中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (7): 1097-1105 DOI: 10.7536/PC221118 Previous Articles   Next Articles

• Review •

Progress of Covalent Organic Frameworks in Iodine Capture

Yunchao Ma1,2, Yuxin Yao1,2, Yue Fu1,2, Chunbo Liu1,3(), Bo Hu2(), Guangbo Che1,3,4()   

  1. 1 Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University,Changchun 130103, China
    2 College of Chemistry, Jilin Normal University,Siping 136000, China
    3 College of Engineering, Jilin Normal University,Siping 136000, China
    4 College of Chemistry, Baicheng Normal University,Baicheng 137000, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: chunboliu@jlnu.edu.cn(Chunbo Liu); hubo2001@163.com(Bo Hu); guangboche@jlnu.edu.cn(Guangbo Che)
  • Supported by:
    National Natural Science Foundation of China(22205076); Project of Department of Science & Technology of Jilin Province(YDZJ202201ZYTS335); Project of Human Resources and Social Security Department of Jilin Province(2021Y019); Human Resources and Social Security Department of Jilin Province(2021Z007); Jilin Province Development and Reform Commission(2021C036-7); Jilin Province Development and Reform Commission(2021C038-7); Project of Education Department of Jilin Province(JJKH20220427KJ)
Richhtml ( 39 ) PDF ( 709 ) Cited
Export

EndNote

Ris

BibTeX

With the development of the nuclear industry, radioactive iodine was identified as one of the most hazardous nuclear wastes. Radioactive iodine capture also plays an important role in reducing the contamination of nuclear wastewater. Covalent organic frameworks (COFs), a crystalline porous organic material formed by covalent bond connection, are considered an ideal candidate for iodine capture materials for their large specific surface area, regular pore structure and high chemical stability. COFs are considered as ideal iodine trapping materials due to their structural characteristics and the fact that the adsorption sites of COFs are easily occupied by iodine molecules. This paper mainly reviews the progress of COFs with periodic porous structure and tunable functions in the field of iodine capture. Firstly, the recent progress in iodine capture of imine bonded COFs was briefly reviewed. Secondly, iodine capture capacity of compound COFs and ionic COFs are discussed. Finally, the potential of efficient iodine capture COFs to scale and the future development of this field.

Contents

1 Introduction

2 Capture of iodine by different types of COFs

2.1 Imine bonded COFs

2.2 Compound-functionalized COFs

2.3 3D COFs

2.4 Ionic-multivariated COFs

3 Conclusion and outlook

Fig.1 Synthesis of ETTA-PyTTA-COF[11], Copyright 2022, Acounts of Chemical Research
Fig.2 Synthesis of TAPB-BPDA-COF[12], Copyright 2021, Reactive and Functional Polymers
Fig.3 Synthesis of TAPA-PDA-COF[13], Copyright 2021, Microporous and Mesoporous Materials
Fig.4 Synthesis of TFB-DB、TFB-BD and TFB-Td COFs[19], Copyright 2021, ACS Applied Materials & Interfaces
Fig.5 Synthesis of TTA-TMTA-COF and TTA-FMTA-COF[20], Copyright 2021, Macromolecular Rapid Communications
Fig.6 Synthesis of COF-PA[21], Copyright 2021, Microporous and Mesoporous Materials
Fig.7 Synthesis of JUC-609[22] Copyright 2022, Chemical Research
Fig.8 Synthesis of TTF-TD-COF and TTF-TAPT-COF[24], Copyright 2022, Chemical Research
Fig.9 Synthesis of JUC-560 and JUC-561[25], Copyright 2021, Chemical Science
Fig.10 Synthesis of SCU-COF-2[26], Copyright 2021, CellPress
Fig.11 Synthesis of CuxPc-COFs[27], Copyright 2022, Chinese Chemical Letters
Fig.12 Synthesis of COFs@cotton[31], Copyright 2020, Cellulose
Fig.13 Synthesis of BTM[32], Copyright 2021, Journal of Materials Chemistry A
Fig.14 Synthesis of 3D COF-DL229[36], Copyright 2018, Chemistry European Journal
Fig.15 Synthesis of QTD-COFs[37], Copyright 2020, Angewandte Chemie International Edition
Fig.16 Synthesis of COF-OH-X[40], Copyright 2021, Angewandte Chemie International Edition
[1]
Vellingiri K, Kim K H, Pournara A, Deep A. Prog. Mater. Sci., 2018, 94: 1.

doi: 10.1016/j.pmatsci.2018.01.002
[2]
Chapman K W, Chupas P J, Nenoff T M. J. Am. Chem. Soc., 2010, 132(26): 8897.

doi: 10.1021/ja103110y pmid: 20550110
[3]
Pham T C T, Docao S, Hwang I C, Song M K, Choi D Y, Moon D, Oleynikov P, Yoon K B. Energy Environ. Sci., 2016, 9(3): 1050.

doi: 10.1039/C5EE02843D
[4]
Lei C, Gao J K, Ren W J, Xie Y B, Abdalkarim S Y H, Wang S L, Ni Q Q, Yao J M. Carbohydr. Polym., 2019, 205: 35.

doi: 10.1016/j.carbpol.2018.10.029
[5]
Adams G M, Weller A S. Coord. Chem. Rev., 2018, 355: 150.

doi: 10.1016/j.ccr.2017.08.004
[6]
Shahvar A, Soltani R, Saraji M, Dinari M, Alijani S. J. Chromatogr. A, 2018, 1565: 48.

doi: S0021-9673(18)30789-1 pmid: 29921466
[7]
Afshari M, Dinari M. J. Hazard. Mater., 2020, 385: 121514.

doi: 10.1016/j.jhazmat.2019.121514
[8]
Coõteé A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166.

doi: 10.1126/science.1120411
[9]
Tong D Y, Zhao Y L, Chen Z C, Wang Y Q, Jia Z Q, Nie X M, Xiao S T. Phys. Chem. Chem. Phys., 2021, 23(44): 25365.

doi: 10.1039/D1CP04390K
[10]
Smith B J, Overholts A C, Hwang N, Dichtel W R. Chem. Commun., 2016, 52(18): 3690.

doi: 10.1039/C5CC10221A
[11]
Wen Z L, Wang S L, Fu S Y, Qian J Y, Yan Q Q, Xu H J, Zuo K M, Su X F, Zeng C Y, Gao Y N. Chem. Res. Chin. Univ., 2022, 38(2): 472.

doi: 10.1007/s40242-022-2057-2
[12]
Chen R, Hu T L, Li Y Q. React. Funct. Polym., 2021, 159: 104806.

doi: 10.1016/j.reactfunctpolym.2020.104806
[13]
Chen R, Hu T L, Zhang W, He C Y, Li Y Q. Microporous Mesoporous Mater., 2021, 312: 110739.

doi: 10.1016/j.micromeso.2020.110739
[14]
Sun Y H, Song S N, Xiao D H, Gan L F, Wang Y R. ACS Omega, 2020, 5(38): 24262.

doi: 10.1021/acsomega.0c02382
[15]
Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011, 133(49): 19816.

doi: 10.1021/ja206846p
[16]
Han X, Zhang J, Huang J J, Wu X W, Yuan D Q, Liu Y, Cui Y. Nat. Commun., 2018, 9: 1294.

doi: 10.1038/s41467-018-03689-9
[17]
Vyas V S, Vishwakarma M, Moudrakovski I, Haase F, Savasci G, Ochsenfeld C, Spatz J P, Lotsch B V. Adv. Mater., 2016, 28(39): 8749.

doi: 10.1002/adma.201603006
[18]
Gomes R, Bhanja P, Bhaumik A. Chem. Commun., 2015, 51(49): 10050.

doi: 10.1039/C5CC02147B
[19]
Song S N, Shi Y, Liu N, Liu F Q. ACS Appl. Mater. Interfaces, 2021, 13(8): 10513.

doi: 10.1021/acsami.0c17748
[20]
Zhai L P, Han D D, Dong J H, Jiang W Q, Nie R M, Yang X B, Luo X L, Li Z P. Macromol. Rapid Commun., 2021, 42(13): 2100032.

doi: 10.1002/marc.v42.13
[21]
Zhao Y X, Liu X, Li Y P, Xia M, Xia T, Sun H C, Sui Z Y, Hu X M, Chen Q. Microporous Mesoporous Mater., 2021, 319: 111046.

doi: 10.1016/j.micromeso.2021.111046
[22]
Zhang J H, Liu J C, Liu Y Z, Wang Y J, Fang Q R, Qiu S L. Chem. Res. Chin. Univ., 2022, 38(2): 456.

doi: 10.1007/s40242-022-1513-3
[23]
Wu Q, Xie R K, Mao M J, Chai G L, Yi J D, Zhao S S, Huang Y B, Cao R. ACS Energy Lett., 2020, 5(3): 1005.

doi: 10.1021/acsenergylett.9b02756
[24]
Wang G B, Xie K H, Zhu F C, Kan J L, Li S, Geng Y, Dong Y B. Chem. Res. Chin. Univ., 2022, 38(2): 409.

doi: 10.1007/s40242-022-1417-2
[25]
Chang J H, Li H, Zhao J, Guan X Y, Li C M, Yu G T, Valtchev V, Yan Y S, Qiu S L, Fang Q R. Chem. Sci., 2021, 12(24): 8452.

doi: 10.1039/D1SC01742J
[26]
He L W, Chen L, Dong X L, Zhang S T, Zhang M X, Dai X, Liu X J, Lin P, Li K F, Chen C L, Pan T T, Ma F Y, Chen J C, Yuan M J, Zhang Y G, Chen L, Zhou R H, Han Y, Chai Z F, Wang S A. Chem, 2021, 7(3): 699.

doi: 10.1016/j.chempr.2020.11.024
[27]
Liu X W, Zhang A R, Ma R, Wu B, Wen T, Ai Y J, Sun M T, Jin J, Wang S H, Wang X K. Chin. Chemical Lett., 2022, 33(7): 3549.

doi: 10.1016/j.cclet.2022.03.001
[28]
Qian X, Zhu Z Q, Sun H X, Ren F, Mu P, Liang W D, Chen L H, Li A. ACS Appl. Mater. Interfaces, 2016, 8(32): 21063.

doi: 10.1021/acsami.6b06569
[29]
Wei H T, Ning J, Cao X D, Li X H, Hao L. J. Am. Chem. Soc., 2018, 140(37): 11618.

doi: 10.1021/jacs.8b08282
[30]
Jie K, Zhou Y, Li E. J. Am. Chem. Soc., 2017, 139: 15320.

doi: 10.1021/jacs.7b09850
[31]
Li Y Q, Li Y R, Zhao Q H, Li L, Chen R, He C Y. Cellulose, 2020, 27(3): 1517.

doi: 10.1007/s10570-019-02877-0
[32]
Zhu Y, Qi Y, Guo X H, Zhang M C, Jia Z M, Xia C Q, Liu N, Bai C Y, Ma L J, Wang Q. J. Mater. Chem. A, 2021, 9(31): 16961.

doi: 10.1039/D1TA03879F
[33]
Wang H L, Bao Z B, Wu H, Lin R B, Zhou W, Hu T L, Li B, Zhao J C G, Chen B L. Chem. Commun., 2017, 53(81): 11150.

doi: 10.1039/C7CC06187K
[34]
Zhou Y, Kan L, Eubank J F, Li G H, Zhang L R, Liu Y L. Chem. Sci., 2019, 10(26): 6565.

doi: 10.1039/c9sc00290a pmid: 31367308
[35]
Tan L L, Li H W, Tao Y C, Zhang S X A, Wang B, Yang Y W. Adv. Mater., 2014, 26(41): 7027.

doi: 10.1002/adma.201401672
[36]
Wang C, Wang Y, Ge R L, Song X D, Xing X Q, Jiang Q K, Lu H, Hao C, Guo X W, Gao Y N, Jiang D L. Chem. Eur. J., 2018, 24(3): 585.

doi: 10.1002/chem.v24.3
[37]
Guo X H, Li Y, Zhang M C, Cao K C, Tian Y, Qi Y, Li S J, Li K, Yu X Q, Ma L J. Angewandte Chemie Int. Ed., 2020, 59(50): 22697.

doi: 10.1002/anie.v59.50
[38]
Jiao J J, Gong W, Wu X W, Yang S P, Cui Y. Coord. Chem. Rev., 2019, 385: 174.

doi: 10.1016/j.ccr.2019.01.016
[39]
Huang N, Zhai L P, Coupry D E, Addicoat M A, Okushita K, Nishimura K, Heine T, Jiang D L. Nat. Commun., 2016, 7: 12325.

doi: 10.1038/ncomms12325 pmid: 27460607
[40]
Xie Y Q, Pan T T, Lei Q, Chen C L, Dong X L, Yuan Y Y, Shen J, Cai Y C, Zhou C H, Pinnau I, Han Y. Angewandte Chemie Int. Ed., 2021, 60(41): 22432.

doi: 10.1002/anie.v60.41
[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[3] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
[4] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[5] Suyan Zhao, Chang Liu, Hao Xu, Xiaobo Yang. Two-Dimensional Covalent Organic Frameworks Photocatalysts [J]. Progress in Chemistry, 2020, 32(2/3): 274-285.
[6] Anrui Zhang, Yuejie Ai. Structure Control of Covalent Organic Frameworks(COFs) and Their Applications in Environmental Chemistry [J]. Progress in Chemistry, 2020, 32(10): 1564-1581.
[7] Xingwang Lan, Guoyi Bai. Covalent Organic Framework Catalytic Materials: CO2 Conversion and Utilization [J]. Progress in Chemistry, 2020, 32(10): 1482-1493.
[8] Ting Wang, Rui Xue, Yuli Wei, Mingyue Wang, Hao Guo, Wu Yang. Development and Applications of Covalent Organic Frameworks(COFs) Materials: Gas Storage, Catalysis and Chemical Sensing [J]. Progress in Chemistry, 2018, 30(6): 753-764.
[9] Chengjiang Zhang, Xiaoyan Yuan, Zeli Yuan, Yongke Zhong, Zhuomin Zhang, Gongke Li. Covalent Organic Framework Materials Based on Schiff-Base Reaction [J]. Progress in Chemistry, 2018, 30(4): 365-382.
[10] Fu Xianbiao, Yu Guipeng. Covalent Organic Frameworks Catalysts [J]. Progress in Chemistry, 2016, 28(7): 1006-1015.