中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (7): 1590-1599 DOI: 10.7536/PC220323 Previous Articles   Next Articles

• Review •

Artificial Photosynthesis

Deshan Zhang1,2, Chenho Tung1,2, Lizhu Wu1,2()   

  1. 1. Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences,Beijing 100190, China
    2. School of Future Technology, University of Chinese Academy of Sciences,Beijing 100049, China
  • Received: Revised: Online: Published:
  • Contact: Lizhu Wu
  • Supported by:
    National Natural Science Foundation of China(22088102); Ministry of Science and Technology of China(2017YFA0206903); Strategic Priority Research Program of the Chinese Academy of Science(XDB17000000); Key Research Program of Frontier Sciences of the Chinese Academy of Science(QYZDY-SSW-JSC029)
Richhtml ( 77 ) PDF ( 937 ) Cited
Export

EndNote

Ris

BibTeX

Photosynthesis in nature stores solar energy in chemical bonds through a green and efficient way. Mimicking the structure and function of the active center of natural photosynthesis, inert chemical bonds of small molecules (H2O, CO2 and N2 etc.) can be activated and converted for energy conversion. Herein, we summarize the important progress of artificial photosynthesis in water splitting into oxygen and hydrogen, carbon dioxide and nitrogen reduction. Meanwhile, we analyze the design ideas and working principles of related photochemical conversion systems, and discuss the challenges and future development of artificial photosynthesis.

Contents

1 Introduction

2 Artificial photosynthesis

2.1 Water oxidation

2.2 Proton reduction of water

2.3 Carbon dioxide reduction

2.4 Nitrogen reduction

3 Conclusion and outlook

Fig. 1 The natural photosynthesis
Fig. 2 (a) Native OEC structure; (b) artificial complex Mn4CaO4 structure[25]
Fig. 3 Monomer catalyst Ru(bda) (N-OTEG) and oxo-bridged green dimer[30]. Copyright 2020, Elsevier
Fig. 4 Polyoxometalate molecular catalyst for photocatalytic water oxidation[38]
Fig. 5 The active site of natural [FeFe]-hydrogenase
Fig. 6 PAA-g-Fe2S2 for the photocatalytic H2 production[47]
Fig. 7 (a) CdSe/ZnS core/shell QDs with cobaloxime reduce protons to produce hydrogen; (b) energetic diagram of CdSe/ZnS core/shell QDs and cobaloxime hybrid[52]. Copyright 2012, American Chemical Society
Fig. 8 (a) Schematic illustration of the assembly of CdSe/CdS QDs/Pt nanoparticles and the corresponding solar H2 evolution process; (b) photocatalytic H2 evolution of CdSe/CdS QDs/Pt nanoparticle assembly and individually separated system using MPA-stabilized counterparts[54]. Copyright 2017, American Chemical Society
Fig. 9 Carbon monoxide dehydrogenase-modified TiO2 nanoparticles for photocatalytic reduction of C O 2[58]. Copyright 2010, American Chemical Society
Fig. 10 Selective production of CO vs HCOOH by switching of the metal center[60]. Copyright 2015, American Chemical Society
Fig. 11 (a) Charge transfer process of DOR structured ZnSe/CdS; (b) conduction band (CB) electrons (red traces) and valence band (VB) holes (green lines) in ZnSe/CdS DORs[69]. Copyright 2021, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 12 Efficient and selective CO2 reduction integrated with organic synthesis by solar energy[70]
Fig. 13 Mechanism illustration of Fe doped SrMoO4 for photocatalytic nitrogen reduction[76]
Fig. 14 Photocatalytic reduction of nitrogen on surface oxygen vacancies of Ti O 2[85]. Copyright 2017, American Chemical Society
[1]
Li X B, Xin Z K, Xia S G, Gao X Y, Tung C H, Wu L Z. Chem. Soc. Rev., 2020, 49(24): 9028.

doi: 10.1039/D0CS00930J
[2]
Meng S L, Li X B, Tung C H, Wu L Z. Chem, 2021, 7(6): 1431.

doi: 10.1016/j.chempr.2020.11.002
[3]
Umena Y, Kawakami K, Shen J R, Kamiya N. Nature, 2011, 473(7345): 55.

doi: 10.1038/nature09913
[4]
Tard C, Pickett C J. Chem. Rev., 2009, 109(6): 2245.

doi: 10.1021/cr800542q
[5]
Wang X Z, Meng S L, Xiao H Y, Feng K, Wang Y, Jian J X, Li X B, Tung C H, Wu L Z. Angew. Chem., 2020, 132(42): 18558.

doi: 10.1002/ange.202006593
[6]
Fujishima A, Honda K. Nature, 1972, 238(5358): 37.

doi: 10.1038/238037a0
[7]
Yeung C S, Dong V M. Chem. Rev., 2011, 111(3): 1215.

doi: 10.1021/cr100280d
[8]
Sun X, Chen J T, Ritter T. Nat. Chem., 2018, 10(12): 1229.

doi: 10.1038/s41557-018-0142-4
[9]
Yang Q, Zhang L, Ye C, Luo S Z, Wu L Z, Tung C H. Angew. Chem. Int. Ed., 2017, 56(13): 3694.

doi: 10.1002/anie.201700572 pmid: 28211231
[10]
Yang X L, Guo J D, Xiao H Y, Feng K, Chen B, Tung C H, Wu L Z. Angew. Chem. Int. Ed., 2020, 59(13): 5365.

doi: 10.1002/anie.201916423
[11]
Cheng Y Y, Yu J X, Lei T, Hou H Y, Chen B, Tung C H, Wu L Z. Angew. Chem. Int. Ed., 2021, 60(51): 26822.

doi: 10.1002/anie.202112370
[12]
Meng Q Y, Zhong J J, Liu Q, Gao X W, Zhang H H, Lei T, Li Z J, Feng K, Chen B, Tung C H, Wu L Z. J. Am. Chem. Soc., 2013, 135(51): 19052.

doi: 10.1021/ja408486v
[13]
Zhang G T, Liu C, Yi H, Meng Q Y, Bian C L, Chen H, Jian J X, Wu L Z, Lei A W. J. Am. Chem. Soc., 2015, 137(29): 9273.

doi: 10.1021/jacs.5b05665
[14]
Zheng Y W, Chen B, Ye P, Feng K, Wang W G, Meng Q Y, Wu L Z, Tung C H. J. Am. Chem. Soc., 2016, 138(32): 10080.

doi: 10.1021/jacs.6b05498
[15]
Liu W Q, Lei T, Zhou S, Yang X L, Li J, Chen B, Sivaguru J, Tung C H, Wu L Z. J. Am. Chem. Soc., 2019, 141(35): 13941.

doi: 10.1021/jacs.9b06920
[16]
Huang C, Ci R N, Qiao J, Wang X Z, Feng K, Chen B, Tung C H, Wu L Z. Angew. Chem. Int. Ed., 2021, 60(21): 11779.

doi: 10.1002/anie.202101947
[17]
Wu H L, Li X B, Tung C H, Wu L Z. Chem. Commun., 2020, 56(99): 15496.

doi: 10.1039/D0CC05870J
[18]
Berardi S, Drouet S, Francas L, Gimbert-Surinach C, Guttentag M, Richmond C, Stoll T, Llobet A. Chem. Soc. Rev., 2014, 43: 7501.

doi: 10.1039/c3cs60405e pmid: 24473472
[19]
Wen F Y, Li C. Acc. Chem. Res., 2013, 46(11): 2355.

doi: 10.1021/ar300224u
[20]
Nocera D G. Acc. Chem. Res., 2017, 50(3): 616.

doi: 10.1021/acs.accounts.6b00615
[21]
Ng B J, Putri L K, Kong X Y, Teh Y W, Pasbakhsh P, Chai S P. Adv. Sci., 2020, 7(7): 1903171.

doi: 10.1002/advs.201903171
[22]
Qi K Z, Cheng B, Yu J G, Ho W. Chin. J. Catal., 2017, 38(12): 1936.

doi: 10.1016/S1872-2067(17)62962-0
[23]
Li H J, Tu W G, Zhou Y, Zou Z G. Adv. Sci., 2016, 3(11): 1500389.

doi: 10.1002/advs.201500389
[24]
Umena Y, Kawakami K, Shen J R, Kamiya N. Nature, 2011, 473(7345): 55.

doi: 10.1038/nature09913
[25]
Zhang C X, Chen C H, Dong H X, Shen J R, Dau H, Zhao J Q. Science, 2015, 348(6235): 690.

doi: 10.1126/science.aaa6550
[26]
Gersten S W, Samuels G J, Meyer T J. J. Am. Chem. Soc., 1982, 104(14): 4029.

doi: 10.1021/ja00378a053
[27]
Zong R F, Thummel R P. J. Am. Chem. Soc., 2005, 127(37): 12802.

doi: 10.1021/ja054791m
[28]
Zhang B B, Li F, Zhang R, Ma C B, Chen L, Sun L C. Chem. Commun., 2016, 52(55): 8619.

doi: 10.1039/C6CC04003A
[29]
Duan L L, Bozoglian F, Mandal S, Stewart B, Privalov T, Llobet A, Sun L C. Nat. Chem., 2012, 4(5): 418.

doi: 10.1038/nchem.1301
[30]
Yang Q Q, Jiang X, Yang B, Wang Y, Tung C H, Wu L Z. iScience, 2020, 23(3): 100969.

doi: 10.1016/j.isci.2020.100969
[31]
Ellis W C, McDaniel N D, Bernhard S, Collins T J. J. Am. Chem. Soc., 2010, 132(32): 10990.

doi: 10.1021/ja104766z
[32]
Fillol J L, Codolà Z, Garcia-Bosch I, GÓmez L, Pla J J, Costas M. Nat. Chem., 2011, 3(10): 807.

doi: 10.1038/nchem.1140
[33]
Panda C, Debgupta J, Díaz Díaz D, Singh K K, Sen Gupta S, Dhar B B. J. Am. Chem. Soc., 2014, 136(35): 12273.

doi: 10.1021/ja503753k
[34]
Evangelisti F, Güttinger R, MorÉ R, Luber S, Patzke G R. J. Am. Chem. Soc., 2013, 135(50): 18734.

doi: 10.1021/ja4098302 pmid: 24279370
[35]
Zhao Y K, Lin J Q, Liu Y D, Ma B C, Ding Y, Chen M D. Chem. Commun., 2015, 51(97): 17309.

doi: 10.1039/C5CC07448G
[36]
Xiang R J, Wang H Y, Xin Z J, Li C B, Lu Y X, Gao X W, Sun H M, Cao R. Chem. Eur. J., 2016, 22(5): 1602.

doi: 10.1002/chem.201504066
[37]
Jiang X, Yang B, Yang Q Q, Tung C H, Wu L Z. Chem. Commun., 2018, 54(38): 4794.

doi: 10.1039/C8CC02359J
[38]
Han X B, Zhang Z M, Zhang T, Li Y G, Lin W B, You W S, Su Z M, Wang E B. J. Am. Chem. Soc., 2014, 136(14): 5359.

doi: 10.1021/ja412886e
[39]
Choi Y, Jeon D, Choi Y, Ryu J, Kim B S. ACS Appl. Mater. Interfaces, 2018, 10(16): 13434.

doi: 10.1021/acsami.8b00162
[40]
Schmidt M, Contakes S M, Rauchfuss T B. J. Am. Chem. Soc., 1999, 121(41): 9736.

doi: 10.1021/ja9924187
[41]
Gloaguen F, Lawrence J D, Rauchfuss T B. J. Am. Chem. Soc., 2001, 123(38): 9476.

pmid: 11562244
[42]
Wang W G, Rauchfuss T B, Bertini L, Zampella G. J. Am. Chem. Soc., 2012, 134(10): 4525.

doi: 10.1021/ja211778j
[43]
Ott S, Borgström M, Kritikos M, Lomoth R, Bergquist J, Åkermark B, Hammarström L, Sun L C. Inorg. Chem., 2004, 43(15): 4683.

doi: 10.1021/ic0303385
[44]
Wang W G, Wang F, Wang H Y, Si G, Tung C H, Wu L Z. Chem. Asian J., 2010, 5(8): 1796.

doi: 10.1002/asia.201000087
[45]
Wang H Y, Si G, Cao W N, Wang W G, Li Z J, Wang F, Tung C H, Wu L Z. Chem. Commun., 2011, 47(29): 8406.

doi: 10.1039/c1cc12200b
[46]
Wang F, Wang W G, Wang X J, Wang H Y, Tung C H, Wu L Z. Angew. Chem. Int. Ed., 2011, 50(14): 3193.

doi: 10.1002/anie.201006352
[47]
Wang F, Liang W J, Jian J X, Li C B, Chen B, Tung C H, Wu L Z. Angew. Chem. Int. Ed., 2013, 52(31): 8134.

doi: 10.1002/anie.201303110
[48]
Brown K A, Wilker M B, Boehm M, Dukovic G, King P W. J. Am. Chem. Soc., 2012, 134(12): 5627.

doi: 10.1021/ja2116348
[49]
Li Z J, Wang J J, Li X B, Fan X B, Meng Q Y, Feng K, Chen B, Tung C H, Wu L Z. Adv. Mater., 2013, 25(45): 6613.

doi: 10.1002/adma.201302908
[50]
Li Z J, Fan X B, Li X B, Li J X, Ye C, Wang J J, Yu S, Li C B, Gao Y J, Meng Q Y, Tung C H, Wu L Z. J. Am. Chem. Soc., 2014, 136(23): 8261.

doi: 10.1021/ja5047236
[51]
Han Z J, Qiu F, Eisenberg R, Holland P L, Krauss T D. Science, 2012, 338(6112): 1321.

doi: 10.1126/science.1227775
[52]
Huang J E, Mulfort K L, Du P W, Chen L X. J. Am. Chem. Soc., 2012, 134(40): 16472.

doi: 10.1021/ja3062584 pmid: 22989083
[53]
Xie L S, Tian J, Ouyang Y, Guo X N, Zhang W A, Apfel U P, Zhang W, Cao R. Angew. Chem. Int. Ed., 2020, 59(37): 15844.

doi: 10.1002/anie.202003836
[54]
Li X B, Gao Y J, Wang Y, Zhan F, Zhang X Y, Kong Q Y, Zhao N J, Guo Q, Wu H L, Li Z J, Tao Y, Zhang J P, Chen B, Tung C H, Wu L Z. J. Am. Chem. Soc., 2017, 139(13): 4789.

doi: 10.1021/jacs.6b12976
[55]
Inoue T, Fujishima A, Konishi S, Honda K. Nature, 1979, 277(5698): 637.

doi: 10.1038/277637a0
[56]
Xu J Q, Ju Z Y, Zhang W, Pan Y, Zhu J F, Mao J W, Zheng X L, Fu H Y, Yuan M L, Chen H, Li R X. Angew. Chem. Int. Ed., 2021, 60(16): 8705.

doi: 10.1002/anie.202017041
[57]
Wang S Y, Hai X, Ding X, Jin S B, Xiang Y G, Wang P, Jiang B, Ichihara F, Oshikiri M, Meng X G, Li Y X, Matsuda W, Ma J, Seki S, Wang X P, Huang H, Wada Y, Chen H, Ye J H. Nat. Commun., 2020, 11: 1149.

doi: 10.1038/s41467-020-14851-7
[58]
Woolerton T W, Sheard S, Reisner E, Pierce E, Ragsdale S W, Armstrong F A. J. Am. Chem. Soc., 2010, 132(7): 2132.

doi: 10.1021/ja910091z pmid: 20121138
[59]
Rao H, Bonin J, Robert M. Chem. Commun., 2017, 53(19): 2830.

doi: 10.1039/C6CC09967J
[60]
Chen L J, Guo Z G, Wei X G, Gallenkamp C, Bonin J, AnxolabÉhère-Mallart E, Lau K C, Lau T C, Robert M. J. Am. Chem. Soc., 2015, 137(34): 10918.

doi: 10.1021/jacs.5b06535
[61]
Guo Z G, Chen G, Cometto C, Ma B, Zhao H Y, Groizard T, Chen L J, Fan H B, Man W L, Yiu S M, Lau K C, Lau T C, Robert M. Nat. Catal., 2019, 2(9): 801.

doi: 10.1038/s41929-019-0331-6
[62]
Ouyang T, Wang H J, Huang H H, Wang J W, Guo S, Liu W J, Zhong D C, Lu T B. Angew. Chem. Int. Ed., 2018, 57(50): 16480.

doi: 10.1002/anie.201811010 pmid: 30362217
[63]
Ouyang T, Huang H H, Wang J W, Zhong D C, Lu T B. Angew. Chem. Int. Ed., 2017, 56(3): 738.

doi: 10.1002/anie.201610607 pmid: 27958678
[64]
Tamaki Y, Morimoto T, Koike K, Ishitani O. PNAS, 2012, 109(39): 15673.

doi: 10.1073/pnas.1118336109
[65]
Takeda H, Monma Y, Ishitani O. ACS Catal., 2021, 11(19): 11973.

doi: 10.1021/acscatal.1c03336
[66]
Lian S C, Kodaimati M S, Dolzhnikov D S, Calzada R, Weiss E A. J. Am. Chem. Soc., 2017, 139(26): 8931.

doi: 10.1021/jacs.7b03134
[67]
Arcudi F, ?orðević L, Nagasing B, Stupp S I, Weiss E A. J. Am. Chem. Soc., 2021, 143(43): 18131.

doi: 10.1021/jacs.1c06961
[68]
Jin J, Yu J G, Guo D P, Cui C, Ho W. Small, 2015, 11(39): 5262.

doi: 10.1002/smll.201500926
[69]
Xin Z K, Gao Y J, Gao Y Y, Song H W, Zhao J Q, Fan F T, Xia A D, Li X B, Tung C H, Wu L Z. Adv. Mater., 2022, 34(3): 2106662.

doi: 10.1002/adma.202106662
[70]
Guo Q, Liang F, Li X B, Gao Y J, Huang M Y, Wang Y, Xia S G, Gao X Y, Gan Q C, Lin Z S, Tung C H, Wu L Z. Chem, 2019, 5(10): 2605.

doi: 10.1016/j.chempr.2019.06.019
[71]
Seefeldt L C, Hoffman B M, Peters J W, Raugei S, Beratan D N, Antony E, Dean D R. Acc. Chem. Res., 2018, 51(9): 2179.

doi: 10.1021/acs.accounts.8b00112
[72]
Yandulov D V, Schrock R R. Science, 2003, 301(5629): 76.

pmid: 12843387
[73]
Wickramasinghe L A, Ogawa T, Schrock R R, Müller P. J. Am. Chem. Soc., 2017, 139(27): 9132.

doi: 10.1021/jacs.7b04800 pmid: 28640615
[74]
Cestellos-Blanco S, Zhang H, Kim J M, Shen Y X, Yang P D. Nat. Catal., 2020, 3(3): 245.

doi: 10.1038/s41929-020-0428-y
[75]
Brown K A, Harris D F, Wilker M B, Rasmussen A, Khadka N, Hamby H, Keable S, Dukovic G, Peters J W, Seefeldt L C, King P W. Science, 2016, 352(6284): 448.

doi: 10.1126/science.aaf2091
[76]
Luo J Y, Bai X X, Li Q, Yu X, Li C Y, Wang Z N, Wu W W, Liang Y P, Zhao Z H, Liu H. Nano Energy, 2019, 66: 104187.

doi: 10.1016/j.nanoen.2019.104187
[77]
Zheng J W, Lu L L, Lebedev K, Wu S, Zhao P, McPherson I J, Wu T S, Kato R, Li Y Y, Ho P L, Li G C, Bai L L, Sun J H, Prabhakaran D, Taylor R A, Soo Y L, Suenaga K, Tsang S C E. Chem Catal., 2021, 1(1): 162.
[78]
Liu X F, Luo Y N, Ling C C, Shi Y B, Zhan G M, Li H, Gu H Y, Wei K, Guo F R, Ai Z H, Zhang L Z. Appl. Catal. B Environ., 2022, 301: 120766.

doi: 10.1016/j.apcatb.2021.120766
[79]
Cheng M, Xiao C, Xie Y. J. Mater. Chem. A, 2019, 7(34): 19616.

doi: 10.1039/c9ta06435d
[80]
Bai S, Zhang N, Gao C, Xiong Y J. Nano Energy, 2018, 53: 296.

doi: 10.1016/j.nanoen.2018.08.058
[81]
Shi R, Zhao Y X, Waterhouse G I N, Zhang S, Zhang T R. ACS Catal., 2019, 9(11): 9739.

doi: 10.1021/acscatal.9b03246
[82]
Xue J W, Fujitsuka M, Majima T. Chem. Commun., 2021, 57(29): 3532.

doi: 10.1039/D1CC00204J
[83]
Li H, Shang J, Ai Z H, Zhang L Z. J. Am. Chem. Soc., 2015, 137(19): 6393.

doi: 10.1021/jacs.5b03105
[84]
Li H, Shang J, Shi J G, Zhao K, Zhang L Z. Nanoscale, 2016, 8(4): 1986.

doi: 10.1039/C5NR07380D
[85]
Hirakawa H, Hashimoto M, Shiraishi Y, Hirai T. J. Am. Chem. Soc., 2017, 139(31): 10929.

doi: 10.1021/jacs.7b06634 pmid: 28712297
[86]
Fu R, Pan Z Y, Mu X W, Li J Y, Zhan Q Y, Zhao Z H, Mu X Y, Li L. J. Mater. Chem. A, 2021, 9(40): 22827.

doi: 10.1039/D1TA06296D
[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Yi Zeng, Yongsheng Ren, Wenhui Ma, Hui Chen, Shu Zhan, Jing Cao. Boron Removal Method, Technology and Process for Producing Solar Grade Silicon by Metallurgical Method [J]. Progress in Chemistry, 2022, 34(4): 926-949.
[3] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[4] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[5] Shixiang Xue, Pan Wu, Liang Zhao, Yanli Nan, Wanying Lei. The Application of CoFe Layered Double Hydroxide-Based Materials in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(12): 2686-2699.
[6] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[7] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[8] Andong Hu, Shungui Zhou, Jie Ye. The Mechanism, Progress and Prospect of Biohybrid Mediated Semi-Artificial Photosynthesis [J]. Progress in Chemistry, 2021, 33(11): 2103-2115.
[9] Yifan Lei, Shengbin Lei, Lingyu Piao. Preparation of H2O2 By Photocatalytic Reduction of Oxygen [J]. Progress in Chemistry, 2021, 33(1): 66-77.
[10] Xuqiang Zhang, Gongxuan Lu. Thin Film Protection Strategy of Ⅲ-Ⅴ Semiconductor Photoelectrode for Water Splitting [J]. Progress in Chemistry, 2020, 32(9): 1368-1375.
[11] Jining Zhang, Shuang Cao, Wenping Hu, Lingyu Piao. Hydrogen Production by Photoelectrocatalytic Seawater Splitting [J]. Progress in Chemistry, 2020, 32(9): 1376-1385.
[12] Xin Ni, Yang Zhou, Ruiqin Tan, Yongbo Kuang. Fabrication and Modification of Ferrite Photocathodes for Photoelectrochemical Water Splitting [J]. Progress in Chemistry, 2020, 32(10): 1515-1534.
[13] Xingxing Guo, Hang Gao, Lifeng Yin, Siyu Wang, Yunrong Dai, Chuanping Feng. Photo-Thermal Conversion Materials and Their Application in Desalination [J]. Progress in Chemistry, 2019, 31(4): 580-596.
[14] Ningning Cao, Songtao Lu, Rui Yao, Huimin Li, Wei Qin, Xiaohong Wu. Solar Spectrum Selective Absorbing Coatings [J]. Progress in Chemistry, 2019, 31(4): 597-612.
[15] Mengru Yang, Huajing Li, Ningdan Luo, Jin Li, Anning Zhou, Yuangang Li. Electro-Chemical Reduction of Carbon Dioxide into Ethylene: Catalyst, Conditions and Mechanism [J]. Progress in Chemistry, 2019, 31(2/3): 245-257.
Viewed
Full text


Abstract

Artificial Photosynthesis