中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (11): 1701-1726 DOI: 10.7536/PC230329 Previous Articles   

• Review •

Aqueous Zinc-ion Batteries

Xie Zhiying1, Zheng Xinhua3, Wang Mingming3, Yu Haizhou2, Qiu Xiaoyan1(), Chen Wei3()   

  1. 1 Institute of Advanced Materials, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
    2 Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
    3 School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
  • Received: Revised: Online: Published:
  • Contact: Qiu Xiaoyan, Chen Wei
  • Supported by:
    National Natural Science Foundation of China(22005141)
Richhtml ( 58 ) PDF ( 384 ) Cited
Export

EndNote

Ris

BibTeX

Aqueous zinc-ion batteries (AZIBs) have great advantages in terms of safety, low cost, high theoretical capacity and element abundance, which shows great potential in large-scale energy storage applications. The development of high-performance AZIBs has become a widely interesting topic recently. Although much progress has been made in AZIBs, the low energy density, poor ionic dynamics and short cycling life limit the commercialization of AZIBs. This review summarizes the challenges, recent progress and corresponding strategies for the development of cathodes, anodes, electrolytes, and energy storage mechanisms of AZIBs. It provides useful guidance for researchers in the battery area to design and develop high performance AZIBs.

Contents

1 Introduction

2 Dissolution of the cathode materials

2.1 Manganese-based materials

2.2 Vanadium-based materials

3 Electrostatic interaction

4 Oxygen/hydrogen evolution reaction

4.1 Oxygen evolution reaction

4.2 Hydrogen evolution reaction

5 Zinc dendrite and corrosion

5.1 Corrosion, passivation and zinc dendrite

5.2 Anode modification

6 Conclusion and outlook

6.1 Design of advanced cathode materials

6.2 Optimization of electrolyte

6.3 Surface modification of zinc anode and developing new anode materials

6.4 Design of high-performance separator

Table 1 Aqueous zinc-ion battery vs. non-aqueous lithium/sodium/potassium-ion batteries[4]
Fig. 1 Schematic diagram of the construction of aqueous zinc ion battery and the main problems
Fig. 2 (a) CV curves and (b) cycling performance at C/3 and 1 C for MnO2 electrode in 2 mol/L ZnSO4 aqueous electrolyte with and without 0.1 mol/L MnSO4 additive[24]. Copyright 2016, Springer Nature (c) Charge and discharge curves of porous ZnMn2O4 cathode material in three different electrolytes after the first cycle and (d) corresponding cycling performance[25]. Copyright 2020, Elsevier
Fig. 3 (a) Schematic diagram of β-MnO2@Graphene oxide cathode material with oxygen vacancies[27]. Copyright 2021, Springer (b) MnO2/Mn2O3@PPy composite in aqueous Zn-ion battery[28].Copyright 2021, Elsevier. (c) Ultrathin polyaniline coated single crystal nano-ellipsoid electrode materials[29]. Copyright 2022, American Chemical Society (d) Needle-like micro/nano PDA@MnO2@NMC composites[30]. Copyright 2022, American Chemical Society
Fig. 4 (a) Reaction mechanism of α-MnO2 and CMO[31]. (Copyright 2017 American Chemical Society) (b) Theoretical calculation of CEI/H2O interface interaction energy, charge/discharge curves and cycling stability[13]. (Copyright 2022, American Chemical Society) (c) Schematic diagram of in situ growth of CEI using adhesives[32]. Copyright 2021, Wiley
Fig. 5 (a) Schematic representation of H+ diffusion into KMO with perfect structure and oxygen defect structure[36] (Copyright 2019, Wiley). (b) Schematic diagram of oxygen vacancy defect generation[37] (Copyright 2022, American Chemical Society). (c) Schematic diagram of the synthesis of oxygen vacancy-defective ZMO nanotube arrays[38]. Copyright 2021, Elsevier
Fig. 6 (a) Charge distribution of Mn2O3 and NM20. (b) Cycling properties of the materials[42]. Copyright 2021, Wiley
Fig. 7 (a) Plots of cycling performance of NVO electrode in 1 mol/L ZnSO4 and 1 mol/L ZnSO4 + 1 mol/L Na2SO4 electrolyte, respectively, (b) cycling performance of NVO electrode in ZnSO4 electrolyte. Insets are images of the changes of NVO electrodes in 1 mol/L ZnSO4 and 1 mol/L ZnSO4 + 1 mol/L Na2SO4 electrolytes at different times, (c) schematic diagram of the inhibition of dissolution of NVO nanoribbons and formation of zinc dendrites by Na2SO4 additives[48]. Copyright 2018, Springer Nature
Fig. 8 (a) FTIR spectra of BVO-1, BVO-2 and BVO-3 in the fully discharged state, (b) optical images at different times in 2 mol/L ZnSO4 electrolyte[50]. Copyright 2020, American Chemical Society. Electrochemical performance of NZVO cathodes with different proportional concentrations of inserted cations. (c) CV plot at 0.1 mV·s-1 sweep rate, (d) rate performance, (e) 99.6% capacity retention of NZVO-4 after 400 cycles at 0.1 A·g-1 current rate[51]. Copyright 2022, American Institute of Physics
Fig. 9 (a) Schematic of the fabrication process of pristine ZVO cathode and ZVO coated with HfO2 by atomic layer deposition, (b) high angle annular dark field scanning transmission electron microscopy of HfO2 coating on ZVO[53]. Copyright 2019, American Chemical Society (c) Schematic of in situ CEI layer strategy design[54]. Copyright 2021, Wiley (d) Schematic of the preparation of V2O5@PEDOT/CC[55]. Copyright 2019, Wiley
Fig. 10 (a) Cycling performance plots of MVO and VO electrodes at 0.1 A·g-1 current, (b) multiplicative performance plots of MVO and VO electrodes at different current densities, (c) schematic representation of the embedding/deembedding mechanism of dissolved Zn2+[63]. Copyright 2020, Wiley (d) NaV3O8 crystal structure, (e) β-Na0.33V2O5 crystal structure[66]. Copyright 2019, Wiley
Fig. 11 Schematic diagram of the effect of CeCl3 additive on the zinc deposition process[69]. Copyright 2022, Wiley
Fig. 12 Schematic diagram of zinc plating and comparision of the performance of symmetric cells with different anodes[70]. Copyright 2022, Royal Society of Chemistry
Fig. 13 Comparison of physicochemical properties of KFSI-based electrolytes. (a) ESWs of KFSI electrolyte with different concentrations. Magnified view of the regions outlined near (b) cathodic scan and (c) anodic scan. (d) Capacitance retention and Coulombic efficiency at an operation voltage of 2.3 V at a current density of 1 A/g[86]. Copyright 2021, Elsevier
Fig. 14 Study of zinc dendrite growth, dissolution and regrowth using porous separator. Zinc dendrite growth at (A) 200 s, (B) 300 s, (C) 430 s, (D) 590 s and (E) 890 s, (F) 120 s, (G) 240 s, (H) 680 s for each time of zinc dendrite dissolution, (I) 304 s and (J) 656 s for each time of zinc dendrite regrowth[106]. Copyright 2019, Cell Press
Fig. 15 (a) Morphological evolution of bare zinc anode and nano-CaCO3 coated anode[113]. Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (b) Schematic diagram of a composite zinc-metal anode with an ultrathin nitrogen (N)-doped graphene oxide (NGO) layer[114]. Copyright 2021, Wiley-VCH GmbH
Fig. 16 (a) Schematic diagram of the preparation of MX-TMA@Zn. (b) Theoretical calculation of binding energy of Zn ions with different substrates. (c) Contact angle between electrolyte and MX-TMA@Zn and bare zinc. (d) Cycle performance diagram of bare zinc and MX-TMA@Zn[115]. Copyright 2022, Elsevier
Fig. 17 SEM images of bare zinc as well as NFZP@Zn composite layer (a, c) initially and (b, f) after 50 turns, (c, g) XRD, (d, h) EIS, (i) Schematic diagram of galvanic behavior of bare zinc and NFZP@Zn composite layer[118]. Copyright 2022, Elsevier
Fig. 18 (a) Schematic diagram of the operation of TA-SA hydrogel electrolyte. SEM surface view (b), cross-sectional view (c) of TA-SA hydrogel electrolyte, cycling performance of Zn/NH4V4O10 cell at (d) 2 A·g-1, and (e) 0.5 A·g-1 under 0 ℃[129]. Copyright 2022, Elsevier
Fig. 19 (a) Operating steps for preparing the AIO 3D electrode system, (b) cross-sectional photograph of the AIO electrode, (c) scanning electron microscope image, (d) buckling electrode fabricated using the AIO 3D electrode system[133]. Copyright 2021, Oxford Univ Press
[1]
Mufutau Opeyemi B. Energy, 2021, 228: 120519.
[2]
Killer M, Farrokhseresht M, Paterakis N G. Appl. Energy, 2020, 260: 114166.
[3]
Fan X J, Sun W W, Meng F C, Xing A M, Liu J H. Green Energy Environ., 2018, 3(1): 2.
[4]
Tang B Y, Shan L T, Liang S Q, Zhou J. Energy Environ. Sci., 2019, 12(11): 3288.
[5]
Gao Y, Jiang J C, Zhang C P, Zhang W G, Jiang Y. J. Power Sources, 2018, 400: 641.
[6]
Yan H H, Zhang X K, Yang Z W, Xia M T, Xu C W, Liu Y W, Yu H X, Zhang L Y, Shu J. Coord. Chem. Rev., 2022, 452: 214297.
[7]
Shoji T, Hishinuma M, Yamamoto T. J. Appl. Electrochem., 1988, 18(4): 521.
[8]
Zhang L, Wang W F, Zhang H M, Han S M, Wang L M. Acta Chim. Sinica, 2021, 79(2): 159.
( 张璐, 王文凤, 张洪明, 韩树民, 王利民. 化学学报, 2021, 79(2): 159.)
[9]
Khayum M A, Ghosh M, Vijayakumar V, Halder A, Nurhuda M, Kumar S, Addicoat M, Kurungot S, Banerjee R. Chem. Sci., 2019, 10(38): 8889.
[10]
Geng Y F, Pan L, Peng Z Y, Sun Z F, Lin H C, Mao C W, Wang L, Dai L, Liu H D, Pan K M, Wu X W, Zhang Q B, He Z X. Energy Storage Mater., 2022, 51: 733.
[11]
Zhou T, Zhu L M, Xie L L, Han Q, Yang X L, Chen L, Wang G K, Cao X Y. J. Colloid Interface Sci., 2022, 605: 828.
[12]
Tang X, Zhou D, Zhang B, Wang S J, Li P, Liu H, Guo X, Jaumaux P, Gao X C, Fu Y Z, Wang C Y, Wang C S, Wang G X. Nat. Commun., 2021, 12: 2857.
[13]
Liu Y, Zhi J, Hoang T K A, Zhou M, Han M, Wu Y, Shi Q Y, Xing R, Chen P. ACS Appl. Energy Mater., 2022, 5(4): 4840.
[14]
Blanc L E, Kundu D P, Nazar L F. Joule, 2020, 4(4): 771.
[15]
Nam K W, Park S S, dos Reis R, Dravid V P, Kim H, Mirkin C A, Stoddart J F. Nat. Commun., 2019, 10: 4948.
[16]
Liu Y B, Zou Y N, Guo M Y, Hui Z X, Zhao L J. Chem. Eng. J., 2022, 433: 133528.
[17]
Li Y, Wang Z H, Cai Y, Pam M E, Yang Y K, Zhang D H, Wang Y, Huang S Z. Energy Environmental Mater., 2022, 5(3): 823.
[18]
Du M, Miao Z Y, Li H Z, Sang Y H, Liu H, Wang S H. J. Mater. Chem. A, 2021, 9(35): 19245.
[19]
Guo D L, Wei X G, Chang Z R, Tang H W, Li B, Shangguan E B, Chang K, Yuan X Z, Wang H J. J. Alloys Compd., 2015, 632: 222.
[20]
Zhou S H, Wu X W, Xiang Y H, Zhu L, Liu Z X, Zhao C X. Prog. Chem., 2021, 33(4): 652.
( 周世昊, 吴贤文, 向延鸿, 朱岭, 刘志雄, 赵才贤. 化学进展, 2021, 33(4): 652.)
[21]
Li H Y, Yao H, Sun X Y, Sheng C C, Zhao W, Wu J H, Chu S Y, Liu Z G, Guo S H, Zhou H S. Chem. Eng. J., 2022, 446: 137205.
[22]
Yuan Y F, Sharpe R, He K, Li C H, Saray M T, Liu T C, Yao W T, Cheng M, Jin H L, Wang S, Amine K, Shahbazian-Yassar R, Islam M S, Lu J. Nat. Sustain., 2022, 5(10): 890.
[23]
Yuan L B, Hao J N, Kao C C, Wu C, Liu H K, Dou S X, Qiao S Z. Energy Environ. Sci., 2021, 14(11): 5669.
[24]
Pan H L, Shao Y Y, Yan P F, Cheng Y W, Han K S, Nie Z M, Wang C M, Yang J H, Li X L, Bhattacharya P, Mueller K T, Liu J. Nat. Energy, 2016, 1(5): 16039.
[25]
Soundharrajan V, Sambandam B, Kim S, Islam S, Jo J, Kim S, Mathew V, Sun Y K, Kim J. Energy Storage Mater., 2020, 28: 407.
[26]
Chen M J, Li X Q, Yan Y J, Yang Y T, Xu Q J, Liu H M, Xia Y Y. ACS Appl. Mater. Interfaces, 2022, 14(1): 1092.
[27]
Ding S X, Zhang M Z, Qin R Z, Fang J J, Ren H Y, Yi H C, Liu L L, Zhao W G, Li Y, Yao L, Li S N, Zhao Q H, Pan F. Nano-micro Lett., 2021, 13(1): 173.
[28]
Huang A X, Zhou W J, Wang A R, Chen M F, Chen J Z, Tian Q H, Xu J L. Appl. Surf. Sci., 2021, 545: 149041.
[29]
Zhang Y Y, Lin X R, Tang X W, Hu K L, Lin X, Xie G Q, Liu X J, Qiu H J. ACS Appl. Nano Mater., 2022, 5(9): 12729.
[30]
Wang B, Zeng Y, Chen P, Hu J, Gao P, Xu J T, Guo K K, Liu J L. ACS Appl. Mater. Interfaces, 2022, 14(31): 36079.
[31]
Agnihotri N, Sen P T, De A, Mukherjee M. Mater. Res. Bull., 2017, 88: 218.
[32]
Xiao C L, Usiskin R, Maier J. Adv. Funct. Mater., 2021, 31(25): 2100938.
[33]
Guo S, Liang S Q, Zhang B S, Fang G Z, Ma D, Zhou J. ACS Nano, 2019, 13(11): 13456.
[34]
Dong H B, Liu R R, Hu X Y, Zhao F J, Kang L Q, Liu L X, Li J W, Tan Y S, Zhou Y Q, Brett D J L, He G J, Parkin I P. Adv. Sci., 2023, 10(5): 2205084.
[35]
Dai H H, Zhou R C, Zhang Z, Zhou J Y, Sun G Z. Energy Mater., 2022, 2(6): 200040.
[36]
Fang G Z, Zhu C Y, Chen M H, Zhou J, Tang B Y, Cao X X, Zheng X S, Pan A Q, Liang S Q. Adv. Funct. Mater., 2019, 29(15): 1808375.
[37]
Pu X H, Li X F, Wang L Z, Maleki Kheimeh Sari H, Li J P, Xi Y K, Shan H, Wang J J, Li W B, Liu X J, Wang S, Zhang J H, Wu Y B. ACS Appl. Mater. Interfaces, 2022, 14(18): 21159.
[38]
Qiu W D, Xiao H B, Feng H J, Lin Z C, Gao H, He W T, Lu X H. Chem. Eng. J., 2021, 422: 129890.
[39]
Wang L, Zheng J. Mater. Today Adv., 2020, 7: 100078.
[40]
Yan M Y, He P, Chen Y, Wang S Y, Wei Q L, Zhao K N, Xu X, An Q Y, Shuang Y, Shao Y Y, Mueller K T, Mai L Q, Liu J, Yang J H. Adv. Mater., 2018, 30(1): 1703725.
[41]
Yao Z, Wu Q, Chen K, Liu J, Li C. Energy Environ. Sci., 2020, 13: 3154.
[42]
Zhang D D, Cao J, Zhang X Y, Insin N, Wang S M, Han J T, Zhao Y S, Qin J Q, Huang Y H. Adv. Funct. Mater., 2021, 31(14): 2009412.
[43]
Zhang N, Dong Y, Jia M, Bian X, Wang Y Y, Qiu M D, Xu J Z, Liu Y C, Jiao L F, Cheng F Y. ACS Energy Lett., 2018, 3(6): 1366.
[44]
Heng Y L, Gu Z Y, Guo J Z, Wu X L. Acta Phys. Chim. Sin., 2021, 37(3): 11.
( 衡永丽, 谷振一, 郭晋芝, 吴兴隆. 物理化学学报, 2021, 37(3): 11 )
[45]
Ding Y, Zhang L L, Wang X, Han L N, Zhang W K, Guo C L. Chin. Chem. Lett., 2023, 34(2): 107399.
[46]
Kundu D P, Adams B D, Duffort V, Vajargah S H, Nazar L F. Nat. Energy, 2016, 1(10): 16119.
[47]
Dong Y F, Li S, Zhao K N, Han C H, Chen W, Wang B L, Wang L, Xu B A, Wei Q L, Zhang L, Xu X, Mai L Q. Energy Environ. Sci., 2015, 8(4): 1267.
[48]
Wan F, Zhang L L, Dai X, Wang X Y, Niu Z Q, Chen J. Nat. Commun., 2018, 9: 1656.
[49]
Liu S C, He J F, Liu D S, Ye M H, Zhang Y F, Qin Y L, Li C C. Energy Storage Mater., 2022, 49: 93.
[50]
Wang X, Xi B J, Ma X J, Feng Z Y, Jia Y X, Feng J K, Qian Y T, Xiong S L. Nano Lett., 2020, 20(4): 2899.
[51]
Yu H M, David Whittle J, Losic D, Ma J. Appl. Phys. Rev., 2022, 9(1): 011416.
[52]
Xing Z Y, Xu G F, Xie X S, Chen M J, Lu B G, Zhou J, Liang S Q. Nano Energy, 2021, 90: 106621.
[53]
Guo J, Ming J, Lei Y J, Zhang W L, Xia C, Cui Y, Alshareef H N. ACS Energy Lett., 2019, 4(12): 2776.
[54]
Zhang L S, Zhang B, Hu J S, Liu J, Miao L, Jiang J J. Small Methods, 2021, 5(6): 2100094.
[55]
Xu D M, Wang H W, Li F Y, Guan Z C, Wang R, He B B, Gong Y S, Hu X L. Adv. Mater. Interfaces, 2019, 6(2): 1801506.
[56]
Fang G Z, Zhou J, Pan A Q, Liang S Q. ACS Energy Lett., 2018, 3(10): 2480.
[57]
Wang X, Zhang Z, Huang M, Feng J K, Xiong S L, Xi B J. Nano Lett., 2022, 22(1): 119.
[58]
Li S Y, Yu D X, Liu L N, Yao S Y, Wang X Q, Jin X, Zhang D, Du F. Chem. Eng. J., 2022, 430: 132673.
[59]
Guo S, Qin L P, Zhang T S, Zhou M, Zhou J, Fang G Z, Liang S Q. Energy Storage Mater., 2021, 34: 545.
[60]
Liu W, Guo P, Zhang T Y, Ying X W, Zhou F L, Zhang X Y. J. Phys. Chem. C, 2022, 126(3): 1264.
[61]
Kikuchi T, Aramaki K. Corros. Sci., 2000, 42(5): 817.
[62]
Gao P, Pan Z K, Ru Q, Zhang J, Zheng M H, Zhao X, Ling F C C, Wei L. Energ. Fuel., 2022, 36(6): 3324.
[63]
Wang N, Sun C L, Liao X B, Yuan Y F, Cheng H W, Sun Q C, Wang B L, Pan X L, Zhao K N, Xu Q, Lu X G, Lu J. Adv. Energy Mater., 2020, 10(41): 2002293.
[64]
Zhang Q, Ma Y L, Lu Y, Li L, Wan F, Zhang K, Chen J. Nat. Commun., 2020, 11: 4463.
[65]
Yu X W, Manthiram A. Energy Environ. Sci., 2018, 11(3): 527.
[66]
Liu C F, Neale Z, Zheng J Q, Jia X X, Huang J J, Yan M Y, Tian M, Wang M S, Yang J H, Cao G Z. Energy Environ. Sci., 2019, 12(7): 2273.
[67]
Tang B Y, Zhou J, Fang G Z, Liu F, Zhu C Y, Wang C, Pan A Q, Liang S Q. J. Mater. Chem. A, 2019, 7(3): 940.
[68]
Guo X, Fang G Z, Zhang W Y, Zhou J, Shan L T, Wang L B, Wang C, Lin T Q, Tang Y, Liang S Q. Adv. Energy Mater., 2018, 8(27): 1801819.
[69]
Hu Z Q, Zhang F L, Zhao Y, Wang H R, Huang Y X, Wu F, Chen R J, Li L. Adv. Mater., 2022, 34(37): 2203104.
[70]
Fan W J, Sun Z W, Yuan Y, Yuan X H, You C L, Huang Q H, Ye J L, Fu L J, Kondratiev V, Wu Y P. J. Mater. Chem. A, 2022, 10(14): 7645.
[71]
Qi Y E, Xia Y Y. Acta Phys. Chimica Sin., 2023, 39(2): 8.
( 齐亚娥, 夏永姚. 物理化学学报, 2023, 39(2): 8.)
[72]
Bayaguud A, Fu Y P, Zhu C B. J. Energy Chem., 2022, 64: 246.
[73]
Du D F, Zhao S, Zhu Z, Li F J, Chen J. Angew. Chem., 2020, 132(41): 18297.
[74]
Zhou M, Chen Y, Fang G Z, Liang S Q. Energy Storage Mater., 2022, 45: 618.
[75]
Stoševski I, Bonakdarpour A, Cuadra F, Wilkinson D P. Chem. Commun., 2019, 55(14): 2082.
[76]
Soundharrajan V, Sambandam B, Kim S, Mathew V, Jo J, Kim S, Lee J, Islam S, Kim K, Sun Y K, Kim J. ACS Energy Lett., 2018, 3(8): 1998.
[77]
Yan C Y, Wang Y Y, Deng X Y, Xu Y H. Nano Micro Lett., 2022, 14(1): 98.
[78]
Oberholzer P, Tervoort E, Bouzid A, Pasquarello A, Kundu D P. ACS Appl. Mater. Interfaces, 2019, 11(1): 674.
[79]
Liu S Q, Wang B Y, Zhang X, Zhao S, Zhang Z H, Yu H J. Matter, 2021, 4(5): 1511.
[80]
Anantharaj S. Curr. Opin. Electrochem., 2022, 33: 100961.
[81]
Wang P J, Liang S Q, Chen C, Xie X S, Chen J W, Liu Z H, Tang Y, Lu B G, Zhou J. Adv. Mater., 2022, 34(33): 2202733.
[82]
Chen W, Wang Y H, Liu M, Gao L, Mao L Q, Fan Z Y, Shangguan W F. Appl. Surf. Sci., 2018, 444: 485.
[83]
Dong H Y, Tang P P, Zhang S Q, Xiao X L, Jin C, Gao Y C, Yin Y H, Li B, Yang S T. RSC Adv., 2018, 8(7): 3357.
[84]
Yang J, Shao Q, Huang B L, Sun M Z, Huang X Q. iScience, 2019, 11: 492.
[85]
Wu Z C, Li J J, Zou Z X, Wang X. J. Solid State Electrochem., 2018, 22(6): 1785.
[86]
Zhang M, Wang W J, Liang X H, Li C, Deng W J, Chen H B, Li R. Chin. Chem. Lett., 2021, 32(7): 2218.
[87]
Wang Y R, Yu Q L, Cai M R, Shi L, Zhou F, Liu W M. Tribol. Lett., 2017, 65(2): 55.
[88]
Horwitz G, Steinberg P Y, Corti H R. J. Chem. Thermodyn., 2021, 158: 106457.
[89]
Liang G J, Mo F N, Ji X L, Zhi C Y. Nat. Rev. Mater., 2021, 6(2): 109.
[90]
Liu S L, Lin Z S, Wan R D, Liu Y G, Liu Z, Zhang S D, Zhang X F, Tang Z H, Lu X X, Tian Y. J. Mater. Chem. A, 2021, 9(37): 21259.
[91]
Liu B H, Dou L T, He F, Yang J, Li Z P. RSC Adv., 2016, 6(23): 19028.
[92]
Wu X W, Long F N, Xiang Y H, Jiang J B, Wu J H, Xiong L Z, Zhang Q B. Prog. Chem., 2021, 33(11): 1990.
( 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 化学进展, 2021, 33(11): 1990.)
[93]
Huang X, Domcke W. J. Phys. Chem. A, 2021, 125(45): 9917.
[94]
Nian Q S, Zhang X R, Feng Y Z, Liu S, Sun T J, Zheng S B, Ren X D, Tao Z L, Zhang D H, Chen J. ACS Energy Lett., 2021, 6(6): 2174.
[95]
Qin R Z, Wang Y T, Zhang M Z, Wang Y, Ding S X, Song A Y, Yi H C, Yang L Y, Song Y L, Cui Y H, Liu J, Wang Z Q, Li S N, Zhao Q H, Pan F. Nano Energy, 2021, 80: 105478.
[96]
Oh K I, Baiz C R. J. Phys. Chem. B, 2018, 122(22): 5984.
[97]
Wang D H, Li Q, Zhao Y W, Hong H, Li H F, Huang Z D, Liang G J, Yang Q, Zhi C Y. Adv. Energy Mater., 2022, 12(9): 2102707.
[98]
Ma L T, Li Q, Ying Y R, Ma F X, Chen S M, Li Y Y, Huang H T, Zhi C Y. Adv. Mater., 2021, 33(12): 2007406.
[99]
Ma N Y, Wu P J, Wu Y X, Jiang D H, Lei G T. Funct. Mater. Lett., 2019, 12(5): 1930003.
[100]
Kim Y, Park Y, Kim M, Lee J M, Kim K J, Choi J W. Nat. Commun., 2022, 13: 2371.
[101]
Liu S, Lin H X, Song Q Q, Zhu J, Zhu C B. Energy Environ. Mater., 2022, DOI:10.1002/eem2.12405.
[102]
Höffler F, Müller I, Steiger M. J. Chem. Thermody., 2018, 116: 281.
[103]
Gao Y N, Li Y, Yang H Y, Zheng L M, Bai Y, Wu C. J. Energy Chem., 2022, 67: 613.
[104]
Yen Y J, Chung S H. ACS Appl. Mater. Interfaces, 2021, 13(49): 58715.
[105]
Qian G N, Zan G B, Li J Z, Lee S J, Wang Y, Zhu Y Y, Gul S, Vine D J, Lewis S, Yun W B, Ma Z F, Pianetta P, Lee J S, Li L S, Liu Y J. Adv. Energy Mater., 2022, 12(21): 2270084.
[106]
Yufit V, Tariq F, Eastwood D S, Biton M, Wu B, Lee P D, Brandon N P. Joule, 2019, 3(2): 485.
[107]
Qin R Z, Wang Y T, Yao L, Yang L Y, Zhao Q H, Ding S X, Liu L L, Pan F. Nano Energy, 2022, 98: 107333.
[108]
Li B, Zhang X T, Wang T T, He Z X, Lu B G, Liang S Q, Zhou J. Nano Micro Lett., 2021, 14(1): 6.
[109]
Zhou M, Fu C Y, Qin L P, Ran Q, Guo S, Fang G Z, Lang X Y, Jiang Q, Liang S Q. Energy Storage Mater., 2022, 52: 161.
[110]
Zheng J X, Zhao Q, Tang T, Yin J F, Quilty C D, Renderos G D, Liu X, Deng Y, Wang L, Bock D C, Jaye C, Zhang D H, Takeuchi E S, Takeuchi K J, Marschilok A C, Archer L A. Science, 2019, 366(6465): 645.
[111]
Zheng J X, Huang Z H, Zeng Y, Liu W Q, Wei B B, Qi Z B, Wang Z C, Xia C, Liang H F. Nano Lett., 2022, 22(3): 1017.
[112]
Fang Y, Xie X S, Zhang B Y, Chai Y Z, Lu B G, Liu M K, Zhou J, Liang S Q. Adv. Funct. Mater., 2022, 32(14): 2109671.
[113]
Kang L T, Cui M W, Jiang F Y, Gao Y F, Luo H J, Liu J J, Liang W, Zhi C Y. Adv. Energy Mater., 2018, 8(25): 1801090.
[114]
Zhou J H, Xie M, Wu F, Mei Y, Hao Y T, Huang R L, Wei G L, Liu A N, Li L, Chen R J. Adv. Mater., 2021, 33(33): 2101649.
[115]
Zhu X D, Li X Y, Essandoh M L K, Tan J, Cao Z Y, Zhang X, Dong P, Ajayan P M, Ye M X, Shen J F. Energy Storage Mater., 2022, 50: 243.
[116]
Pu X C, Jiang B Z, Wang X L, Liu W B, Dong L B, Kang F Y, Xu C J. Nano Micro Lett., 2020, 12(1): 152.
[117]
Guo C, Zhou J, Chen Y T, Zhuang H F, Li Q, Li J, Tian X, Zhang Y L, Yao X M, Chen Y F, Li S L, Lan Y Q. Angew. Chem. Int. Ed., 2022, 61(41): e202210871.
[118]
Wang S J, Yang Z, Chen B T, Zhou H, Wan S F, Hu L Z, Qiu M, Qie L, Yu Y. Energy Storage Mater., 2022, 47: 491.
[119]
Guo N, Huo W J, Dong X Y, Sun Z F, Lu Y T, Wu X W, Dai L, Wang L, Lin H C, Liu H D, Liang H F, He Z X, Zhang Q B. Small Methods, 2022, 6(9): 2200597.
[120]
Wang L P, Li N W, Wang T S, Yin Y X, Guo Y G, Wang C R. Electrochim. Acta, 2017, 244: 172.
[121]
Zeng Y X, Zhang X Y, Qin R F, Liu X Q, Fang P P, Zheng D Z, Tong Y X, Lu X H. Adv. Mater., 2019, 31(36): 1903675.
[122]
Zampardi G, La Mantia F. Nat. Commun., 2022, 13: 687.
[123]
Jin Y, Han K S, Shao Y Y, Sushko M L, Xiao J, Pan H L, Liu J. Adv. Funct. Mater., 2020, 30(43): 2003932.
[124]
Li Z G, Deng W J, Li C, Wang W J, Zhou Z Q, Li Y B, Yuan X R, Hu J, Zhang M, Zhu J L, Tang W, Wang X, Li R. J. Mater. Chem. A, 2020, 8(34): 17725.
[125]
Ghavami R K, Rafiei Z. J. Power Sources, 2006, 162(2): 893.
[126]
Sun K E K, Hoang T K A, Doan T N L, Yu Y, Zhu X, Tian Y, Chen P. ACS Appl. Mater. Interfaces, 2017, 9(11): 9681.
[127]
Bayaguud A, Luo X, Fu Y P, Zhu C B. ACS Energy Lett., 2020, 5(9): 3012.
[128]
Wu Z Z, Li M, Tian Y H, Chen H, Zhang S J, Sun C, Li C P, Kiefel M, Lai C, Lin Z, Zhang S Q. Nano Micro Lett., 2022, 14(1): 110.
[129]
Zhang B Y, Qin L P, Fang Y, Chai Y Z, Xie X S, Lu B G, Liang S Q, Zhou J. Sci. Bull., 2022, 67(9): 955.
[130]
Lin P X, Cong J L, Li J Y, Zhang M H, Lai P B, Zeng J, Yang Y, Zhao J B. Energy Storage Mater., 2022, 49: 172.
[131]
Han D L, Cui C J, Zhang K Y, Wang Z X, Gao J C, Guo Y, Zhang Z C, Wu S C, Yin L C, Weng Z, Kang F Y, Yang Q H. Nat. Sustain., 2021, 5(3): 205.
[132]
Meng R W, Li H, Lu Z Y, Zhang C, Wang Z X, Liu Y X, Wang W C, Ling G W, Kang F Y, Yang Q H. Adv. Mater., 2022, 34(37): 8.
[133]
Li C P, Xie X S, Liu H, Wang P J, Deng C B, Lu B G, Zhou J, Liang S Q. Natl. Sci. Rev., 2022, 9(3): 3.
[134]
Chuai M Y, Yang J L, Tan R, Liu Z C, Yuan Y, Xu Y, Sun J F, Wang M M, Zheng X H, Chen N, Chen W. Adv. Mater., 2022, 34(33): 2203249.
[135]
Yuan Y, Yang J L, Liu Z C, Tan R, Chuai M Y, Sun J F, Xu Y, Zheng X H, Wang M M, Ahmad T, Chen N, Zhu Z X, Li K, Chen W. Adv. Energy Mater., 2022, 12(16): 2103705.
[136]
Yuan X H, Wu X W, Zeng X X, Wang F X, Wang J, Zhu Y S, Fu L J, Wu Y P, Duan X F. Adv. Energy Mater., 2020, 10(40): 2001583.
[137]
Yuan X H, Ma F X, Zuo L Q, Wang J, Yu N F, Chen Y H, Zhu Y S, Huang Q H, Holze R, Wu Y P, Ree T. Electrochem. Energy Rev., 2021, 4(1): 1.
[138]
Li M M, Yu J, Xue Y L, Wang K, Wang Q M, Xie Z Y, Wang L, Yang Y, Wu J P, Qiu X Y, Yu H Z. ACS Appl. Mater. Interfaces, 2023, 15(2): 2922.
[139]
Zhu Z X, Jiang T L, Ali M, Meng Y H, Jin Y, Cui Y, Chen W. Chem. Rev., 2022, 122(22): 16610.
[140]
Zheng X H, Liu Z C, Sun J F, Luo R H, Xu K, Si M Y, Kang J, Yuan Y, Liu S, Ahmad T, Jiang T L, Chen N, Wang M M, Xu Y, Chuai M Y, Zhu Z X, Peng Q, Meng Y H, Zhang K, Wang W P, Chen W. Nat. Commun., 2023, 14: 76.
[141]
Wang M M, Ma J L, Meng Y H, Sun J F, Yuan Y, Chuai M Y, Chen N, Xu Y, Zheng X H, Li Z Y, Chen W. Angew. Chem. Int. Ed., 2023, 62(3): e202214966.
[142]
Xiao D J, Lv X M, Fan J H, Li Q, Chen Z W. Energy Materials, 2023, 3(1): 300007.
[1] Bingyi Ma, Sheng Huang, Shuanjin Wang, Min Xiao, Dongmei Han, Yuezhong Meng. Composite Polymer Electrolytes with Multi-Dimensional Non-Lithium Inorganic Hybird Components for Lithium Batteries [J]. Progress in Chemistry, 2023, 35(9): 1327-1340.
[2] Dongrong Yang, Da Zhang, Kun Ren, Fupeng Li, Peng Dong, Jiaqing Zhang, Bin Yang, Feng Liang. All Solid-State Sodium Batteries and Its Interface Modification [J]. Progress in Chemistry, 2023, 35(8): 1177-1190.
[3] Qimeng Ren, Qinglei Wang, Yinwen Li, Xuesheng Song, Xuehui Shangguan, Faqiang Li. High Voltage Electrolytes for Lithium Batteries [J]. Progress in Chemistry, 2023, 35(7): 1077-1096.
[4] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[5] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[6] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[7] Zhao Lanqing, Hou Minjie, Zhang Da, Zhou Yingjie, Xie Zhipeng, Liang Feng. Poly(Ethylene Oxide)-Based Solid Polymer Electrolytes for Solid-State Sodium Ion Batteries [J]. Progress in Chemistry, 2023, 35(11): 1625-1637.
[8] Guangxiang Zhang, Chi Ma, Chuankai Fu, Ziwei Liu, Hua Huo, Yulin Ma. Advances and Challenges of Low-Temperature Electrolyte for Sodium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(10): 1534-1543.
[9] Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu. Recent Advances of the Electrode Materials for Sodium-Ion Capacitors [J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
[10] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[11] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[12] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[13] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[14] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[15] Huan Song, Qi Zou, Keding Lu. Parameterization and Application of Hydroperoxyl Radicals(HO2) Heterogeneous Uptake Coefficient [J]. Progress in Chemistry, 2021, 33(7): 1175-1187.
Viewed
Full text


Abstract

Aqueous Zinc-ion Batteries