87]
Guo L, Jia S, Diercks C S, Yang X J, Alshmimri S A, Yaghi O M. Angew. Chem. Int. Ed., 2020, 59(5): 2023.

doi: 10.1002/anie.v59.5
[88]
Pang Z F, Zhou T Y, Liang R R, Qi Q Y, Zhao X. Chem. Sci., 2017, 8(5): 3866.

doi: 10.1039/C6SC05673C
[89]
Peng Y W, Li L X, Zhu C Z, Chen B, Zhao M T, Zhang Z C, Lai Z C, Zhang X, Tan C L, Han Y, Zhu Y H, Zhang H. J. Am. Chem. Soc., 2020, 142(30): 13162.

doi: 10.1021/jacs.0c05596
[90]
Liang R R, Cui F Z, Ru-Han A, Qi Q Y, Zhao X. CCS Chem., 2020, 2(2): 139.

doi: 10.31635/ccschem.020.201900094
[1] Weiyu Zhang, Jie Li, Hong Li, Jiaqi Ji, Chenliang Gong, Sanyuan Ding. Covalent Organic Frameworks for Proton Exchange Membranes [J]. Progress in Chemistry, 2024, 36(1): 48-66.
[2] Ziyu Pan, Haodong Ji. Controlled Synthesis of Silver Nanomaterials and Their Environmental Applications [J]. Progress in Chemistry, 2023, 35(8): 1229-1257.
[3] Yunchao Ma, Yuxin Yao, Yue Fu, Chunbo Liu, Bo Hu, Guangbo Che. Progress of Covalent Organic Frameworks in Iodine Capture [J]. Progress in Chemistry, 2023, 35(7): 1097-1105.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[6] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[7] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[8] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[9] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[10] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
[11] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[12] Meng Mu, Xuewen Ning, Xinjie Luo, Yujun Feng. Fabrications, Properties, and Applications of Stimuli-Responsive Polymer Microspheres [J]. Progress in Chemistry, 2020, 32(7): 882-894.
[13] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[14] Suyan Zhao, Chang Liu, Hao Xu, Xiaobo Yang. Two-Dimensional Covalent Organic Frameworks Photocatalysts [J]. Progress in Chemistry, 2020, 32(2/3): 274-285.
[15] Luo Shipeng, Huang Peiqiang. Malic acid——A Versatile Chiral Building Block in the Enantioselective Total Synthesis of Natural Products and in Synthetic Methodologies [J]. Progress in Chemistry, 2020, 32(11): 1846-1868.