中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (1): 66-77 DOI: 10.7536/PC200463 Previous Articles   Next Articles

• Review •

Preparation of H2O2 By Photocatalytic Reduction of Oxygen

Yifan Lei1,2, Shengbin Lei1,*(), Lingyu Piao2,*()   

  1. 1 Department of Chemistry, School of Science, Tianjin University,Tianjin 300072, China
    2 CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, Beijing 100190, China
  • Received: Revised: Online: Published:
  • Contact: Shengbin Lei, Lingyu Piao
  • Supported by:
    the National Natural Science Foundation of China(21972028); the National Natural Science Foundation of China(21872103)
Richhtml ( 83 ) PDF ( 2520 ) Cited
Export

EndNote

Ris

BibTeX

H2O2 is widely used in the fields of chemical industry and environmental protection. The only product of its decomposition is water, which is environmentally friendly and conducive to the coordinated and sustainable development of production. The industrial synthesis of H2O2 is mainly indirectly through the anthraquinone method, which consumes a lot of energy and pollutes the environment. The preparation of H2O2 directly from the mixture of H2 and O2 has great safety risks and requires a large amount of H2. The method of converting O2 and H2O into H2O2 through photocatalytic technology avoids the direct mixing of H2 and O2, and uses endless solar energy as an energy source, which has attracted much attention in recent years. This article summarizes the research progress of photocatalytic reduction of O2 to H2O2, compares and analyzes the reaction performance and control measures of different catalytic systems, such as g-C3N4, TiO2, and other photocatalysts, and the mechanisms of photocatalytic preparation of H2O2. In the end, the development of this field is prospected.

Contents

1 Introduction

2 Detection of HO and evaluation of catalyst activity

2.1 Detection method of hydrogen peroxide

2.2 Activity evaluation index

3 Catalyst for photocatalytic O2 reduction

3.1 Graphitic carbon nitride(g-C3N4) based photocatalysts

3.2 Titanium dioxide(TiO2) based photocatalysts

3.3 Other Photocatalysts

4 Conclusion and outlook

Fig. 1 Oxidation-reduction potential of each reaction in the process of oxygen reduction
Fig. 2 Formation mechanism of H2O2 on g-C3N4 surface[30] . Copyright 2015, American Chemical Society
Table 1 Literature summary of g-C3N4 system for photocatalytic reduction of O2 to produce H2O2
Photocatalyst Co-catalyst Sacrificial
agent
Catalyst amount H 2O 2 yields efficiency Irradiation
conditions
Time Ref
1 C,O/GCN / / 1 g·L -1 2.01 μmol·L/(g·h) AQY=7.23% λ=420 nm 2019 32
2 P,K/GCN / / 1 g·L -1 500 μmol/(g·h) / 300 W Xe Lamp(λ≥420 nm) 2019 33
3 Ultra-thin porous
GCN
BN QDs isopropanol 1 g·L -1 72.30 μmol/(g·h) / 300 W Xe Lamp(λ≥420 nm) 2019 34
4 GCN Au ethanol 4 g·L -1 16.89 μmol/(g·h) / 300 W Xe Lamp(λ≥420 nm) 2019 35
5 Soluble PCN / ethanol 0.50 g·L -1 25 μmol·L/(g·h) / UV LED Lamp 2019 36
6 GCN NiCoP ethanol 1 g·L -1 307 μmol·L/(g·h) / 300 W Xe Lamp(λ≥420 nm) 2019 37
7 O/GCN / / 1 g·L -1 633 μmol/(g·h) / 250 W high-pressure Na Lamp 2019 38
8 Na +/GCN / isopropanol 0.14 g·L -1 ~3786 μmol/g / 300 W Xe Lamp(λ≥420 nm) 2019 39
9 GCN Phosphate EDTA 1 g·L -1 900 μmol/(g·h) / 250 W high-pressure Na Lamp 2018 40
10 K +、Na +/GCN / / 1 g·L -1 767 μmol/(g·h) / 250 W high-pressure Na Lamp 2018 13
11 GCN/PDI RGO/BN / 1.67 g·L -1 1.84 μmol·L/(g·h) AQY=7.3%
SCC=0.27%
2 kW Xe Lamp(λ≥420 nm) 2018 21
12 Nv-GCN / ethanol 1 g·L -1 367 μmol/(g·h) / 250 W high-pressure Na Lamp 2018 19
13 C/GCN / isopropanol 1 g·L -1 317 μmol/(g·h) / 300 W Xe Lamp 2018 15
14 Nv-GCN / / 1 g·L -1 170 μmol/(g·h) SCC=0.26%
AQY=4.3%
300 W Xe Lamp(λ≥420 nm) 2018 41
15 g-C 3N 4-SiW 11 / methanol 1 g·L -1 15.20 μmol·L/(g·h) / 300 W Xe Lamp(AM 1.5filter) 2018 42
16 PIx-NCN
Heterojunction
/ / 1 g·L -1 60 μmol·L/(g·h) QY=3.2%min -1 300 W Xe Lamp 2017 43
17 Ni/GCN / / 1 g·L -1 1283 μmol/(g·h) / 250 W high-pressure Na Lamp 2017 44
18 MTI/GCN / / 1.67 g·L -1 0.69 μmol·L/(g·h) SCC=0.18% 2 kW Xe Lamp(λ≥420 nm) 2017 45
19 K、P、O/GCN / ethanol 0.5 g·L -1 ~486 μmol/(g·h) AQY=8.0%(420 nm)
AQY=26.2%(320 nm)
300 W Xe Lamp(λ≥420 nm) 2017 29
20 Cv-GCN / / 1 g·L -1 90 μmol/(g·h) / 300 W Xe Lamp(λ≥420 nm) 2016 46
21 BDI/GCN / / 1.67 g·L -1 1.02 μmol·L/(g·h) AQY=4.6%(420 nm)
SCC=0.13%
λ >420 nm 2016 47
22 PDI/rGO/GCN / / 1.67 g·L -1 0.72 μmol·L/(g·h) AQY=6.1%(420 nm)
SCC=0.2%
2 kW Xe Lamp(λ≥420 nm) 2016 48
23 MMO@C 3N 4 / / 1 g·L -1 42 μmol/(g·h) / 300 W Xe Lamp 2016 16
24 Mesoporous GCN / ethanol 4 g·L -1 0.94 μmol·L/(g·h) / Xe Lamp(λ > 420 nm) 2015 30
25 GCN / ethanol 4 g·L -1 0.63 μmol·L/(g·h) / Xe Lamp(λ > 420 nm) 2014 31
26 GCN/PDI / / 1.67 g·L -1 0.63 μmol·L/(g·h) / λ=420~500 nm 2014 17
Fig. 3 Reduction mechanism of O2 on TiO2 surface in the presence of sacrificial agent[50] . Copyright 2013, American Chemical Society
Table 2 Literature summary on photocatalytic reduction of O2 to produce H2O2 in TiO2 system
Fig. 4 Formation and decomposition of H2O2 on the surface of TiO2 and Au/TiO2[10] . Copyright 2012, American Chemical Society
Fig. 5 Synthesis route of organic ligand electronically modified Pd supported TiO2 and two ways of electronically modified Pd to reduce O2[52]
Fig. 6 Production mechanism of H2O2 in two-phase system[64] . Copyright 2019, Angewandte Chemie
[1]
Campos-Martin J M , Blanco-Brieva G , Fierro J L G . Angewandte Chemie International Edition , 2006, 45( 42): 6962.
[2]
Brooks R E, Moore S B. Cellulose, 2000, 7( 3): 263.

doi: 10.1023/A:1009273701191
[3]
Qin Y, Song F, Ai Z, Zhang P, Zhang L. Environmental Science & Technology , 2015, 49( 13): 7948.

doi: 10.1021/es506110w
[4]
Davis N S, Keefe J H. Industrial & Engineering Chemistry , 1956, 48( 4): 745.
[5]
Kruithof J C, Kamp P C, Martijn B J. Ozone: Science & Engineering , 2007, 29( 4): 273.
[6]
Yamada Y, Yoneda M, Fukuzumi S. Chemistry-A European Journal , 2013, 19( 35): 11733.

doi: 10.1002/chem.v19.35
[7]
Goor G, Kunkel W, Weiberg O, Ullmann's Encyclopedia of Industrial Chemistry , VCH , 1989. 443.
[8]
Kirchner J R. Kirk-Othmer Encyclopedia of Chemical Technology , 1979, 13: 12.
[9]
Xu J, Chen Z, Zhang H, Lin G, Lin H, Wang X, Long J. Science Bulletin , 2017, 62( 9): 610.

doi: 10.1016/j.scib.2017.04.013
[10]
Tsukamoto D, Shiro A, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T. ACS Catalysis , 2012, 2( 4): 599.

doi: 10.1021/cs2006873
[11]
Wang H , Guan Y , Hu S , Pei Y , Ma W , Fan Z . Nano , 2019, 14( 2): 1.
[12]
Kaynan N, Berke B A, Hazut O, Yerushalmi R. Journal of Materials Chemistry A , 2014, 2( 34): 13822.

doi: 10.1039/c4ta03004d
[13]
Qu X , Hu S , Bai J , Li P , Lu G , Kang X . Journal of Materials Science &Technology , 2018, 34( 10): 1932.
[14]
Liu Y, Han J, Qiu W, Gao W. Applied Suface Science , 2012, 263: 389.
[15]
Wang R , Zhang X , Li F , Cao D , Pu M , Han D , Yang J , Xiang X . Journal of Energy Chemistry , 2018, 27( 2): 343.

doi: 10.1016/j.jechem.2017.12.014
[16]
Li S , Willoughby J A , Rojas O J . Chemsuschem , 2016, 9( 17): 2460.

doi: 10.1002/cssc.201600704
[17]
Shiraishi Y, Kanazawa S, Kofuji Y, Sakamoto H, Ichikawa S, Tanaka S, Hirai T. Angewandte Chemie International Edition , 2014, 53( 49): 13454.
[18]
Liu J , Zhang Y , Lu L , Wu G , Chen W . Chemical Communications , 2012, 48( 70): 8826.

doi: 10.1039/c2cc33644h
[19]
Li X, Zhang J, Zhou F, Zhang H, Bai J, Wang Y, Wang H. Chinese Journal of Catalysis , 2018, 39( 6): 1090.

doi: 10.1016/S1872-2067(18)63046-3
[20]
Nosaka Y , Nosaka A Y . Chemical Reviews , 2017, 117( 17): 11302.

doi: 10.1021/acs.chemrev.7b00161
[21]
Kofuji Y, Isobe Y, Shiraishi Y, Sakamoto H, Ichikawa S, Tanaka S, Hirai T. Chemcatchem , 2018, 10( 9): 2070.

doi: 10.1002/cctc.v10.9
[22]
Liu A Y , Cohen M L . Science , 1989, 245( 4920): 841.

doi: 10.1126/science.245.4920.841
[23]
Niu C, Lu Y Z, Lieber C M. Science , 1993, 261( 5119): 334.

doi: 10.1126/science.261.5119.334
[24]
Teter D M, Hemley R J. Science , 1996, 271( 5245): 53.

doi: 10.1126/science.271.5245.53
[25]
Yan S C , Li Z S , Zou Z G . Langmuir , 2009, 25( 17): 10397.

doi: 10.1021/la900923z
[26]
Wang X, Maeda K, Chen X, Takanabe K, Domen K, Hou Y, Fu X, Antonietti M. Journal of the American Chemical Society , 2009, 131( 5): 1680.

doi: 10.1021/ja809307s
[27]
Maeda K , Wang X , Nishihara Y , Lu D , Antonietti M , Domen K . The Journal of Physical Chemistry C , 2009, 113( 12): 4940.

doi: 10.1021/jp809119m
[28]
Chen X, Jun Y, Takanabe K, Maeda K, Domen K, Fu X, Antonietti M, Wang X. Chemistry of Materials , 2009, 21( 18): 4093.

doi: 10.1021/cm902130z
[29]
Moon G, Fujitsuka M, Kim S, Majima T, Wang X, Choi W. ACS Catalysis , 2017, 7( 4): 2886.

doi: 10.1021/acscatal.6b03334
[30]
Shiraishi Y, Kofuji Y, Sakamoto H, Tanaka S, Ichikawa S, Hirai T. ACS Catalysis , 2015, 5( 5): 3058.

doi: 10.1021/acscatal.5b00408
[31]
Shiraishi Y, Kanazawa S, Sugano Y, Tsukamoto D, Sakamoto H, Ichikawa S, Hirai T. ACS Catalysis , 2014, 4( 3): 774.

doi: 10.1021/cs401208c
[32]
Samanta S, Yadav R, Kumar A, Sinha A K, Srivastava R. Applied Catalysis B-Environmental , 2019, 259: 118054.

doi: 10.1016/j.apcatb.2019.118054
[33]
Tian J , Wu T , Wang D , Pei Y , Qiao M , Zong B . Catalysis Today , 2019, 330(SI): 171.
[34]
Yang Y, Zhang C, Huang D, Zeng G, Huang J, Lai C, Zhou C, Wang W, Guo H, Xue W, Deng R, Cheng M, Xiong W. Applied Catalysis B-Environmental , 2019, 245: 87.

doi: 10.1016/j.apcatb.2018.12.049
[35]
Zuo G, Liu S, Wang L, Song H, Zong P, Hou W, Li B, Guo Z, Meng X, Du Y, Wang T, Roy V A L. Catalysis Communications , 2019, 123: 69.

doi: 10.1016/j.catcom.2019.02.011
[36]
Krivtsov I, Mitoraj D, Adler C, Ilkaeva M, Sardo M, Mafra L, Neumann C, Turchanin A, Li C, Dietzek B, Leiter R, Biskupek J, Kaiser U, Im C, Kirchhoff B, Jacob T, Beranek R. Angewandte Chemie International Edition , 2020, 132: 485.
[37]
Peng Y , Zhou L , Wang L , Lei J , Liu Y , Daniele S , Zhang J . Research on Chemical Intermediates , 2019, 45( 12SI): 5907.

doi: 10.1007/s11164-019-04009-6
[38]
Hu S. Nano , 2019, 14( 2): 99.
[39]
Zhu Y, Xiong C, Song S, Le Z, Jiang S. Journal of Colloid and Interface Science , 2019, 538: 237.

doi: 10.1016/j.jcis.2018.11.099
[40]
Bai J, Sun Y, Li M, Yang L, Li J. Diamond and Related Materials , 2018, 87: 1.

doi: 10.1016/j.diamond.2018.05.004
[41]
Zhu Z, Pan H, Murugananthan M, Gong J, Zhang Y. Applied Catalysis B-Environmental , 2018, 232: 19.

doi: 10.1016/j.apcatb.2018.03.035
[42]
Konev A S , Kayumov M Y , Karushev M P , Novo-selova Y V , Lukyanov D A , Alekseeva E V , Levin O V . Chemelectrochem , 2018, 5( 21): 3138.

doi: 10.1002/celc.201800846
[43]
Yang L, Dong G, Jacobs D L, Wang Y, Zang L, Wang C. Journal of Catalysis , 2017, 352: 274.

doi: 10.1016/j.jcat.2017.05.010
[44]
Wu G, Hu S, Han Z, Liu C, Li Q. New Journal of Chemistry , 2017, 41( 24): 15289.

doi: 10.1039/C7NJ03298F
[45]
Kofuji Y, Ohkita S, Shiraishi Y, Sakamoto H, Ichikawa S, Tanaka S, Hirai T. ACS Sustainable Chemistry & Engineering , 2017, 5( 8): 6478.
[46]
Li S, Dong G, Hailili R, Yang L, Li Y, Wang F, Zeng Y, Wang C. Applied Catalysis B-Environmental , 2016, 190: 26.

doi: 10.1016/j.apcatb.2016.03.004
[47]
Kofuji Y , Ohkita S , Shiraishi Y , Sakamoto H , Tanaka S , Ichikawa S , Hirai T . ACS Catalysis , 2016, 6( 10): 7021.

doi: 10.1021/acscatal.6b02367
[48]
Kofuji Y , Isobe Y , Shiraishi Y , Sakamoto H , Tanaka S , Ichikawa S , Hirai T . Journal of the American Chemical Society , 2016, 138( 31): 10019.

doi: 10.1021/jacs.6b05806
[49]
Fujishima A, Honda K. Nature , 1972, 238( 5358): 37.

doi: 10.1038/238037a0
[50]
Shiraishi Y , Kanazawa S , Tsukamoto D , Shiro A , Sugano Y , Hirai T . ACS Catalysis , 2013, 3( 10): 2222.

doi: 10.1021/cs400511q
[51]
Li X, Chen C, Zhao J. Langmuir , 2001, 17( 13): 4118.

doi: 10.1021/la010035s
[52]
Chu C , Huang D , Zhu Q , Stavitski E , Spies J A , Pan Z , Mao J , Xin H L , Schmuttenmaer C A , Hu S , Kim J . ACS Catalysis , 2018, 9( 1): 626.

doi: 10.1021/acscatal.8b03738
[53]
Lee T, Bui H T, Yoo J, Ra M, Han S H, Kim W, Kwon W. ACS Applied Materials & Interfaces , 2019, 11( 44): 41196.

doi: 10.1021/acsami.9b10015
[54]
Liu Z, Sheng X, Wang D, Feng X. Iscience , 2019, 17: 67.

doi: 10.1016/j.isci.2019.06.023
[55]
Zheng L, Su H, Zhang J, Walekar L S, Mo-lamahmood H V, Zhou B, Long M, Hu Y H. Applied Catalysis B-Environmental , 2018, 239: 475.

doi: 10.1016/j.apcatb.2018.08.031
[56]
Maurino V, Minero C, Pelizzetti E, Mariella G, Arbezzano A, Rubertelli F. Research on Chemical Intermediates , 2007, 33( 3/5): 319.

doi: 10.1163/156856707779238711
[57]
Maurino V , Minero C , Mariella G , Pelizzetti E . Chemical Communications , 2005,( 20): 2627.
[58]
Cai R , Kubota Y , Fujishima A . Journal of Catalysis , 2003, 219( 1): 214.

doi: 10.1016/S0021-9517(03)00197-0
[59]
Saito H, Nosaka Y. Catalysis Communications , 2015, 61: 117.

doi: 10.1016/j.catcom.2014.12.024
[60]
Sheng H , Ji H , Ma W , Chen C , Zhao J . Angewandte Chemie International Edition , 2013, 52( 37): 9686.
[61]
Liu C, Fu Y J, Zhao J, Wang H B, Huang H, Li Y, Dou Y J, Shao M W, Kang Z H. Chemical Engineering Journal , 2019, 358: 134.

doi: 10.1016/j.cej.2018.10.005
[62]
Hirakawa H, Shiota S, Shiraishi Y, Sakamoto H, Ichikawa S, Hirai T. ACS Catalysis , 2016, 6( 8): 4976.

doi: 10.1021/acscatal.6b01187
[63]
Su Y , Zhang L , Wang W , Shao D . ACS Sustainable Chemistry & Engineering , 2018, 6( 7): 8704.
[64]
Isaka Y, Kawase Y, Kuwahara Y, Mori K, Yamashita H. Angewandte Chemie International Edition , 2019, 58( 16): 5402.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[4] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[5] Yi Zeng, Yongsheng Ren, Wenhui Ma, Hui Chen, Shu Zhan, Jing Cao. Boron Removal Method, Technology and Process for Producing Solar Grade Silicon by Metallurgical Method [J]. Progress in Chemistry, 2022, 34(4): 926-949.
[6] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[7] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[8] Shixiang Xue, Pan Wu, Liang Zhao, Yanli Nan, Wanying Lei. The Application of CoFe Layered Double Hydroxide-Based Materials in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(12): 2686-2699.
[9] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[10] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[11] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[12] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[13] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[14] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[15] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.