中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (2): 263-373 DOI: 10.7536/PC220720 Previous Articles   Next Articles

• Review •

Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites

Zixuan Liao1,2, Yuhui Wang1(), Jianping Zheng1()   

  1. 1 Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences,Ningbo 315201, China
    2 Wenzhou Medical University,Wenzhou 325035, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: wangyuhui@nimte.ac.cn (Yuhui Wang); zhengjianping@nimte.ac.cn (Jianping Zheng)
  • Supported by:
    Zhejiang Provincial National Natural Science Foundation of China(LY20B050003); Ningbo 3315 Innovation Teams Program(2019A-14-C)
Richhtml ( 47 ) PDF ( 644 ) Cited
Export

EndNote

Ris

BibTeX

Due to the unique merits of long luminescence lifetime and environmental sensitivity, room temperature phosphorescence (RTP) has demonstrated great potential in many fields, e.g., chemo/biosensing, bioimaging, biomedicine, and advanced optical anti-counterfeiting and encryption. In recent years, non-metal doped solid state room temperature phosphorescent (RTP) carbon-dots (CDs) have attracted broad attention because of their facile preparation, chemical inertness, low toxicity, easy surface modification, and so on. However, in an aqueous environment, their RTP emissions suffer from serious triplet quenching that induced by dissolved oxygen and water molecule. How to stabilize the triplet state in aqueous phase is the key to establish their RTP emission, and thus it is necessary to look back the state-of-the-art knowledge of CDs-based water-soluble RTP materials. In this review, in light of the recent advance, we summarize and discuss their synthesis strategies (e.g., inorganic salt melting, SiO2 coating, polymer combination, and hydrogen bond network stabilization), and relevant applications in sensing, imaging and anti-counterfeiting, and finally propose the challenging and future prospects. To the best of our knowledge, this is the first review on the synthesis and applications of hydrophilic RTP materials based on CDs. We hope that this review will provide inspiration for the further fabrication and versatile biological uses of CDs-based RTP materials.

Contents

1 Introduction

2 Synthetic strategies

2.1 Inorganic salt melting method

2.2 SiO2 coating

2.3 Polymer-based hydrogen stabilization

2.4 Rigid hydrogen bond network stabilization

3 Applications

3.1 Anti-counterfeiting and information encryption

3.2 Detections of metal ions and small molecules

3.3 Biological detection and imaging

3.4 Other applications

4 Conclusion and outlook

Fig.1 Schematic illustration of fluorescence (FL), phosphorescence (PL) and delayed fluorescence (DF)
Fig.2 Development timeline of CDs-based RTP materials in aqueous phase[31,45???~49]
Fig.3 (a) The schematic illustration of the molten salt method for the in situ synthesis of CDs@MP nanocomposites; (b) RTP digital photographs of CDs@MP (power and aqueous solution) under ultraviolet light[49]
Fig.4 (a) Schematic diagram of the formation of CDs-RhB@SiO2 via a TEOS hydrolysis-based coating[31]; (b) schematic illustration of the preparation of CDs@SiO2 using surface covalent fixation and the RTP photographs in aqueous solution under the UV excitation[54]
Fig.5 (a) Schematic illustration of the fabrication and RTP emission mechanism of the CDs/PVA film[65]; (b) the construction and structure schematic illustration of the CDs-CA hydrogen bond network[66]; (c) the fabrication and hydrogen bond structure schematic illustration of the CDs-melamine nano-hybrids[48]
Fig.6 The applications of CDs-based water-soluble RTP materials. (a) Information encryption and decryption via the m-CDs@nSiO2 composites[47]; (b) Schematic illustration of the CDs-PVA RTP thin film for Fe3+ sensing[65]; (c) Fluorescence and time resolution imaging via the CDs@SiO2 aqueous RTP nanocomposites[54]; (d) Photodynamic antibacterial application using the nitrogen-doped phosphorescent carbon-dots[87]
[1]
O'Haver T C. J. Chem. Educ., 1978, 55(7): 423.

doi: 10.1021/ed055p423
[2]
Lewis G N, Kasha M. J. Am. Chem. Soc., 1944, 66(12): 2100.

doi: 10.1021/ja01240a030
[3]
Lewis G N, Lipkin D, Magel T T. J. Am. Chem. Soc., 1941, 63(11): 3005.

doi: 10.1021/ja01856a043
[4]
Kuijt J, Ariese F, Brinkman U A T, Gooijer C. Anal. Chimica Acta, 2003, 488(2): 135.

doi: 10.1016/S0003-2670(03)00675-5
[5]
Roth M. J. Chromatogr. A, 1967, 30: 276.

doi: 10.1016/S0021-9673(00)84159-X
[6]
Abdukayum A, Chen J T, Zhao Q, Yan X P. J. Am. Chem. Soc., 2013, 135(38): 14125.

doi: 10.1021/ja404243v
[7]
Xu H, Chen R F, Sun Q, Lai W Y, Su Q Q, Huang W, Liu X G. Chem. Soc. Rev., 2014, 43(10): 3259.

doi: 10.1039/C3CS60449G
[8]
Li Z J, Zhang Y W, Wu X, Huang L, Li D S, Fan W, Han G. J. Am. Chem. Soc., 2015, 137(16): 5304.

doi: 10.1021/jacs.5b00872
[9]
Bolton O, Lee K, Kim H J, Lin K Y, Kim J. Nat. Chem., 2011, 3(3): 205.

doi: 10.1038/nchem.984 pmid: 21336325
[10]
Kwon M S, Lee D, Seo S, Jung J, Kim J. Angew. Chem., 2014, 126(42): 11359.

doi: 10.1002/ange.201404490
[11]
Bolton O, Lee K, Kim H J, Lin K Y, Kim J. Nat. Chem., 2011, 3(3): 205.

doi: 10.1038/nchem.984 pmid: 21336325
[12]
Yuan W Z, Shen X Y, Zhao H, Lam J W Y, Tang L, Lu P, Wang C L, Liu Y, Wang Z M, Zheng Q, Sun J Z, Ma Y G, Tang B Z. J. Phys. Chem. C, 2010, 114(13): 6090.

doi: 10.1021/jp909388y
[13]
Hirata S. Adv. Opt. Mater., 2017, 5(17): 1700116.

doi: 10.1002/adom.201700116
[14]
Lower S K, El-Sayed M A. Chem. Rev., 1966, 66(2): 199.

doi: 10.1021/cr60240a004
[15]
Modern Molecular Photochemistry. Eds.: Turro N. J, University science books, 1991.
[16]
Zhang G Q, Palmer G M, Dewhirst M W, Fraser C L. Nat. Mater., 2009, 8(9): 747.

doi: 10.1038/nmat2509
[17]
Deng Y C, Li P, Jiang H Y, Ji X, Li H R. J. Mater. Chem. C, 2019, 7(43): 13640.

doi: 10.1039/C9TC04863D
[18]
Han Z C, Li P, Deng Y C, Li H R. Chem. Eng. J., 2021, 415: 128999.

doi: 10.1016/j.cej.2021.128999
[19]
Jiang K, Hu S Z, Wang Y C, Li Z J, Lin H W. Small, 2020, 16(31): 2001909.

doi: 10.1002/smll.v16.31
[20]
Sun Y Q, Liu S T, Sun L Y, Wu S S, Hu G Q, Pang X L, Smith A T, Hu C F, Zeng S S, Wang W X, Liu Y L, Zheng M T. Nat. Commun., 2020, 11: 5591.

doi: 10.1038/s41467-020-19422-4
[21]
Tan J, Li Q J, Meng S, Li Y C, Yang J, Ye Y X, Tang Z K, Qu S N, Ren X D. Adv. Mater., 2021, 33(16): 2006781.

doi: 10.1002/adma.v33.16
[22]
Zhou Z J, Ushakova E V, Liu E S, Bao X, Li D, Zhou D, Tan Z N, Qu S N, Rogach A L. Nanoscale, 2020, 12(20): 10987.

doi: 10.1039/D0NR02639E
[23]
Bao X, Ushakova E V, Liu E S, Zhou Z J, Li D, Zhou D, Qu S N, Rogach A L. Nanoscale, 2019, 11(30): 14250.

doi: 10.1039/C9NR05123F
[24]
Zhao B, Tan Z A. Adv. Sci., 2021, 8(7): 2001977.

doi: 10.1002/advs.v8.7
[25]
Zhu S J, Song Y B, Wang J, Wan H, Zhang Y, Ning Y, Yang B. Nano Today, 2017, 13: 10.

doi: 10.1016/j.nantod.2016.12.006
[26]
Zhu S J, Song Y B, Zhao X H, Shao J R, Zhang J H, Yang B. Nano Res., 2015, 8(2): 355.

doi: 10.1007/s12274-014-0644-3
[27]
Zhu S J, Song Y B, Shao J R, Zhao X H, Yang B. Angew. Chem. Int. Ed., 2015, 54(49): 14626.

doi: 10.1002/anie.v54.49
[28]
Jiang K, Gao X L, Feng X Y, Wang Y H, Li Z J, Lin H W. Angew. Chem. Int. Ed., 2020, 59: 1263.

doi: 10.1002/anie.201911342 pmid: 31715082
[29]
Jiang K, Wang Y C, Lin C J, Zheng L C, Du J R, Zhuang Y X, Xie R J, Li Z J, Lin H W. Light. Sci. Appl., 2022, 11: 80.

doi: 10.1038/s41377-022-00767-y
[30]
Mo L Q, Liu H, Liu Z M, Xu X K, Lei B F, Zhuang J L, Liu Y L, Hu C F. Adv. Opt. Mater., 2022, 10(10): 2102666.

doi: 10.1002/adom.v10.10
[31]
Liang Y C, Cao Q, Liu K K, Peng X Y, Sui L Z, Wang S P, Song S Y, Wu X Y, Zhao W B, Deng Y, Lou Q, Dong L, Shan C X. ACS Nano, 2021, 15(10): 16242.

doi: 10.1021/acsnano.1c05234
[32]
Dong X W, Wei L M, Su Y J, Li Z L, Geng H J, Yang C, Zhang Y F. J. Mater. Chem. C, 2015, 3(12): 2798.

doi: 10.1039/C5TC00126A
[33]
Li Q J, Zhou M, Yang Q F, Wu Q, Shi J, Gong A H, Yang M Y. Chem. Mater., 2016, 28(22): 8221.

doi: 10.1021/acs.chemmater.6b03049
[34]
Liu H Z, Wang F, Wang Y P, Mei J J, Zhao D X. ACS Appl. Mater. Interfaces, 2017, 9(21): 18248.

doi: 10.1021/acsami.7b01067
[35]
Liu J C, Wang N, Yu Y, Yan Y, Zhang H Y, Li J Y, Yu J H. Sci. Adv., 2017, 3(5): 1603171.
[36]
Jiang K, Wang Y H, Cai C Z, Lin H W. Adv. Mater., 2018, 30(26): 1800783.

doi: 10.1002/adma.v30.26
[37]
Tao S Y, Lu S Y, Geng Y J, Zhu S J, Redfern S A T, Song Y B, Feng tanglue, Xu W Q, Yang B. Angew. Chem. Int. Ed., 2018, 57(9): 2393.

doi: 10.1002/anie.201712662
[38]
Long P, Feng Y Y, Cao C, Li Y, Han J K, Li S W, Peng C, Li Z Y, Feng W. Adv. Funct. Mater., 2018, 28(37): 1870263.

doi: 10.1002/adfm.v28.37
[39]
Wang F, Xie Z, Zhang H, Liu C Y, Zhang Y G. Adv. Funct. Mater., 2011, 21(6): 1027.

doi: 10.1002/adfm.201002279
[40]
Zhu R H, Jing W, Zhu J. Principle and application of room temperature phosphorescence analysis. Beijing: Science Press, 1991, 1.
(朱若华, 金伟军. 室温磷光分析法原理与应用. 北京: 科学出版社, 1991, 1.).
[41]
Ma Q Q, Wang J, Li Z H, Lv X B, Liang L, Yuan Q. Small, 2019, 15(32): 1804969.

doi: 10.1002/smll.v15.32
[42]
Sun S K, Wang H F, Yan X P. Acc. Chem. Res., 2018, 51(5): 1131.

doi: 10.1021/acs.accounts.7b00619
[43]
Wang Y S, Gao H Q, Yang J, Fang M M, Ding D, Tang B Z, Li Z. Adv. Mater., 2021, 33(18): 2007811.

doi: 10.1002/adma.v33.18
[44]
Yang J H, Zhang Y H, Wu X H, Dai W B, Chen D, Shi J B, Tong B, Peng Q, Xie H Y, Cai Z X, Dong Y P, Zhang X. Nat. Commun., 2021, 12: 4883.

doi: 10.1038/s41467-021-25174-6
[45]
Deng Y H, Zhao D X, Chen X, Wang F, Song H, Shen D Z. Chem. Commun., 2013, 49(51): 5751.

doi: 10.1039/c3cc42600a
[46]
Wang W, Li Y M, Cheng L, Cao Z Q, Liu W G. J. Mater. Chem. B, 2014, 2(1): 46.

doi: 10.1039/c3tb21370f pmid: 32261297
[47]
Jiang K, Wang Y H, Cai C Z, Lin H W. Chem. Mater., 2017, 29(11): 4866.

doi: 10.1021/acs.chemmater.7b00831
[48]
Gao Y F, Zhang H L, Jiao Y, Lu W J, Liu Y, Han H, Gong X J, Shuang S M, Dong C. Chem. Mater., 2019, 31(19): 7979.

doi: 10.1021/acs.chemmater.9b02176
[49]
Wang C, Chen Y Y, Xu Y L, Ran G X, He Y M, Song Q J. ACS Appl. Mater. Interfaces, 2020, 12(9): 10791.

doi: 10.1021/acsami.9b20500
[50]
Wang J, Sun X B, Pan W, Wang J P. Microchem. J., 2022, 178: 107408.

doi: 10.1016/j.microc.2022.107408
[51]
Feng tanglue, Zhu S J, Zeng Q S, Lu S Y, Tao S Y, Liu J J, Yang B. ACS Appl. Mater. Interfaces, 2018, 10(15): 12262.

doi: 10.1021/acsami.7b14857
[52]
Li Q J, Zhou M, Yang M Y, Yang Q F, Zhang Z X, Shi J. Nat. Commun., 2018, 9: 734.

doi: 10.1038/s41467-018-03144-9
[53]
Wang C, Chen Y Y, Hu T T, Chang Y, Ran G X, Wang M, Song Q J. Nanoscale, 2019, 11(24): 11967.

doi: 10.1039/c9nr03038g pmid: 31188373
[54]
Li W, Wu S S, Xu X K, Zhuang J L, Zhang H R, Zhang X J, Hu C F, Lei B F, Kaminski C F, Liu Y L. Chem. Mater., 2019, 31(23): 9887.

doi: 10.1021/acs.chemmater.9b04120
[55]
Jia J, Lu W J, Gao Y F, Li L, Dong C, Shuang S M. Talanta, 2021, 231: 122350.

doi: 10.1016/j.talanta.2021.122350
[56]
Stöber W, Fink A, Bohn E. J. Colloid Interface Sci., 1968, 26(1): 62.

doi: 10.1016/0021-9797(68)90272-5
[57]
Arriagada F J, Osseo-Asare K. J. Colloid Interface Sci., 1999, 211(2): 210.

doi: 10.1006/jcis.1998.5985
[58]
Li C Y, Duan T, Yang Y S. Mater. Rev., 2009, 23(S1): 151.
(李朝毅, 段涛, 杨玉山. 材料导报, 2009, 23(S1): 151.).
[59]
Ma Y, Chen H S, Zhang W L, Wang J L. Chemistry, 2013, 76(4): 364.
(马勇, 陈宏书, 张五龙, 王结良. 化学通报, 2013, 76(4): 364.).
[60]
Wang F Y, Peng Q Q, Hu J, Hu X, Peng H Q, Li L, Xiao D, Zheng B Z, Du J. New J. Chem., 2019, 43(31): 12410.

doi: 10.1039/C9NJ02151E
[61]
Zhou T Y, Wang Q, Li H, Wang Y. J. Mol. Sci., 2021(6): 501.
(周天越, 王权, 李皓, 王耀. 分子科学学报, 2021, 37(06): 501.).
[62]
Hao C X, Bai Y F, Chen Z Z, Geng F S, Qin J, Zhou T, Feng F. Dyes Pigments, 2022, 197: 109890.

doi: 10.1016/j.dyepig.2021.109890
[63]
Hao C X, Bai Y F, Zhao L, Bao Y Y, Bian J N, Xu H, Zhou T, Feng F. Dyes Pigments, 2022, 198: 109955.

doi: 10.1016/j.dyepig.2021.109955
[64]
Jiang K, Zhang L, Lu J F, Xu C X, Cai C Z, Lin H W. Angew. Chem. Int. Ed., 2016, 55(25): 7231.

doi: 10.1002/anie.201602445 pmid: 27135645
[65]
Wu X Y, Ma C H, Liu J C, Liu Y S, Luo S, Xu M C, Wu P, Li W, Liu S X. ACS Sustainable Chem. Eng., 2019, 7(23): 18801.

doi: 10.1021/acssuschemeng.9b03281
[66]
Li Q J, Zhou M, Yang M Y, Yang Q F, Zhang Z X, Shi J. Nat. Commun., 2018, 9: 734.

doi: 10.1038/s41467-018-03144-9
[67]
Zheng Y, Zhou Q, Yang Y, Chen X H, Wang C, Zheng X, Gao L, Yang C L. Small, 2022, 18(19): 2201223.

doi: 10.1002/smll.v18.19
[68]
Sánchez-Barragán I, Costa-Fernández J M, Sanz-Medel A, Valledor M, Campo J C. Trac Trends Anal. Chem., 2006, 25(10): 958.

doi: 10.1016/j.trac.2006.07.009
[69]
Kuijt J, Ariese F, Brinkman U A T, Gooijer C. Anal. Chim. Acta, 2003, 488(2): 135.

doi: 10.1016/S0003-2670(03)00675-5
[70]
Wang H F, He Y, Ji T R, Yan X P. Anal. Chem., 2009, 81(4): 1615.

doi: 10.1021/ac802375a pmid: 19170523
[71]
He Y, Wang H F, Yan X P. Anal. Chem., 2008, 80(10): 3832.

doi: 10.1021/ac800100y
[72]
Tan L, Kang C C, Xu S Y, Tang Y W. Biosens. Bioelectron., 2013, 48: 216.

doi: 10.1016/j.bios.2013.04.024
[73]
Lu C S, Su Q, Yang X M. Nanoscale, 2019, 11(34): 16036.

doi: 10.1039/C9NR03989A
[74]
Fu M, Feng Z Y, Wang J, Zhu Y, Gan L L, Yang X M. Appl. Surf. Sci., 2022, 571: 151298.

doi: 10.1016/j.apsusc.2021.151298
[75]
Feng Z Y, Wang J C, Chen X, Liu J, Zhu Y, Yang X M. Colloids Surf. B Biointerfaces, 2022, 210: 112236.

doi: 10.1016/j.colsurfb.2021.112236
[76]
Su Q, Gan L L, Zhu Y, Yang X M. Sens. Actuat. B Chem., 2021, 335: 129715.

doi: 10.1016/j.snb.2021.129715
[77]
Baker S N, Baker G A. Angew. Chem., Int. Ed., 2010, 49: 6726.

doi: 10.1002/anie.200906623
[78]
Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126(40): 12736.

doi: 10.1021/ja040082h
[79]
Li H T, Kang Z H, Liu Y, Lee S T. J. Mater. Chem., 2012, 22(46): 24230.

doi: 10.1039/c2jm34690g
[80]
Cao L, Wang X, Meziani M J, Lu F S, Wang H F, Luo P G, Lin Y, Harruff B A, Veca L M, Murray D, Xie S Y, Sun Y P. J. Am. Chem. Soc., 2007, 129(37): 11318.

pmid: 17722926
[81]
Zhai X Y, Zhang P, Liu C J, Bai T, Li W C, Dai L M, Liu W G. Chem. Commun., 2012, 48(64): 7955.

doi: 10.1039/c2cc33869f
[82]
Tao H Q, Yang K, Ma Z, Wan J M, Zhang Y J, Kang Z H, Liu Z. Small, 2012, 8(2): 281.

doi: 10.1002/smll.201101706
[83]
Yang S T, Cao L, Luo P G, Lu F S, Wang X, Wang H F, Meziani M J, Liu Y F, Qi G, Sun Y P. J. Am. Chem. Soc., 2009, 131(32): 11308.

doi: 10.1021/ja904843x
[84]
Wang Q L, Huang X X, Long Y J, Wang X L, Zhang H J, Zhu R, Liang L P, Teng P, Zheng H Z. Carbon, 2013, 59: 192.

doi: 10.1016/j.carbon.2013.03.009
[85]
Liu C J, Zhang P, Zhai X Y, Tian F, Li W C, Yang J H, Liu Y, Wang H B, Wang W, Liu W G. Biomaterials, 2012, 33(13): 3604.

doi: 10.1016/j.biomaterials.2012.01.052
[86]
Liang Y C, Gou S S, Liu K K, Wu W J, Guo C Z, Lu S Y, Zang J H, Wu X Y, Lou Q, Dong L, Gao Y F, Shan C X. Nano Today, 2020, 34: 100900.

doi: 10.1016/j.nantod.2020.100900
[87]
Zhang J Y, Lu X M, Tang D D, Wu S H, Hou X D, Liu J W, Wu P. ACS Appl. Mater. Interfaces, 2018, 10(47): 40808.

doi: 10.1021/acsami.8b15318
[88]
Miao W F, Zou W S, Zhao Q C, Wang Y Q, Chen X, Wu S B, Liu Z M, Xu T W. J. Membr. Sci., 2021, 639: 119754.

doi: 10.1016/j.memsci.2021.119754
[89]
Jiang K, Sun S, Zhang L, Lu Y, Wu A G, Cai C Z, Lin H W. Angew. Chem. Int. Ed., 2015, 54(18): 5360.

doi: 10.1002/anie.201501193 pmid: 25832292
[90]
Kang C Y, Tao S Y, Yang F, Yang B. Aggregate, 2022, 3(2): e169.
[91]
Wu T Y, Huang J B, Yan Y. Cell Rep. Phys. Sci., 2022, 3(2): 100771.
[92]
Wang J F, Li A S, Li Z. Prog. Chem., 2022(3): 487.
(王金凤, 李爱森, 李振. 化学进展, 2022(3): 487.).
[93]
Song S Y, Liu K K, Cao Q, Mao X, Zhao W B, Wang Y, Liang Y C, Zang J H, Lou Q, Dong L, Shan C X. Light. Sci. Appl., 2022, 11: 146.

doi: 10.1038/s41377-022-00837-1
[94]
Yang X, Ai L, Yu J K, Waterhouse G I N, Sui L Z, Ding J, Zhang B W, Yong X, Lu S Y. Sci. Bull., 2022, 67(14): 1450.

doi: 10.1016/j.scib.2022.06.013 pmid: 36546188
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[7] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[8] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[9] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[10] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[11] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[12] Jinfeng Wang, Aisen Li, Zhen Li. The Progress of Room Temperature Phosphorescent Gel [J]. Progress in Chemistry, 2022, 34(3): 487-498.
[13] Hao Tian, Zimu Li, Changzheng Wang, Ping Xu, Shoufang Xu. Construction and Application of Molecularly Imprinted Fluorescence Sensor [J]. Progress in Chemistry, 2022, 34(3): 593-608.
[14] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[15] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.