中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (9): 1368-1375 DOI: 10.7536/PC200123 Previous Articles   Next Articles

• Review •

Thin Film Protection Strategy of Ⅲ-Ⅴ Semiconductor Photoelectrode for Water Splitting

Xuqiang Zhang1, Gongxuan Lu1,*()   

  1. 1. State Key Laboratory for Oxo Synthesis and Selective Oxidation,Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received: Revised: Online: Published:
  • Contact: Gongxuan Lu
Richhtml ( 12 ) PDF ( 1547 ) Cited
Export

EndNote

Ris

BibTeX

Due to high radiation resistance, good temperature characteristics and stability at high temperature, photoelectrodes integrated by Ⅲ-Ⅴ semiconductor materials, such as GaAs, GaP and InP, show higher solar absorption efficiency and photoelectric conversion efficiency compared with photoelectrodes constructed from other materials. However, the physical and chemical properties of most Ⅲ-Ⅴ semiconductors in aqueous electrolytes are very unstable, resulting in a rapid degradation of solar-driven water splitting performance. The recent progress of protective layer films research in improving the electrochemical stability of Ⅲ-Ⅴ semiconductor photoelectrodes are reviewed. In order to obtain a stable and efficient photoelectric reaction interface and the water splitting efficiency, the reasons of material attenuation and corresponding improvement methods have been highlighted. In addition, the future development of thin-layer protection strategies to obtain more efficient solar-driven water splitting devices based on Ⅲ-Ⅴ semiconductors have been prospected.

Contents

1 Introduction

2 Mechanisms of corrosion of Ⅲ-Ⅴ group semiconductors and protective measures

3 Protection of photocathode of Ⅲ-Ⅴ group semiconductors in solar-driven water splitting

4 Protection of photoanode in solar-driven water splitting

5 Conclusion

Fig.1 Schematic illustration of the energy band diagrams of semiconductor photoelectrodes for solar water splitting:(a) single-photon route;(b) two-photon route;(c) multi-photon route[9]
Fig.2 Schematic diagram for blende crystal structure of GaAs[10]
Fig.3 (a) Stable and(b) unstable band alignment for semiconductor electrodes,where n E decomp and p E decomp are cathodic decomposition potential and anodic decomposition potential[17]
Table 1 The performance of Ⅲ-Ⅴ semiconductor photoelectrodes with protection layer protects for hydrogen evolution performance
Fig.4 SEM image of the InP nanoarrays coated with dense TiO2 film;(b) J-E data for TiO2/InP[34]
Fig.5 (a) Cross-section of an integrated GaAs photocathode fabricated by printing-assembly method;(b) Current density-time(J-t) plots of integrated GaAs photocathodes[38]
Fig.6 (a) Scheme of SrTiO3/np-GaAs(001) photocathode with the 16 nm-thick protection layer.(b) The high-angle annular dark-field imaging and interface atomic structure of the SrTiO3/np-GaAs(001).(c) The corresponding energy alignment at the water/SrTiO3 on SrTiO3/GaAs(001) interfaces.(d) The XPS valence band offset at the SrTiO3/n-GaAs(001) interface[39]
Fig.7 (a) Cross-sectional SEM image of a GaAs/InGaP/TiO2/Ni 2 J structural photoelectrode[40].(b) Schematic illustration of the 3 J structural GaN-GaInP2/GaAs/Ge protected by multifunctional GaN nanostructures[41]
Fig.8 Schematic structure and an expected band diagram of the n-Si/p-CuI/nip a-Si/np GaP/RuO2 electrode [53]
Table 2 The oxygen evolution performance of Ⅲ-Ⅴ semiconductors(such as GaAs, InP, GaP, GaInP2, GaAlAs) with protection layers
Fig.9 (a) Cross-sectional scheme of a stable photoanode against corrosion.(b) The photocurrent density of 2 nm Ni/118 nm TiO2-coated np +-GaAs and n-GaP photoelectrodes[29]
Fig.10 Scheme of p-GaAs(100) modified with surface dipoles[56]
[1]
Fujishima A , Honda K. Nature, 1972, (238): 37.
[2]
Wang M , Li Z , Wu Y , Ma J , Lu G. J. Catal., 2017, 353: 162.
[3]
Zhang X , Lu G. Carbon, 2016, 108: 215.
[4]
Dimroth F , Grave M , Beutel P , Fiedeler U , Karcher C , Tibbts T N D, Oliva E, Siefer G, Schachtner M, Wekkeli A, Bett A W, Krause R. Piccin M, Blanc N, Drazek C, Guiot E, Ghyselen B, Salvetat T, Tauzin A, Signamacheix T, Dobrich A, Hannappel T, Schwarzburg K. Prog. Photovolt: Res. Appl., 2014, 22(3): 277.
[5]
Zhang X , Tian B , Zhen W , Li Z , Wu Y , Lu G. J. Catal., 2017, 354: 258.
[6]
王蒙( Wang M ), 马建泰(Ma J T), 吕功煊(Lu G X). 分子催化(J. Mol. Catal., 2019, 33(5): 461.
[7]
时晓羽( Shi X Y ), 李会鹏(Li H B), 赵华(Zhao H). 分子催化(J. Mol. Catal., 2019, 33(4): 391.
[8]
赵云霏( Zhao Y F ), 毋瑞仙(Wu R X), 蒋平平(Jiang P P), 董玉明(Dong Y M). 分子催化(J. Mol. Catal., 2018, 32(2): 142.
[9]
Wang Y , Wu Y , Schwartz J , Sung C , Hovden R , Mi Z. Joule, 2019, 3(10): 2444.
[10]
李龙( Li L ). Master Dissertation of Taiyuan University of Technology, 2013.
[11]
Chakrabarty S , Mandia A K , Muralidharan B , Lee S , Bhattacharjee S. J. Phys: Condes. Mat., 2019, 32(13): 135704.
[12]
Hiraiwa K , Muranaga W , Iwayama S , Takeuchi T , Kamiyama S , Iwaya M , Akasaki I. J. Cryst. Growth, 2020, 531: 125357.
[13]
Gupta N D. J. Nanosct. Nanotechno., 2020, 20(6): 3939.
[14]
Lu Q , Marshall A , Krier A. Materials, 2019, 12(11): 1743.
[15]
Diao Y , Liu L , Xia S. Appl. Surf. Sci., 2020, 501: 144231.
[16]
Oe T , Matsuhiro K , Itatani T , Gorwadkar S , Kiryu S , Kaneko N. Phys. Status. Solidi. C, 2012, 9(2): 270.
[17]
Hu S , Lewis N S , Ager J W , Yang J , Mckone J R , Strandwitz N C. J. Phys. Chem. C, 2015, 119(43): 24201.
[18]
Tsai M J , Fahrenbruch A L , Bube R H. J. Appl. Phys., 1980, 51(5): 2696.
[19]
George S M. Chem. Rev., 2009, 110(1): 111.
[20]
Djokic S S , Ed. In Electrodeposition: Theory and Practice; Modern Aspects of Electrochemistry. Springer: New York, 2010.
[21]
Kanan M W , Surendranath Y , Nocera D G. Chem. Soc. Rev., 2009, 38(1): 109.
[22]
Lev O , Wu Z , Bharathi S , Glezer V , Modestov A , Gun J , Rabinovich L , Sampath S. , Chem. Mater. 1997, 9(11): 2354.
[23]
Yuan J , Tsujikawa S. J. Electrochem. Soc., 1995, 142(10): 3444.
[24]
Gerischer H. J. Electroanal. Chem., 1977, 82(1/2): 133.
[25]
Chen S , Wang L W. Chem. Mater., 2012, 24(18): 3659.
[26]
Nikolaychuk P A. Silicon, 2014, 6(2): 109.
[27]
Gronet C M , Lewis N S. Nature, 1982, 300(5894): 733.
[28]
Bansal A , Lewis N S. J. Phys. Chem. B, 1998, 102(21): 4058.
[29]
Hu S , Shaner M R , Beardslee J A , Lichterman M , Brunschwig B S , Lewis N S. Science, 2014, 344(6187): 1005.
[30]
Warren E L , McKone J R, Atwater H A, Gray H B, Lewis N S.Energy Environ. Sci., 2012, 5(11): 9653.
[31]
Roske C W , Popczun E J , Seger B , Read C G , Pedersen T , Hansen O , Vesborg P C K, Brunschwig B S, Schaak R E, Chorkendorff I, Gray H B, Lewis N S. J. Phys. Chem. Lett., 2015, 6(9): 1679.
[32]
Heller A , Vadimsky R G. Phys. Rev. Lett., 1981, 46(17): 1153.
[33]
Yokoyama D , Minegishi T , Maeda K , Katayma M , Kubota J , Yamada A , Konagai M , Domen K. Electrochem. Commun., 2010, 12(6): 851.
[34]
Lee M H , Takei K , Zhang J , Kapadia R , Zheng M , Chen Y , Nah J , Matthews T S , Chueh Y , Ager J W , Javey A. Angew. Chem. Int. Edit., 2012, 51(43): 10760.
[35]
Lin Y , Kapadia R , Yang J , Zheng M , Chen K , Hettick M , Yin X , Battaglia C , Sharp I D , Ager J W , Javey A. J. Phys. Chem. C, 2015, 119(5): 2308.
[36]
Kohl P A , Frank S N , Bard A J. J. Electrochem. Soc., 1977, 124(2): 225.
[37]
Hou B , Rezaeifar F , Qiu J , Zeng G , Kapadia R , Cronin S B. Appl. Phys. Lett., 2017, 111(14): 141603.
[38]
Kang D , Young J L , Lim H , Klein W , Chen H , Xi Y , Gai B , Deutsch T G , Yoon J. Nat. Energy, 2017, 2(5): 17043.
[39]
Kornblum L , Fenning D P , Faucher J , Hwang J , Boni A , Han M G , Morales-Acosta M D, Zhu Y, Altman E I, Lee M L, Ahn C H, Walker F J, Shao-Horn Y. Energy Environ. Sci., 2017, 10(1): 377.
[40]
Verlage E , Hu S , Liu R , Jones R J R, Sun K, Xiang C, Lewis N S, Atwater H A. Energy Environ. Sci., 2015, 8(11): 3166.
[41]
Wang Y , Schwartz J , Gim J , Hovden R , Mi Z. ACS Energy Lett., 2019, 4: 1541.
[42]
Zhou X , Liu R , Sun K , Chen Y , Verlage E , Francis S A , Lewis N S , Xiang C. ACS Energy Lett., 2016, 1(4): 764.
[43]
Aharon-Shalom E , Heller A. J. Electrochem. Soc., 1982, 129(12): 2865.
[44]
Chee K W A , Hu Y . Superlattece Microst., 2018, 119: 25.
[45]
May M M , Lewerenz H J , Lackner D , Dimroth F , Hannappel T. Nat. Commun. 2015, 6: 8286.
[46]
Nakato Y , Ohnishi T , Tsubomura H. Chem. Lett., 1975, 4(8): 883.
[47]
Harris L A , Gerstner M E , Wilson R H. J. Electrochem. Soc., 1977, 124(10): 1511.
[48]
Khaselev O , Turner J A. Electrochem. Solid-State Lett., 1999, 2(7): 310.
[49]
Tomkiewicz M , Woodall J M. J. Electrochem. Soc., 1977, 124(9): 1436.
[50]
Kainthla R C , Zelenay B , Bockris J O. J. Electrochem. Soc., 1987, 134: 841.
[51]
Kraft A , Görig B , Heckner K H. Sol. Energy Mat.Sol. C, 1994, 32(2): 151.
[52]
Hayashi T , Deura M , Ohkawa K. Japanese J. Appl. Phys., 2012, 51(11R): 112601.
[53]
Yamane S , Kato N , Kojima S , Imanishi A , Ogawa S , Yoshida N , Nonmura S , Nakato Y. J. Phys. Chem. C, 2009, 113(32): 14575.
[54]
Zeng J , Xu X , Parameshwaran V , Baker J , Bent S , Wong H S P, Clemens B. J. Electron. Mater., 2018, 47(2): 932.
[55]
Sun K , Kuang Y , Verlage E , Brunschwig B S , Tu C W , Lewis N S. Adv. Energy Mater., 2015, 5(11): 1402276.
[56]
Garner L E , Steirer K X , Young J L , Anderson N C , Miller E M , Tinkham J S , Deutsch T G , Sellinger A , Turener J A , Neale N R. ChemSusChem, 2017, 10(4): 767.
[1] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[2] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[3] Shixiang Xue, Pan Wu, Liang Zhao, Yanli Nan, Wanying Lei. The Application of CoFe Layered Double Hydroxide-Based Materials in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(12): 2686-2699.
[4] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[5] Xiangjuan Chen, Huan Wang, Weijia An, Li Liu, Wenquan Cui. Study on Photoelectrocatalysis of Organic Carbon Materials [J]. Progress in Chemistry, 2022, 34(11): 2361-2372.
[6] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[7] Yifan Lei, Shengbin Lei, Lingyu Piao. Preparation of H2O2 By Photocatalytic Reduction of Oxygen [J]. Progress in Chemistry, 2021, 33(1): 66-77.
[8] Jining Zhang, Shuang Cao, Wenping Hu, Lingyu Piao. Hydrogen Production by Photoelectrocatalytic Seawater Splitting [J]. Progress in Chemistry, 2020, 32(9): 1376-1385.
[9] Xin Ni, Yang Zhou, Ruiqin Tan, Yongbo Kuang. Fabrication and Modification of Ferrite Photocathodes for Photoelectrochemical Water Splitting [J]. Progress in Chemistry, 2020, 32(10): 1515-1534.
[10] Yajing Chen, Xubing Li, Chenho Tung, Lizhu Wu. Artificial Photosynthesis for Hydrogen Production [J]. Progress in Chemistry, 2019, 31(1): 38-49.
[11] Lishan Peng, Zidong Wei*. Design and Product Engineering of High-Performance Electrode Catalytic Materials for Water Electrolysis [J]. Progress in Chemistry, 2018, 30(1): 14-28.
[12] Zhang Lingfeng, Hu Zhongpan, Liu Xinying, Yuan Zhongyong. Noble-Metal-Free Co-Catalysts for TiO2-Based Photocatalytic H2-Evolution Half Reaction in Water Splitting [J]. Progress in Chemistry, 2016, 28(10): 1474-1488.
[13] Zhai Kang, Li Kongzhai, Zhu Xing, Wei Yonggang. Oxygen Exchange Materials Used in Two-Steps Thermochemical Water Splitting for Hydrogen Production [J]. Progress in Chemistry, 2015, 27(10): 1481-1499.
[14] Zhou Wenli, Xie Qingji, Lian Shixun. Photoelectrode Materials for Solar Water Splitting [J]. Progress in Chemistry, 2013, 25(12): 1989-1998.
[15] Liu Lei, Liu Jingang*. Bioinspired Catalysis for New Energy Exploration and CO2 Photoreduction [J]. Progress in Chemistry, 2013, 25(04): 563-576.