中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (10): 1515-1534 DOI: 10.7536/PC200334 Previous Articles   Next Articles

Fabrication and Modification of Ferrite Photocathodes for Photoelectrochemical Water Splitting

Xin Ni1,2, Yang Zhou2, Ruiqin Tan1,**(), Yongbo Kuang2,**()   

  1. 1. Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
    2. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • Received: Revised: Online: Published:
  • Contact: Ruiqin Tan, Yongbo Kuang
  • About author:
    **e-mail:(Yongbo Kuang)
  • Supported by:
    National Natural Science Foundation of China(21805298); National Natural Science Foundation of China(21905288); National Natural Science Foundation of China(51904288); Ningbo Major Special Projects of the Plan “Science and Technology Innovation 2025”(2018B10056); Ningbo 3315 Program, and K.C. Wong Magna Fund in Ningbo University.
Richhtml ( 24 ) PDF ( 938 ) Cited
Export

EndNote

Ris

BibTeX

A non-biased photoelectrochemical (PEC) cell composed of both an n-type semiconductor photoanode and a p-type semiconductor photocathode offers a cost-effective route to convert water directly into high energy density hydrogen using solar energy, which helps address the intermittency and storage problem of solar energy during utilization. Metal oxide semiconductors have the advantages of low cost and facile preparation. Compared with well-developed n-type metal oxide photoanode materials, the stability of conventional p-type metal oxide photocathode materials still remains a challenge due to the photoelectrochemical reduction of metallic ions. As a new type of metal oxide photocathodes, ferrite photocathodes have recently emerged as competitive candidates for practical applications due to the appropriate band gaps, better photostability, higher onset potential and relatively low preparation costs. In this review, the fundamentals of PEC water splitting and common methods for improving performance of photoelectrodes are first introduced, and the recent progress of representative CuFeO2, CaFe2O4 and LaFeO3 photocathodes are summarized, including their fabrication methods, elements doping and surface modifications. Finally, perspectives on the future development of ferrite photocathodes are also discussed.

Contents

1 Introduction

2 Fundamentals of PEC water splitting

2.1 Composition and configuration of a non-biased PEC cell

2.2 Process of PEC water splitting

2.3 Semiconductor-electrolyte junction

2.4 Requirements for band gaps and positions of photoelectrode materials

3 Methods for improving conversion efficiency of photoelectrodes

3.1 Enhancing generation rates of carriers

3.2 Promoting bulk transport and separation efficiency of carriers

3.3 Accelerating surface injection efficiency of carriers

4 Recent progress of ferrite photocathodes

4.1 Recent status of PEC water splitting materials

4.2 CuFeO2

4.3 CaFe2O4

4.4 LaFeO3

5 Conclusion and outlook

Fig.1 (a) Schematic of a non-biased PEC cell comprising a photoanode and a photocathode, (b) configurations of a non-biased PEC cell[11]
Fig.2 Process of PEC water splitting by photocathodes[15]
Fig.3 The band energetics of an n-type semiconductor/electrolyte contact in three cases. (a) Before equilibrium, (b) equilibrium in dark, (c) illuminated[18]
Fig.4 (a) Effects of band gaps on theoretical conversion efficiency[21], (b) effects of band positions and electrode photocurrents on working current of a PEC cell [22]
Fig.5 Schematic showing the time evolution of LSPR-excitation-induced processes occurring in a semiconductor/plasmonic nanostructure. (a) LSPR oscillation, (b) Plasmon-induced resonant energy transfer (PIRET), (c) scattering, (d) electron/hole generation, (e) plasmonic heating, (f) hot electron injection, (g) direct electron injection[36]
Fig.6 Structure of a semiconductor-electrolyte junction formed by n-type semiconductor [17]
Fig.7 Light trapping and charge transport in photoelectrodes with nanostructure. (a) 0D nanocrystals, (b) 1D nanostructures, (c) 2D nanosheets, (d) 3D nanostructures[56]
Fig.8 (a) SEM images and (b) PEC performance for oxygen (blue) and H2O (black) reduction of CuFeO2 electrode prepared by electrodeposition[135], (c) SEM images and (d) PEC performance for oxygen (blue) and H2O (red) reduction of CuFeO2 electrode prepared by sol-gel spin coating[136]
Fig.9 (a) SEM image of CuAlO2 Scaffold, (b) SEM image of CuAlO2/CuFeO2 electrode, (c) possible pathways of photogenerated charges inside a CuAlO2/CuFeO2 electrode, (d) energy diagram of the host-guest CuAlO2/CuFeO2 electrode[138]
Fig.10 (a,b) Possible pathways of photogenerated charges and energy diagram, (c) PEC performance for O2 reduction of a PE-SiO2@CuFeO2@CuAlO2 electrode with/without NaOH treatment [140]
Fig.11 (a) SEM images of top and side view of IO CuFeO2, (b) absorption and diffusive reflectance of IO/Planar CuFeO2 electrode, (c) PEC performance of IO/Planar CuFeO2 electrode for O2 reduction, (d) time course of H2 evolution upon the IO CuFeO2 electrode[141]
Fig.12 Basic PEC information of CuFeO2[142]
Fig.13 (a) PEC performance of CaFe2O4 electrodes prepared with Pt substrate at 1100 ℃ and 1200 ℃,(b) time course of H2 and O2 evolution from CaFe2O4 and TiO2 electrodes system [126] , (c) SEM images and, (d) UV-vis spectra of CaFe2O4 electrode prepared by PLD[150]
Fig.14 (a) Charge transfer mechanism for TiO2-coated CaFe2O4 electrode under visible light illumination, (b) SEM images of pristine CaFe2O4 and TiO2-coated CaFe2O4 electrodes after stability test, (c) PEC performance of pristine CaFe2O4 and TiO2-coated CaFe2O4 electrodes under different light illumination, (d) current-time plot of pristine CaFe2O4 and TiO2-coated CaFe2O4 electrodes applying an external bias of 1.2 V, (e) time evolution of H2 and O2 production from TiO2-coated CaFe2O4 and Pt electrodes system[151]
Fig.15 The effect of Ag doping on PEC performance of CaFe2O4 electrodes[152]
Fig.16 (a,b) SEM images of top and side view of Ca2Fe2O5 electrode, (c,d) PEC performance of Ca2Fe2O5 electrode for O2 reduction[153]
Fig.17 SEM images and PEC performance of LaFeO3 electrodes prepared by different methods. (a,b) PLD[160], (c,d) electrodeposition[161], (e,f) spray pyrolysis[162]
Fig.18 (a) SEM image of 3% K-doped LaFeO3 electrode, (b) PEC performance and, (c) electronic band structures of pristine LaFeO3(black) and 3% K-doped LaFeO3(blue, red), (d) spin density map of 3% K-doped LaFeO3[164]
Fig.19 (a) Normalized scattering cross-sections of Ag nanoparticles for diameters of 40~80 nm, (b) absorbance spectra of LaFeO3 and LaFeO3-Ag (0.19 mmol) electrode, (c) PEC performance of plain LaFeO3 and LaFeO3-Ag electrodes with varying Ag concentrations concentrations, (d) hydrogen evolution test of plain LaFeO3 and LaFeO3-Ag electrodes with varying Ag concentrations [165]
Fig.20 (a) energy diagram of P1*@LaFeO3, (b) PEC performance of LaFeO3 and P1*@LaFeO3 electrodes for O2 reduction, (c) PEC performance of LaFeO3, P1*@LaFeO3 and (NiP+P1*)@LaFeO3 electrodes for H2O reduction, (d)stability test of LaFeO3, P1*@LaFeO3 and (NiP+P1*)@LaFeO3 electrodes for H2O reduction [167]
Table 1 Summary of fabrication methods and PEC performance of reported ferrite photocathodes
Photocathode Fabrication method Modification PEC performance(AM 1.5G) ref
SQ〗FTO/CuFeO2(Ar:650 ℃-1 h) Electrodeposition Fabrication -0.085(H2O), -0.16(O2) mA/cm2 @0.6 V vs. RHE, 1 M NaOH 135
SQ〗FTO/CuFeO2/AZO/TiO2/ Pt
(Ar: 700 ℃-12 h)
Sol-gel spin coating Fabrication +
Heterojunction
-0.4 mA/cm2(H2O) @0 V vs. RHE, 0.5 M Na2SO4, Stability(O2): >40 h 136
FTO/CuFeO2/NiFe LDH+RGO
(Ar: 600 ℃-10 h)
Sol-gel spin coating Post-treatment +
Cocatalyst
-2.4 mA/cm2 (H2O) @0.4 V vs. RHE, 1 M NaOH 137
FTO/CuAlO2/ CuFeO2
(Ar: 700 ℃-12 h)
Sol-gel: drop coating + Spin coating Host-guest structure -2.2 mA/cm2(O2) @0.35 V vs. RHE, 1 M NaOH 138
FTO/SiO2/CuFeO2
(N2: 800 ℃-12 h)
Sol-gel: Rubbing Nanostructure -0.07(H2O), -0.2(O2) mA/cm2 @0.6 V vs. RHE, 1 M NaOH 139
FTO/SiO2/CuFeO2/CuAlO2
(Ar: 700 ℃-12 h)
Sol-gel: Rubbing Host-guest structure -1.09 mA/cm2(O2) @0.6 V vs. RHE, 1 M NaOH 140
FTO/CuFeO2(Inverse Opal)
/C60/CoFe LDH(Ar:600 ℃-2 h)
Sol-gel: Template method Nanostructure -4.86 mA/cm2(H2O) @0 V vs. RHE, 1 M NaOH 141
FTO /CuFeO2
(Ar: 600 ℃-6 h)
Co-sputtering Fabrication -0.05(H2O), -0.85 mA/cm2 (Na2S2O8)@0.4 V vs. RHE, 1 M NaOH 143
CaFe2O4
(Air: 1200 ℃; O2: 1000 ℃)
Tablet calcination Fabrication -0.2 mA/cm2(H2O) @-0.6 V vs. SCE, 0.25 M K2SO4(pH=6), 500 W Xenon lamp 148
Pt/ CaFe2O4(Air: 1200 ℃-2 h) Sol-gel: Drop coating + Calcination Fabrication -1 mA/cm2 @0.2 V vs. RHE, 0.1 M NaOH, 500 W Xenon lamp 126
Pt/CaFe2O4+Ca2Fe2O5
(Air: 1200 ℃-2 h)
Sol-gel: Drop coating + Calcination Heterogeneous -0.85 mA/cm2 @-0.8 V vs. Ag/AgCl, 0.1 M NaOH, 500 W Xenon lamp 149
FTO/ CaFe2O4
(Deposition temperature: 550 ℃)
PLD Fabrication -0.117 mA/cm2 @0.21 V vs. RHE, 0.1 M Na2SO4, 500 W Xenon lamp 150
Pt/CaFe2O4/TiO2(Air: 1200 ℃-2 h) Sol-gel: Drop coating + Calcination Heterojunction Onset potential: 1.6 V vs. RHE, Stability(H2O): >14 h 151
FTO/Ag-CaFe2O4(O2: 650 ℃-2 h) Magnetron sputtering Metal doping -0.07 mA/cm2 @0 V vs. Ag/AgCl, 0.2 M K2SO4, 300 W Xenon lamp (300~800 nm), Stability(O2): >1 h 152
FTO/ Ca2Fe2O5(Air: 650 ℃-2 h) Electrodeposition Fabrication +
Nanostructure
-0.05(H2O), -0.2(O2) mA/cm2 @0.6 V vs. RHE, 0.5 M H3BO3(pH=11) 153
ITO/ LaFeO3(Deposition temperature: 650 ℃) PLD Fabrication -0.0645 mA/cm2 @0 V vs. RHE, 0.5 M H2SO4, Stability(H2O): >120 h 160
FTO/ LaFeO3(Air: 600 ℃-3 h) Electrodeposition Fabrication +
Nanostructure
-0.1 mA/cm2(O2) @0.71 V vs. RHE, 0.1 M NaOH, Stability(O2): >1 h 161
FTO/ LaFeO3(Air: 550 ℃-3 h) Spray pyrolysis Fabrication -0.16 mA/cm2(H2O) @0.26 V vs. RHE, 0.1 M NaOH, Stability(H2O): 20% loss in 21 h 162
FTO/Zn or Mg-LaFeO3
(Air: 640 ℃-2 h)
Sol-gel spin coating Metal doping -0.1 mA/cm2(O2) @0.6 V vs. RHE, 0.1 M NaOH 163
FTO/K-LaFeO3(Air: 600 ℃-6 h) Electrodeposition Metal doping -0.015(H2O), -0.268 mA/cm2 (O2) @0.6 V vs. RHE, 0.1 M KOH, Stability(O2): >16 h 164
FTO/ LaFeO3/Ag (Air: 550 ℃-3 h) Spray pyrolysis LSPR -0.074 mA/cm2@0.6 V vs. RHE, 0.1 M NaOH, Stability: >24 h 165
FTO/ LaFeO3/Ni (Air: 550 ℃-3 h) Spray pyrolysis LSPR -0.066 mA/cm2 @0.6 V vs. RHE, 0.1 M NaOH, Stability: >24 h 166
FTO/ LaFeO3/ P1*+NiP
(Air: 600 ℃-3 h)
Spray pyrolysis Dye sensitization + Cocatalyst -0.02(H2O), -0.19 mA/cm2(O2) @0.63 V vs. RHE, 1 M KOH 167
[1]
Esswein A J, McMurdo M J, Ross P N, BellA T, Tilley T D. J. Phys. Chem. C, 2009,113(33):15068.
[2]
Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q X, Santori E A, Lewis N S. Chem.Rev., 2010,110(11):6446.
[3]
Fujishima A, Honda K. Nature, 1972,238(5358):37.

pmid: 12635268
[4]
Kuang Y B, Jia Q X, Ma G J, Hisatomi T, Minegishi T, Nishiyama H, Nakabayashi M, Shibata N, Yamada T, Kudo A, Domen K. Nat. Energy, 2016,2(1):16191.
[5]
Kim T W, Choi K S. Science, 2014,343(6174):990.

pmid: 24526312
[6]
Kay A, Cesar I, Grätzel M. J. Am. Chem. Soc., 2006,128(49):15714.

pmid: 17147381
[7]
Li M Y, Yang Y, Ling Y C, Qiu W T, Wang F X, Liu T Y, Song Y, Liu X X, Fang P P, Tong Y X, Li Y. Nano Lett., 2017,17(4):2490.

pmid: 28334530
[8]
Hautier G, Miglio A, Ceder G, Rignanese G M, Gonze X. Nat. Commun., 2013,4:2292.

pmid: 23939205
[9]
Pan L F, Kim J H, Mayer M T, Son M K, Ummadisingu A, Lee J S, Hagfeldt A, Luo J S, Grätzel M. Nat. Catal., 2018,1(6):412.
[10]
Kobayashi H, Sato N, Orita M, Kuang Y B, Kaneko H, Minegishi T, Yamada T, Domen K. Energy Environ. Sci., 2018,11(10):3003.
[11]
Kuang Y B, Yamada T, Domen K. Joule, 2017,1(2):290.
[12]
Hu S, Xiang C X, Haussener S, Berger A D, Lewis N S. Energy Environ. Sci., 2013,6(10):2984.
[13]
Jiang F, Harada T, Kuang Y B, Minegishi T, Domen K, Ikeda S. J. Am. Chem. Soc., 2015,137(42):13691. doi: 10.1021/jacs.5b09015

pmid: 26479423
[14]
Kaneko H, Minegishi T, Nakabayashi M, Shibata N, Kuang Y B, Yamada T, Domen K. Adv. Funct. Mater., 2016,26(25):4570.
[15]
Huang Q, Ye Z, Xiao X D. J. Mater. Chem. A, 2015,3(31):15824.
[16]
Peter L M, Chem. Rev., 1990,90(5):753.
[17]
Li Z S, Luo W J, Zhang M L, Feng J Y, Zou Z G. Energy Environ. Sci., 2013,6(2):347.
[18]
Jiang C R, Moniz S J, Wang A Q, Zhang T, Tang J W. Chem. Soc. Rev., 2017,46(15):4645.
[19]
Kudo A, Miseki Y. Chem. Soc. Rev, 2009,38(1):253.
[20]
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Norskov J K, Jaramillo T F. Science, 2017,355(6321).

pmid: 28082577
[21]
Wang S C, Liu G, Wang L Z. Chem. Rev., 2019,119(8):5192. doi: 10.1021/acs.chemrev.8b00584
[22]
Lee D K, Lee D, Lumley M A, Choi K S. Chem. Soc. Rev., 2019,48(7):2126.

pmid: 30499570
[23]
Dotan H, Sivula K, Grätzel M, Rothschild A, Warren S C. Energy Environ. Sci., 2011,4(3):958.
[24]
Takanabe K. ACS Catal., 2017,7(11):8006.
[25]
Chen Z B, Dinh H N, Miller E. Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols. NY: Springer, 2013. 49.
[26]
Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles. NY: John Wiley & Sons, 2008. 1.
[27]
Li R G, Li C. Adv. Catal., 2017,60:1.
[28]
Sivula K, van de Krol R. Nat. Rev. Mater., 2016,1(2):15010.
[29]
Yu J Q, Kudo A. Adv. Funct. Mater., 2006,16(16):2163.
[30]
Niishiro R, Takano Y, Jia Q X, Yamaguchi M, Iwase A, Kuang Y B, Minegishi T, Yamada T, Domen K, Kudo A. Chem. Commun., 2017,53(3):629.
[31]
Matsuo H, Katayama M, Minegishi T, Yamada T, Kudo A, Domen K. J. Appl. Phys., 2019,126(9):094901.
[32]
Kölbach M, Pereira I J, Harbauer K, Plate P, Höflich K, Berglund S P, Friedrich D, van de Krol R, Abdi F F. Chem. Mater., 2018,30(22):8322.
[33]
Zhu Z H, Sarker P, Zhao C Q, Zhou L T, Grimm R L, Huda M N, Rao P M. ACS Appl. Mater. Interfaces, 2017,9(2):1459.
[34]
Higashi M, Domen K, Abe R. J. Am. Chem. Soc., 2012,134(16):6968.
[35]
Higashi M, Domen K, Abe R. Energy Environ. Sci., 2011,4(10):4138.
[36]
Mascaretti L, Dutta A, Kment S, Shalaev V M, Boltasseva A, Zboril R, Naldoni A. Adv. Mater., 2019,31(31):1805513.
[37]
Ingram D B, Linic S. J. Am. Chem. Soc., 2011,133(14):5202. doi: 10.1021/ja200086g

pmid: 21425795
[38]
Wang T, Lv R, Zhang P, Li C J, Gong J L. Nanoscale, 2015,7(1):77.

pmid: 25113466
[39]
Kim J K, Shi X J, Jeong M J, Park J, Han H S, Kim S H, Guo Y, Heinz T F, Fan S H, Lee C L Park J H, Zheng X L. Adv. Energy Mater., 2018,8(5):1701765.
[40]
Peerakiatkhajohn P, Yun J H, Chen H J, Lyu M Q, Butburee T, Wang L Z. Adv. Mater., 2016,28(30):6405.

pmid: 27167876
[41]
Thimsen E, Formal L F, Grätzel M, Warren S C. Nano Lett., 2011,11(1):35.

pmid: 21138281
[42]
Zhou M, Wu H B, Bao J, Liang L, Lou X W, Xie Y. Angew. Chem. Int. Ed., 2013,52(33):8579.
[43]
Zhou M, Bao J, Xu Y, Zhang J J, Xie J F, Guan M L, Wang C L, Wen L Y, Lei Y, Xie Y. ACS Nano, 2014,8(7):7088. doi: 10.1021/nn501996a

pmid: 24911285
[44]
Mohapatra S K, John S E, Banerjee S, Misra M. Chem. Mater., 2009,21(14):3048.
[45]
Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Nano Lett., 2006,6(2):215.

pmid: 16464037
[46]
Qiu Y C, Leung S F, Zhang Q P, Hua B, Lin Q F, Wei Z H, Tsui K H, Zhang Y G, Yang S H, Fan Z Y. Nano Lett., 2014,14(4):2123. doi: 10.1021/nl500359e

pmid: 24601797
[47]
Li J K, Qiu Y C, Wei Z H, Lin Q F, Zhang Q P, Yan K Y, Chen H N, Xiao S, Fan Z Y, Yang S H. Energy Environ. Sci., 2014,7(11):3651.
[48]
Ye M D, Wen X R, Wang M Y, Iocozzia J, Zhang N, Lin C J, Lin Z Q. Mater. Today, 2015,18(3):155.
[49]
Xu M, Da P M, Wu H Y, Zhao D Y, Zheng G F. Nano Lett., 2012,12(3):1503. doi: 10.1021/nl2042968

pmid: 22364360
[50]
Su J Z, Feng X J, Sloppy J D, Guo L J, Grimes C A. Nano Lett., 2011,11(1):203.

pmid: 21114333
[51]
Kuang Y B, Jia Q X, Nishiyama H, Yamada T, Kudo A, Domen K. Adv. Energy Mater., 2016,6(2):1501645. doi: 10.1002/aenm.201501645
[52]
Cornuz M, Grätzel M, Sivula K. Chem. Vap. Deposition, 2010,16(10/12):291.
[53]
Vayssieres L, Beermann N, Lindquist S E, Hagfeldt A. Chem. Mater., 2001,13(2):233.
[54]
Li Y B, Takata T, Cha D, Takanabe K, Minegishi T, Kubota J, Domen K. Adv. Mater., 2013,25(1):125.

pmid: 22987610
[55]
Iordanova N, Dupuis M, Rosso K M. J. Chem. Phys., 2005,122(14):144305.

pmid: 15847520
[56]
Li J T, Wu N Q. Catal. Sci. Technol, 2015,5(3):1360.
[57]
Wang X N, Long R, Liu D, Yang D, Wang C M, Xiong Y J. Nano Energy, 2016,24:87.
[58]
Ansari S A, Cho M H. Sci. Rep, 2016,6:25405.

pmid: 27146098
[59]
Ohno T, Mitsui T, Matsumura M. Chem. Lett., 2003,32(4):364.
[60]
Pilli S K, Furtak T E, Brown L D, Deutsch T G, Turner J A, Herring A M. Energy Environ. Sci., 2011,4(12):5028.
[61]
Zhong D K, Choi S, Gamelin D R. J. Am. Chem. Soc., 2011,133(45):18370. doi: 10.1021/ja207348x

pmid: 21942320
[62]
Meng X Y, Qin G W, Goddard W A, Li S, Pan H J, Wen X H, Qin Y K, Zuo L. J. Phys. Chem. C, 2013,117(8):3779.
[63]
Yuan Y F, Gu J W, Ye K H, Chai Z S, Yu X, Chen X B, Zhao C X, Zhang Y M, Mai W J. ACS Appl. Mater. Interfaces, 2016,8(25):16071. doi: 10.1021/acsami.6b04142

pmid: 27275649
[64]
Wang L, Lee C Y, Schmuki P. Electrochem. Commun., 2013,30:21.
[65]
Berglund S P, Rettie A J E, Hoang S, Mullins C B. Phys. Chem. Chem. Phys., 2012,14(19):7065.

pmid: 22466715
[66]
Kim E S, Nishimura N, Magesh G, Kim J Y, Jang J W, Jun H, Kubota J, Domen K, Lee J S. J. Am. Chem. Soc., 2013,135(14):5375.

pmid: 23463951
[67]
Hou Y, Zuo F, Dagg A, Feng P Y. Angew. Chem. Int. Ed., 2013,52(4):1248.
[68]
Lin Y J, Xu Y, Mayer M T, Simpson Z I, McMahon G, Zhou S, Wang D W. J. Am. Chem. Soc., 2012,134(12):5508.

pmid: 22397372
[69]
Peng Q, Wang J, Feng Z J, Du C, Wen Y W, Shan B, Chen R. J. Phys. Chem. C, 2017,121(24):12991. doi: 10.1021/acs.jpcc.7b01817
[70]
Rao P M, Cai L L, Liu C, Cho I S, Lee C H, Weisse J M, Yang P D, Zheng X L. Nano Lett., 2014,14(2):1099. doi: 10.1021/nl500022z

pmid: 24437363
[71]
Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E. Nat. Mater., 2011,10(6):456.

pmid: 21552270
[72]
Liu Q T, Liu D Y, Li J M, Kuang Y B. Front. Phys, 2019,14(5):53403.
[73]
Ma Z Z, Hou H L, Song K, Fang Z, Wang L, Gao F M, Yang W Y, Tang B, Kuang Y B. Chem. Eng. J, 2020,379: UNSP 122266.
[74]
Kim T W, Ping Y, Galli G A, Choi K S. Nat. Commun, 2015,6:8769. doi: 10.1038/ncomms9769

pmid: 26498984
[75]
Cooper J K, Scott S B, Ling Y C, Yang J H, Hao S J, Li Y, Toma F M, Stutzmann M, Lakshmi K, Sharp I D. Chem. Mater., 2016,28(16):5761.
[76]
Jang J W, Friedrich D, Müller S, Lamers M, Hempel H, Lardhi S, Cao Z, Harb M, Cavallo L, Heller R, Eichberger R, van de Krol R, Abdi F F. Adv. Energy Mater., 2017,7(22):1701536.
[77]
Wang G M, Ling Y C, Lu X H, Qian F, Tong Y X, Zhang J Z, Lordi V, Rocha Leao C, Li Y. J. Phys. Chem. C, 2013,117(21):10957.
[78]
Wang Z L, Mao X M, Chen P, Xiao M, Monny S A, Wang S C, Konarova M, Du A J, Wang L Z. Angew. Chem. Int. Ed., 2019,58(4):1030.
[79]
Ling Y C, Wang G M, Reddy J, Wang C C, Zhang J Z, Li Y. Angew. Chem. Int. Ed., 2012,51(17):4074.
[80]
Freitas A L M, Carvalho W M, Souza F L. J. Mater. Res., 2015,30(23):3595.
[81]
Zhong Y J, Li Z S, Zhao X, Fang T, Huang H T, Qian Q F, Chang X F, Wang P, Yan S C, Yu Z T, Zou Z G. Adv. Funct. Mater., 2016,26(39):7156. doi: 10.1002/adfm.v26.39
[82]
Huang H T, Feng J Y, Fu H W, Zhang B W, Fang T, Qian Q F, Huang Y Z, Yan S C, Tang J W, Li Z S, Zou Z G. Appl. Catal. B-Environ., 2018,226:111.
[83]
Feng J Y, Huang H T, Fang T, Wang X, Yan S C, Luo W J, Yu T, Zhao Y X, Li Z S, Zou Z G. Adv. Funct. Mater., 2019,29(11):1808389.
[84]
Zhang Z, YatesJ T. Chem. Rev., 2012,112(10):5520.

pmid: 22783915
[85]
Hisatomi T, Brillet J, Cornuz M, Le Formal F, Tétreault N, Sivula K, Grätzel M. Faraday Discuss., 2012,155:223.

pmid: 22470976
[86]
Le Formal F, Pendlebury S R, Cornuz M, Tilley S D, Grätzel M, Durrant J R. J. Am. Chem. Soc., 2014,136(6):2564.

pmid: 24437340
[87]
Le Formal F, Grätzel M, Sivula K. Adv. Funct. Mater., 2010,20(7):1099.
[88]
Byun S, Kim B, Jeon S, Shin B. J. Mater. Chem. A, 2017,5(15):6905.
[89]
Hisatomi T, Dotan H, Stefik M, Sivula K, Rothschild A, Grätzel M, Mathews N. Adv. Mater., 2012,24(20):2699. doi: 10.1002/adma.201104868

pmid: 22508522
[90]
Stefik M, Cornuz M, Mathews N, Hisatomi T, Mhaisalkar S, Grätzel M. Nano Lett., 2012,12(10):5431. doi: 10.1021/nl303101n

pmid: 22974097
[91]
Abe R, Takata T, Sugihara H, Domen K. Chem. Lett., 2005,34(8):1162.
[92]
Su J, Minegishi T, Domen K. J. Mater. Chem. A, 2017,5(25):13154.
[93]
Long M C, Cai W M, Kisch H. J. Phys. Chem. C, 2008,112(2):548.
[94]
Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J. J. Am. Chem. Soc., 2012,134(9):4294. doi: 10.1021/ja210755h324c7a1d-e3c1-4312-9f0e-5440e44ea68f
[95]
Le Formal F, Tétreault N, Cornuz M, Moehl T, Grätzel M, Sivula K. Chem. Sci., 2011,2(4):737. doi: 10.1039/c0sc00578afb61ed12-f223-411a-b2da-1ee7daa78c9b
[96]
Hisatomi T, Le Formal F, Cornuz M, Brillet J, Tétreault N, Sivula K, Grätzel M. Energy Environ. Sci., 2011,4(7):2512. doi: 10.1039/c1ee01194d
[97]
Fu Z W, Jiang T F, Zhang L J, Liu B K, Wang D J, Wang L L, Xie T F. J. Mater. Chem. A, 2014,2(33):13705 doi: 10.1039/C4TA02527J
[98]
Yang X G, Liu R, Du C, Dai P C, Zheng Z, Wang D W. ACS Appl. Mater. Interfaces, 2014,6(15):12005. doi: 10.1021/am500948t

pmid: 25069041
[99]
Tamirat A G, Rick J, Dubale A A, Su W N, Hwang B J. Nanoscale Horiz, 2016,1(4):243. doi: 10.1039/c5nh00098j

pmid: 32260645
[100]
Wang S C, Chen P, Yun J H, Hu Y X, Wang L Z. Angew. Chem. Int. Ed., 2017,56(29):8500. doi: 10.1002/anie.201703491
[101]
Mao C Y, Zuo F, Hou Y, Bu X H, Feng P Y. Angew. Chem. Int. Ed., 2014,53(39):10485. doi: 10.1002/anie.201406017
[102]
Han J F, Zong X, Wang Z L, Li C. Phys. m. Chem. Phys., 2014,16(43):23544.
[103]
Zhong D K, Cornuz M, Sivula K, Grätzel M, Gamelin D R. Energy Environ. Sci., 2011,4(5):1759. doi: 10.1039/c1ee01034d
[104]
Zhong M, Hisatomi T, Kuang Y B, Zhao J, Liu M, Iwase A, Jia Q X, Nishiyama H, Minegishi T, Nakabayashi M, Shibata N, Niishiro R, Katayama C, Shibano H, Katayama M, Kudo A, Yamada T, Domen K. J. Am. Chem. Soc., 2015,137(15):5053. doi: 10.1021/jacs.5b00256

pmid: 25802975
[105]
Yokoyama D, Hashiguchi H, Maeda K, Minegishi T, Takata T, Abe R, Kubota J, Domen K. Thin Solid Films, 2011,519(7):2087. doi: 10.1016/j.tsf.2010.10.05520ff3ae0-5b70-46c6-a44a-4046f10e6967
[106]
McKone J R, Warren E L, Bierman M J, Boettcher S W, Brunschwig B S, Lewis N S, Gray H B. Energy Environ. Sci., 2011,4(9):3573. doi: 10.1039/c1ee01488a
[107]
Morales-Guio C G, Tilley S D, Vrubel H, Grätzel M, Hu X. Nat. Commun., 2014,5(1):1.
[108]
Tilley S D, Schreier M, Azevedo J, Stefik M, Grätzel M. Adv. Funct. Mater., 2014,24(3):303. doi: 10.1002/adfm.v24.3
[109]
Li R G, Zhang F X, Wang D G, Yang J X, Li M R, Zhu J, Zhou X, Han H X, Li C. Nat. Commun., 2013,4:1432. doi: 10.1038/ncomms2401

pmid: 23385577
[110]
Liu L C, Ji Z Y, Zou W X, Gu X R, Deng Y, Gao F, Tang C J, Dong L. ACS Catal., 2013,3(9):2052. doi: 10.1021/cs4002755
[111]
Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat. Mater., 2009,8(1):76. doi: 10.1038/nmat2317

pmid: 18997776
[112]
Fang Y X, Li X C, Wang X C. ACS Catal., 2018,8(9):8774. doi: 10.1021/acscatal.8b02549
[113]
Fang Y X, Xu Y T, Li X C, Ma Y W, Wang X C. Angew. Chem. Int. Ed., 2018,57(31):9749. doi: 10.1002/anie.v57.31
[114]
Fang Y X, Li X C, Wang X C. ChemSusChem, 2019,12(12):2605. doi: 10.1002/cssc.201900291

pmid: 30773848
[115]
Sick T, Hufnagel A G, Kampmann J, Kondofersky I, Calik M, Rotter J M, Evans A, Döblinger M, Herbert S, Peters K, Böhm D, Knochel P, Medina D D, Fattakhova-Rohlfing D, Bein T. J. Am. Chem. Soc., 2018,140(6):2085. doi: 10.1021/jacs.7b06081

pmid: 29249151
[116]
Jin E Q, Lan Z A, Jiang Q H, Geng K Y, Li G S, Wang X C, Jiang D L. Chem., 2019,5(6):1632. doi: 10.1016/j.chempr.2019.04.015
[117]
Ifraemov R, Shimoni R, He W H, Peng G M, Hod I. J. Mater. Chem. A, 2019,7(7):3046. doi: 10.1039/C8TA10483B
[118]
Wang S B, Wang X C. Small, 2015,11(26):3097. doi: 10.1002/smll.201500084

pmid: 25917413
[119]
Rojas H C, Bellani S, Fumagalli F, Tullii G, Leonardi S, Mayer M T, Schreier M, Grätzel M, Lanzani G, Fonzo F D, Antognazza M A. Energy Environ. Sci., 2016,9(12):3710. doi: 10.1039/C6EE01655C
[120]
Bellani S, Rojas H C, Pan L F, Laitinen M, Sajavaara T, Fonzo F D, Grätzel M, Antognazza M S, Mayer M T. Sustainable Energy Fuels, 2017,1(9):1915. doi: 10.1039/C7SE00421D
[121]
Sun H J, Oner I H, Wang T, Zhang T, Selyshchev O, Neumann C, Fu Y B, Liao Z Q, Xu S Q, Hou Y, Turchanin A, Zahn D R T, Zschech E, Weidinger I M, Zhang J, Feng X L. Angew. Chem. Int. Ed., 2019,58(30):10368. doi: 10.1002/anie.v58.30
[122]
Zhang G G, Lan Z A, Wang X C. Angew. Chem. Int. Ed., 2016,55(51):15712. doi: 10.1002/anie.201607375
[123]
Xie J J, Shevlin S A, Ruan Q S, Moniz S J A, Liu Y R, Liu X, Li Y M, Lau C C, Guo Z X, Tang J W. Energy Environ. Sci., 2018,11(6):1617. doi: 10.1039/C7EE02981K
[124]
Luo J S, Steier L, Son M K, Schreier M, Mayer M T, Grätzel M. Nano Lett., 2016,16(3):1848. doi: 10.1021/acs.nanolett.5b04929

pmid: 26866762
[125]
Wang F X, Septina W, Chemseddine A, Abdi F F, Friedrich D, Bogdanoff P, Krol R V D, Tilley S D, Berglund S P. J. Am. Chem. Soc., 2017,139(42):15094. doi: 10.1021/jacs.7b07847

pmid: 28968492
[126]
Ida S, Yamada K, Matsunaga T, Hagiwara H, Matsumoto Y, Ishihara T. J. Am. Chem. Soc., 2010,132(49):17343. doi: 10.1021/ja106930f

pmid: 21090676
[127]
Zhao J, Minegishi T, Kaneko H, Ma G J, Zhong M, Nakabayashi M, Hisatomi T, Katayama M, Shibata N, Yamada T, Domen K. Chem. Commun., 2019,55(4):470. doi: 10.1039/C8CC08623K
[128]
Lee M H, Takei K, Zhang J J, Kapadia R, Zheng M, Chen Y Z, Nah J, Matthews T S, Chueh Y L, Ager J W, Javey A. Angew. Chem. Int. Ed., 2012,51(43):10760.
[129]
Wang Y J, Vanka S, Gim J, Wu Y P, Fan R L, Zhang Y Z, Shi J W, Shen M R, Hovden R, Mi Z T. Nano Energy, 2019,57:405.
[130]
Yang W, Ahn J, Oh Y, Tan J, Lee H, Park J, Kwon H C, Kim J, Jo W, Kim J, Moon J. Adv. Energy Mater., 2018,8(14):1702888.
[131]
Yu Y X, Pan L, Son M K, Mayer M T, Zhang W D, Hagfeldt A, Luo J S, Grätzel M. ACS Energy Lett., 2018,3(4):760.
[132]
Matsumoto Y. J. Solid State Chem., 1996,126(2):227.
[133]
Scanlon D O, Godinho K G, Morgan B J, Watson G W. J. Chem. Phys., 2010,132(2):024707. doi: 10.1063/1.3290815

pmid: 20095694
[134]
Kang U, Choi S K, Ham D J, Ji S M, Choi W Y, Han D S, Abdel-Wahab A, Park H. Energy Environ. Sci., 2015,8(9):2638.
[135]
Read C G, Park Y, Choi K S. J. Phys. Chem. Lett., 2012,3(14):1872. doi: 10.1021/jz300709t

pmid: 26292007
[136]
Prévot M S, Guijarro N, Sivula K. ChemSusChem, 2015,8(8):1359. doi: 10.1002/cssc.201403146

pmid: 25572288
[137]
Jang Y J, Park Y B, Kim H E, Choi Y H, Choi S H, Lee J S. Chem. Mater., 2016,28(17):6054.
[138]
Prévot M S, Li Y, Guijarro N, Sivula K. J. Mater. Chem. A, 2016,4(8):3018.
[139]
Oh Y, Yang W, Kim J, Jeong S, Moon J. ACS Appl. Mater. Interfaces, 2017,9(16):14078. doi: 10.1021/acsami.7b01208

pmid: 28388029
[140]
Oh Y, Yang W, Tan J, Lee H, Park J, Moon J. Nanoscale, 2018,10(8):3720. doi: 10.1039/c7nr07351h

pmid: 29411823
[141]
Oh Y, Yang W, Tan J, Lee H, Park J, Moon J. Adv. Funct. Mater., 2019,29(17):1900194.
[142]
Prévot M S, Jeanbourquin X A, Bourée W S, Abdi F, Friedrich D, Krol R V D, Guijarro N, Formal F L, Sivula K. Chemistry of Materials, 2017,29(11):4952.
[143]
Jiang C M, Reyes-Lillo S E, Liang Y F, Liu Y S, Liu G J, Toma F M, Prendergast D, Sharp I D, Cooper J K. Chem. Mater., 2019,31(7):2524.
[144]
Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H. Nature, 1997,389(6654):939.
[145]
Das R, Karna S, Lai Y C, Chou F C. Cryst. Growth Des, 2015,16(1):499.
[146]
Matsumoto Y, Sugiyama K, Sato E I. J. Solid State Chem., 1988,74(1):117.
[147]
Candeia R A, Bernardi M I B, Longo E, Santos I M G, Souza A G. Mater. Lett., 2004,58(5):569. doi: 10.1016/S0167-577X(03)00563-9
[148]
Matsumoto Y, Omae M, Sugiyama K, Sato E. J. Phys. Chem., 1987,91(3):577.
[149]
Ida S, Yamada K, Matsuka M, Hagiwara H, Ishihara T. Electrochim. Acta, 2012,82:397. doi: 10.1016/j.electacta.2012.03.174
[150]
Cao J Y, Kako T, Li P, Ouyang S, Ye J H. Electrochem. Commun, 2011,13(3):275. doi: 10.1016/j.elecom.2011.01.002
[151]
Ida S, Kearney K, Futagami T, Hagiwara H, Sakai T, Watanabe M, Rockett A, Ishihara T. Sustainable Energy Fuels, 2017,1(2):280. doi: 10.1039/C7SE00084G
[152]
Sekizawa K, Nonaka T, Arai T, Morikawa T. ACS Appl. Mater. Interfaces, 2014,6(14):10969. doi: 10.1021/am502500y

pmid: 24983410
[153]
Wheeler G P, Choi K S. ACS Appl. Energy Mater., 2018,1(9):4917. doi: 10.1021/acsaem.8b00934
[154]
Díez-García M I, Gómez R. ACS Appl. Mater. Interfaces, 2016,8(33):21387. doi: 10.1021/acsami.6b07465

pmid: 27466695
[155]
Kim E S, Kang H J, Magesh G, Kim J Y, Jang J W, Lee J S. ACS Appl. Mater. Interfaces, 2014,6(20):17762. doi: 10.1021/am504283t

pmid: 25232699
[156]
Ahmed M G, Kandiel T A, Ahmed A Y, Kretschmer I, Rashwan F, Bahnemann D. J. Phys. Chem. C, 2015,119(11):5864. doi: 10.1021/jp512804p
[157]
Jones A, Islam M S. J. Phys. Chem. C, 2008,112(12):4455. doi: 10.1021/jp710463x
[158]
Zhu Y L, Zhou W, Yu J, Chen Y B, Liu M L, Shao Z P. Chem. Mater., 2016,28(6):1691. doi: 10.1021/acs.chemmater.5b04457
[159]
Tijare S N, Joshi M V, Padole P S, Mangrulkar P A, Rayalu S S, Labhsetwar N K. Int. J. Hydrogen Energy, 2012,37(13):10451. doi: 10.1016/j.ijhydene.2012.01.120
[160]
Yu Q, Meng X G, Wang T, Li P, Liu L Q, Chang K, Liu G G, Ye J H. Chem. Commun, 2015,51(17):3630. doi: 10.1039/C4CC09240F
[161]
Wheeler G P, Choi K S. ACS Energy Lett., 2017,2(10):2378. doi: 10.1021/acsenergylett.7b00642
[162]
Pawar G S, Tahir A A. Sci. Rep, 2018,8(1):3501. doi: 10.1038/s41598-018-21821-z

pmid: 29472692
[163]
Diez-Garcia M I, Gomez R. ChemSusChem, 2017,10(11):2457. doi: 10.1002/cssc.201700166

pmid: 28317341
[164]
Wheeler G P, Baltazar V U, Smart T J, Radmilovic A, Ping Y, Choi K S. Chem. Mater., 2019,31(15):5890. doi: 10.1021/acs.chemmater.9b02141
[165]
Pawar G S, Elikkottil A, Seetha S, Reddy K S, Pesala B, Tahir A A, Mallick T K. ACS Appl. Energy Mater., 2018,1(7):3449. doi: 10.1021/acsaem.8b00628
[166]
Pawar G S, Elikkottil A, Pesala B, Tahir A A, Mallick T K. Int. J. Hydrogen Energy, 2019,44(2):578. doi: 10.1016/j.ijhydene.2018.10.240
[167]
Li F S, Xu R, Nie C M, Wu X J, Zhang P L, Duan L L, Sun L C. Chem. Commun, 2019,55(86):12940. doi: 10.1039/C9CC06781G
[168]
Lumley M A, Radmilovic A, Jang Y J, Lindberg A E, Choi K S. J. Am. Chem. Soc., 2019,141(46):18358. doi: 10.1021/jacs.9b07976

pmid: 31693356
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[3] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[4] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[5] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[6] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[7] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[8] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[9] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[10] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[11] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[12] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[13] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[14] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[15] Geng Gao, Keyu Zhang, Qianwen Wang, Libo Zhang, Dingfang Cui, Yaochun Yao. Metal Oxalate-Based Anode Materials: A New Choice for Energy Storage Materials Applied in Metal Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 434-446.