中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (5): 1042-1060 DOI: 10.7536/PC210636 Previous Articles   Next Articles

• Review •

Graphynes for Photocatalytic and Photoelectrochemical Applications

Xiaoqing Ma()   

  1. School of Materials Engineering, Shanghai University of Engineering Science,Shanghai 201620, China
  • Received: Revised: Online: Published:
  • Contact: Xiaoqing Ma
  • Supported by:
    National Natural Science Foundation of China(52002241)
Richhtml ( 61 ) PDF ( 796 ) Cited
Export

EndNote

Ris

BibTeX

Long-term and efficient utilization of solar energy is an eternal issue for sustainable development. Among the solar energy conversion techniques, photo(electro)catalysis plays an overwhelming role in clean energy production and pollutant treatment. Carbon-based catalysts have been studied as promising candidates achieving low cost, high energy conversion efficiency and environmental friendliness. Very recently, the family of graphynes (GYs) is rising as a superb new star of carbon allotrope. It consists of merely sp- and sp2- hybridized carbon atoms, constructing a huge conjugated network and expanded two-dimensional porous structure. The unique topological structures endow GYs distinctive semiconductor and optical properties, excellent charge mobility and intrinsic band gap. Therefore, a broad application in the conversion and utilization of solar energy is expected. Since graphdiyne, one of the graphyne-family members has been firstly synthesized in 2010, many efforts have been made in the fields of photo(electro)catalysis. The enhanced photocatalytic or photoelectrocatalytic efficiencies of these carbon allotropes either alone or combined with other photocatalysts are reported. Generally, according to current reports, the enhancements are mainly attributed to the high carrier mobility promoting charge transfer, the natural pore structure which is conductive to mass transport and more exposed active sites for catalysis. However, as a newly-emerged family of carbon allotrope, the essential potential of GYs-based photocatalysts are expected to be further explored. In this review, the synthesis of GYs with different morphology and the structural characterization methods are briefly introduced. Then the photocatalysts based on GYs for specific chemical reactions are comprehensivey included. The synthesis, performances and mechanisms of these photocatalysts are elucidated systematically in the applications of polution degradation, water splitting, CO2 reduction and photoelectrolysis as well as nitrogen fixation and bacterial disinfection (noted in few reports). Furthermore, some problems existing in the current research are put forward, and the perspectives and challenges are presented aiming at photo(electro)catalytic efficiency elevations.

Contents

1 Introduction

2 Synthesis and structures of graphynes

2.1 First synthesis of two-dimensional graphdiyne films

2.2 Preparation of graphdiyne with controlled morphology

2.3 Mechanochemical synthesis of γ-graphyne and its derivatives

2.4 Characterization of graphynes

3 Preparation and applications of GYs-based photocatalysts

3.1 Water treatment

3.2 Photoelectrode materials

3.3 Photocatalytic water splitting

3.4 Photocatalytic CO2 reduction

4 Conclusions and outlook

Fig. 1 Number of yearly publications and citations from 2010 to 2021 involving the topic keywords “graphyne” or “graphdiyne.” Retrieved on May 2nd, 2021 from the Web of Science database
Fig. 2 Publications of keywords “photocatal*” or “photoelectroc*” among “graphyne or graphdiyne” families. Retrieved on May 2nd, 2021 from the Web of Science database
Fig. 3 Classification and structures of graphynes
Fig. 4 The synthetic route of graphdiyne films[40]. Copyright 2010, Royal Society of Chemistry
Fig. 5 Schematic illustration of liquid/liquid and gas/liquid interfacial synthetic procedure, and micrographs[42].(a) Schematic illustration and (b) photo of liquid/liquid interfacial synthetic procedure; (c) gas/liquid interfacial synthesis and transfer process; (d) SEM micrograph on HMDS/Si(100); (e) TEM micrograph on an elastic carbon grid; (f) AFM topographicimage on HMDS/Si(100) and its cross-sectional analysis along the blue line. Copyright 2017, American Chemical Society
Fig. 6 Preparation process of one-dimensional graphynes[46,50,53].(a) The process to fabricate GDNT arrays[46]; (b) Schematic illustration of the VLS process in the growth of GDNWs[50]; (c) The schematic illustration shows the stepwise dehalogenative homocoupling reactions, which results in the formation of a graphyne nanowire[53]. Copyright 2011, American Chemical Society; Copyright 2012, Royal Society of Chemistry; Copyright 2020, Royal Society of Chemistry
Fig. 7 Preparation processes of 3D graphdiynes[43,48,54,55].(a) Schematic illustration of the experimental setup for the synthesis of graphdiyne nanowalls on Cu substrate[54]; (b) Schematic illustration of GDY nanowalls on arbitrary substrates via copper envelope catalysis[43]; (c) Illustrations of the “explosion” preparation processes.[55]; (d) Schematic illustration of the experimental setup for the 3DGDY synthesis using diatomite as template[48]. Copyright 2015, American Chemical Society; Copyright 2017, Wiley-VCH; Copyright 2017, Royal Society of Chemistry; Copyright 2018, Wiley-VCH
Fig. 8 Preparation and characterization of γ-graphyne and nitrogen-doped graphyne[63,68].(a) Preparation of γ-graphyne using benzene as precursor; (b) UV-vis diffusion reflectance spectra (insert: the photo of sample), and (c) energy band of γ-graphyne[63]; (d) Preparation, (e) N 1s XPS spectra and (f) structural unit of nitrogen doped γ-graphyne[68]. Copyright 2018, Elsevier; Copyright 2020, Wiley-VCH
Fig. 9 Characterizations of morphology and crystal structures for graphynes[40,54,64].SEM images of graphdiyne nanowalls on Cu substrate: (a) top view, (b) cross-sectional view; (c) AFM image of an exfoliated sample on Si/SiO2 substrate[54]; (d~e) HRTEM image, and (f) SAED patterns of γ-graphyne[64]; (g) HRTEM image, (h) SAED patterns, and (i) XRD pattern of graphdiyne film[40]. Copyright 2015, American Chemical Society; Copyright 2019, Royal Society of Chemistry; Copyright 2010, Royal Society of Chemistry
Fig. 10 Characterizations of chemical bonding of the carbon atoms for graphynes[40,63,80].(a) Calculated Raman spectra of GDY[80] ; (b) Raman spectra and (d,e) XPS spectra of graphdiyne film[40]; (c) Raman spectra and (f) C1s XPS spectra of γ-graphyne[63]. Copyright 2016, American Chemical Society; Copyright 2010, Royal Society of Chemistry; Copyright 2018, Elsevier
Table 1 Application of the reported GYs-based photocatalysts.
No. Photocatalysts Applications Performances Roles ref
1 P25-GDY MB degaradation 4.5% increase than P25-graphene e- acceptor 82
2 TiO2@β-GDY MB degaradation >TiO2@γ-GDY>TiO2 e- acceptor 83
3 GDY-NTNS RhB degaradation 1.6 times faster than NTNS e- pool 84
4 ZnO-GDY MB degaradation 2-fold higher than ZnO e- acceptor 85
5 Ag3PO4@γ-GY NFL/HNP/PH degaradation 10~20 times higher than Ag3PO4 e- transfer 86
6 Ag3PO4/GDY emulsion MB degaradation;
Water oxidation
>Ag3PO4/graphene>Ag3PO4/CNT> Ag3PO4 e- acceptor;
hole transfer mediator
87
7 TA-BGY MO degaradation;
E.coli inactivation
99% (8h), 150 mW·cm-2 Xe
100% (1h), 100 mW·cm-2 Xe
Host 88
8 Ag/AgBr/GO/GDY MO degaradation >Ag/AgBr/GDY>Ag/AgBr/GO>Ag/AgBr e- collector 89
9 TiO2 /GDY RhB degaradation
Antibacterial
- e- transfer
Biocompatibility
90
10 CdSe QDs/GDY Photocathode H2 : 90% ± 5% faradic efficiency h+ transfer 91
11 GDY/BiVO4 Photoanode Iph two times BiVO4 h+ extraction 43
12 Superhydrophilic CoAl-LDH/GDY /BiVO4 Photoanode 3.15 mA·cm-2 (1.23 V vs. RHE) Interfacial mass/
e-transfer
92
13 g-C3N4/GDY Photocathode Iph 3-folds higher than g-C3N4 h+ transfer 93
14 g-C3N4/GDY/NiFe-LDH Photoanode Iph 45-folds higher than g-C3N4 h+ transport 94
15 GDYO/TiO2 Photocathode Iph 10-folds higher than TiO2 Charge transfer 95
16 SiHJ/GDY/NiOx Photoanode Iph twice higher than SiHJ/NiOx Conductivity; catalytic activity 96
17 PTEB Photocathode 10 μA·cm-2 (0.3 V vs RHE) Host 97
18 Pyr-GDY Photocathode 12 times GDY Host 98
19 γ-GY/TiO2 NT Photoanode
PEC degradation
PEC NH3 synthesis
1.3~6.5 folds higher than TiO2 Heterojunction 99
20 Ag3PO4/GDY/g-C3N4 O2 evolution 12.2 times higher than Ag3PO4 e-/h+ mediator 100
21 GDYO O2 evolution 31 times GDY Host 23
22 CdS/GDY H2 evolution 2.6 folds higher than CdS h+ transfer 101
23 NiBi/GDY H2 evolution 2.9 and 4.5 times higher than NiBi/graphene and NiBi e- donating 102
24 TiO2/γ-GY H2 evolution 8.4-folds higher than TiO2 Type II heterojunction 66
25 TiO2/MoSe2/ γ-GY H2 evolution 6.2 times TiO2 Heterojunction 67
26 GDY-CuI H2 evolution 15.8 times GDY; 3.0 times CuI - 103
27 PDBA H2 evolution
Photocathode
340 μmol·h-1·g-1(Pt, TEOA, >420 nm)
10 μA·cm-2 (0.3 V vs RHE)
Host 104
28 TiO2/GDY CO2 reduction 50.53 μmol·h-1·g-1 CO Cocatalyst 105
29 CdS/GDY CO2 reduction 18.72 μmol·h-1·g-1 CO2 conversion Adsorption sites
e- transfer
106
30 g-C3N4/GDY CO2 reduction 18~20 times increase (vs g-C3N4) Carrier mobility 107
31 N-GDY NADH regeneration 35% yield in 3 h Host 108
Fig. 11 The performances and schematic illustrations of photodegradation process for graphdiynes combined with TiO2, ZnO and Ag3PO4[82,84-86,89,111].(a) Schematic structure of P25-GDY and tentative processes of the photodegradation of methylene blue (MB) over P25-GDY[82]; (b) CB, VB position of different TiO2-GDY composites[111]; Schematic illustration of photocatalytic mechanism for (c) GDY-NTNS[84], (d) GDY-ZnO[85], (e) Ag3PO4@γ-GY composites[86]; (f) Photocatalytic performances of Ag/AgBr, Ag/AgBr/GO, Ag/AgBr/GDY, and Ag/AgBr/GO/GDY toward the photodegradation of MO pollutant under visible-light irradiation[89]. Copyright 2012, Wiley-VCH; Copyright 2013, American Chemical Society; Copyright 2018, Springer; Copyright 2015, American Chemical Society; Copyright 2020, Elsevier; Copyright 2015, Royal Society of Chemistry
Fig. 12 The mechanism of photogenerated carrier transfer, morphology and performances of graphdiyne-based photoelectrode[43,91,93,94,99].(a) Schematic diagram of the PEC Cell, consisting of the CdSe QDs/GDY photocathode; (b) SEM image of the assembled CdSe QDs/GDY film[91]; (c) Schematic illustration of GDY/BiVO4 photoanodes in a PEC setup and the migration of the photogenerated excitons at the interface; (d) Hole injection yield of BiVO4 and GDY/BiVO4 photoanodes[43]; (e) Band structures of g-C3N4 and GDY[93]; (f) SEM image of the g-C3N4/GDY/NiFe-LDH structure[94]; (g) Ammonia synthesis rate of pristine TNT and GY/TNT sample under di?erent condition[99]. Copyright 2016, American Chemical Society; Copyright 2017, Wiley-VCH; Copyright 2018, Wiley-VCH; Copyright 2020, Wiley-VCH; Copyright 2021, Elsevier
Fig. 13 Schematic illustration of preparation and charge carrier transfer of graphdiyne-based photocatalysts for H2 evolution[100,101,103].(a) Preparation of CdS/GDY composite and its photocatalytic process[101]; (b) Possible electron transfer mechanism of the APO/GDY/CN Z-scheme system[100]; Hydrogen evolution mechanism analysis of (c) GDY-CuI and (d) their photos[103]. Copyright 2019, American Chemical Society; Copyright 2018, Elsevier; Copyright 2020, Wiley-VCH
Fig. 14 (a) Photocatalytic process, (b) band structure diagram and (c) hydrogen production activity of TiO2/ γ-GY composites[66]; (d) HRTEM, (e) band structure diagram, and (f) hydrogen production activity of TiO2/ MoSe2 /γ-GY ternary complex[67]. Copyright 2018, Royal Society of Chemistry; Copyright 2020, Springer
Fig. 15 The mechanism and performances of photocatalytic CO2 reduction for graphdiyne-based heterostructures.(a) Schematic illustration of TiO2/GDY heterojunction; (b) Photocatalytic activities of CO2 reduction over TiO2/GDY samples[105];(c) CH4, CH3OH and CO evolution during photocatalytic CO2 reduction over pure CdS, CdG and CdGDY[106]; (d) Proposed mechanism of photocatalytic CO2 reduction over GDY@CNtb[107]. Copyright 2019, Wiley VCH; Copyright 2020, Royal Society of Chemistry; Copyright 2021, Elesevier
[13]
Kang J, Li J B, Wu F M, Li S S, Xia J B. J. Phys. Chem. C, 2011, 115(42): 20466.

doi: 10.1021/jp206751m
[14]
Puigdollers A R, Alonso G, Gamallo P. Carbon, 2016, 96: 879.

doi: 10.1016/j.carbon.2015.10.043
[15]
Li J, Gao X, Zhu L, Ghazzal M N, Zhang J, Tung C H, Wu L Z. Energy Environ. Sci., 2020, 13(5): 1326.

doi: 10.1039/C9EE03558C
[16]
Zhao Y, Guo P L, Li X H, Jin Z W. Carbon, 2019, 149: 336.

doi: 10.1016/j.carbon.2019.04.075
[17]
Huang C S, Li Y J, Wang N, Xue Y R, Zuo Z C, Liu H B, Li Y L. Chem. Rev., 2018, 118(16): 7744.

doi: 10.1021/acs.chemrev.8b00288
[18]
Ivanovskii A L. Prog. Solid State Chem., 2013, 41(1/2): 1.

doi: 10.1016/j.progsolidstchem.2012.12.001
[19]
Li Y J, Xu L, Liu H B, Li Y L. Chem. Soc. Rev., 2014, 43(8): 2572.

doi: 10.1039/c3cs60388a
[20]
Zhang J B, Xu J L, Zhang B, Feng Y Q. Acta Polym. Sin., 2019, 50(12): 1239.
(张嘉宾, 徐加良, 张宝, 冯亚青. 高分子学报, 2019, 50(12): 1239.)
[21]
Chen X, Zhang S L. Acta Phys. Chim. Sin., 2018, 34(9): 1061.

doi: 10.3866/PKU.WHXB201801311
(陈熙, 张胜利. 物理化学学报, 2018, 34(9): 1061.)
[22]
Huang C S, Li Y L. Acta Phys. Chimica Sin., 2016, 32(6): 1314.
(黄长水, 李玉良. 物理化学学报, 2016, 32(6): 1314.)
[23]
Jiang W, Zhang Z, Wang Q, Dou J X, Zhao Y Y, Ma Y C, Liu H R, Xu H X, Wang Y C. Nano Lett., 2019, 19(6): 4060.

doi: 10.1021/acs.nanolett.9b01458 pmid: 31136712
[24]
Zhou X T, You M, Wang F H, Wang Z Z, Gao X F, Jing C, Liu J M, Guo M Y, Li J Y, Luo A P, Liu H B, Liu Z H, Chen C Y. Adv. Mater., 2021, 33(24): 2100556.

doi: 10.1002/adma.202100556
[25]
Baughman R H, Eckhardt H, Kertesz M. J. Chem. Phys., 1987, 87(11): 6687.

doi: 10.1063/1.453405
[26]
Gao X, Liu H B, Wang D, Zhang J. Chem. Soc. Rev., 2019, 48(3): 908.

doi: 10.1039/C8CS00773J
[27]
Malko D, Neiss C, Viñes F, Görling A. Phys. Rev. Lett., 2012, 108(8): 086804.

doi: 10.1103/PhysRevLett.108.086804
[28]
Nulakani N V R, Subramanian V. J. Mater. Chem. C, 2018, 6(28): 7626.

doi: 10.1039/C8TC02386G
[29]
Koo J, Park M, Hwang S, Huang B, Jang B, Kwon Y, Lee H. Phys. Chem. Chem. Phys., 2014, 16(19): 8935.

doi: 10.1039/C4CP00800F
[30]
Zhang Y Y, Pei Q X, Wang C M. Appl. Phys. Lett., 2012, 101(8): 081909.

doi: 10.1063/1.4747719
[31]
Yue Q, Chang S L, Kang J, Qin S Q, Li J B. J. Phys. Chem. C, 2013, 117(28): 14804.

doi: 10.1021/jp4021189
[32]
Coluci V R, Galvão D S, Baughman R H. J. Chem. Phys., 2004, 121(7): 3228.

pmid: 15291635
[33]
Long M Q, Tang L, Wang D, Li Y L, Shuai Z G. ACS Nano, 2011, 5(4): 2593.

doi: 10.1021/nn102472s
[34]
Zhang Q Y, Tang C M, Zhu W H, Cheng C. J. Phys. Chem. C, 2018, 122(40): 22838.

doi: 10.1021/acs.jpcc.8b05272
[35]
Ahmadi A, Jafari H, Faghihnasiri R, Faghihnasiri M. Mater. Res. Express, 2019, 6(4): 045050.

doi: 10.1088/2053-1591/aafc59
[36]
Chen X H, Zhang Y N, Ren Y B, Wang D, Yun J N. Mater. Res. Express, 2019, 6(9): 095610.

doi: 10.1088/2053-1591/ab2e9a
[37]
van Miert G, Juričić V, Morais Smith C. Phys. Rev. B, 2014, 90(19): 195414.

doi: 10.1103/PhysRevB.90.195414
[38]
Yun J N, Zhang Z Y, Yan J F, Zhao W. Thin Solid Films, 2015, 589: 662.

doi: 10.1016/j.tsf.2015.06.056
[39]
Jiang P H, Liu H J, Cheng L, Fan D D, Zhang J, Wei J, Liang J H, Shi J. Carbon, 2017, 113: 108.

doi: 10.1016/j.carbon.2016.11.038
[40]
Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B. Chem. Commun., 2010, 46(19): 3256.

doi: 10.1039/b922733d
[41]
Qian X M, Liu H B, Huang C S, Chen S H, Zhang L, Li Y J, Wang J Z, Li Y L. Sci. Rep., 2015, 5: 7756.

doi: 10.1038/srep07756
[42]
Matsuoka R, Sakamoto R, Hoshiko K, Sasaki S, Masunaga H, Nagashio K, Nishihara H. J. Am. Chem. Soc., 2017, 139(8): 3145.

doi: 10.1021/jacs.6b12776 pmid: 28199105
[43]
Gao X, Li J, Du R, Zhou J Y, Huang M Y, Liu R, Li J, Xie Z Q, Wu L Z, Liu Z F, Zhang J. Adv. Mater., 2017, 29(9): 1605308.

doi: 10.1002/adma.201605308
[44]
Jia Z Y, Li Y J, Zuo Z C, Liu H B, Li D, Li Y L. Adv. Electron. Mater., 2017, 3(11): 1700133.

doi: 10.1002/aelm.201700133
[45]
Klappenberger F, Hellwig R, Du P, Paintner T, Uphoff M, Zhang L D, Lin T, Moghanaki B A, Paszkiewicz M, Vobornik I, Fujii J, Fuhr O, Zhang Y Q, Allegretti F, Ruben M, Barth J V. Small, 2018, 14(14): 1704321.

doi: 10.1002/smll.201704321
[46]
Li G X, Li Y L, Qian X M, Liu H B, Lin H W, Chen N, Li Y J. J. Phys. Chem. C, 2011, 115(6): 2611.

doi: 10.1021/jp107996f
[47]
Li J F, Chen Y H, Gao J, Zuo Z C, Li Y J, Liu H B, Li Y L. ACS Appl. Mater. Interfaces, 2019, 11(3): 2591.

doi: 10.1021/acsami.8b01207
[48]
Li J Q, Xu J, Xie Z Q, Gao X, Zhou J Y, Xiong Y, Chen C G, Zhang J, Liu Z F. Adv. Mater., 2018, 30(20): 1800548.

doi: 10.1002/adma.201800548
[49]
Min H, Qi Y Q, Chen Y H, Zhang Y L, Han X X, Xu Y, Liu Y, Hu J S, Liu H, Li Y Y, Nie G J. ACS Appl. Mater. Interfaces, 2019, 11(36): 32798.

doi: 10.1021/acsami.9b12801
[50]
Qian X M, Ning Z Y, Li Y L, Liu H B, Ouyang C B, Chen Q, Li Y J. Dalton Trans., 2012, 41(3): 730.

doi: 10.1039/C1DT11641J
[51]
Wang H, Deng K Q, Xiao J, Li C X, Zhang S W, Li X F. Sensor Actuat. B: Chem., 2020, 304: 127363.

doi: 10.1016/j.snb.2019.127363
[52]
Xue Y R, Guo Y, Yi Y P, Li Y J, Liu H B, Li D, Yang W S, Li Y L. Nano Energy, 2016, 30: 858.

doi: 10.1016/j.nanoen.2016.09.005
[53]
Yu X, Cai L L, Bao M L, Sun Q, Ma H H, Yuan C X, Xu W. Chem. Commun., 2020, 56(11): 1685.

doi: 10.1039/C9CC07421J
[54]
Zhou J Y, Gao X, Liu R, Xie Z Q, Yang J, Zhang S Q, Zhang G M, Liu H B, Li Y L, Zhang J, Liu Z F. J. Am. Chem. Soc., 2015, 137(24): 7596.

doi: 10.1021/jacs.5b04057
[55]
Zuo Z C, Shang H, Chen Y H, Li J F, Liu H B, Li Y J, Li Y L. Chem. Commun., 2017, 53(57): 8074.

doi: 10.1039/C7CC03200E
[56]
Gao X, Ren H Y, Zhou J Y, Du R, Yin C, Liu R, Peng H L, Tong L M, Liu Z F, Zhang J. Chem. Mater., 2017, 29(14): 5777.

doi: 10.1021/acs.chemmater.7b01838
[57]
Gao X, Zhu Y H, Yi D, Zhou J Y, Zhang S S, Yin C, Ding F, Zhang S Q, Yi X H, Wang J Z, Tong L M, Han Y, Liu Z F, Zhang J. Sci. Adv., 2018, 4(7): eaat6378.

doi: 10.1126/sciadv.aat6378
[58]
Zhou J Y, Xie Z Q, Liu R, Gao X, Li J Q, Xiong Y, Tong L M, Zhang J, Liu Z F. ACS Appl. Mater. Interfaces, 2019, 11(3): 2632.

doi: 10.1021/acsami.8b02612
[59]
Xie J N, Wang N, Dong X H, Wang C Y, Du Z, Mei L Q, Yong Y, Huang C S, Li Y L, Gu Z J, Zhao Y L. ACS Appl. Mater. Interfaces, 2019, 11(3): 2579.

doi: 10.1021/acsami.8b00949
[60]
Jia Z Y, Li Y J, Zuo Z C, Liu H B, Huang C S, Li Y L. Acc. Chem. Res., 2017, 50(10): 2470.

doi: 10.1021/acs.accounts.7b00205
[61]
Sun T, Gao F Y, Tang X L, Yi H H, Yu Q J, Zhao S Z, Xie X Z. New Carbon Mater., 2021, 36(2): 304.

doi: 10.1016/S1872-5805(21)60021-5
(孙婷, 高凤雨, 唐晓龙, 易红宏, 于庆君, 赵顺征, 解锡舟. 新型炭材料, 2021, 36(2): 304.)
[62]
Li Y J, Liu Q N, Li W F, Meng H, Lu Y Z, Li C X. ACS Appl. Mater. Interfaces, 2017, 9(4): 3895.

doi: 10.1021/acsami.6b13610
[63]
Li Q D, Li Y, Chen Y, Wu L L, Yang C F, Cui X L. Carbon, 2018, 136: 248.

doi: 10.1016/j.carbon.2018.04.081
[64]
Li Q D, Yang C F, Wu L L, Wang H, Cui X L. J. Mater. Chem. A, 2019, 7(11): 5981.

doi: 10.1039/C8TA10317H
[65]
Yang C F, Li Y, Chen Y, Li Q D, Wu L L, Cui X L. Small, 2019, 15(8): 1804710.

doi: 10.1002/smll.201804710
[66]
Wu L L, Li Q D, Yang C F, Ma X Q, Zhang Z F, Cui X L. J. Mater. Chem. A, 2018, 6(42): 20947.

doi: 10.1039/C8TA07307D
[67]
Wu L L, Li Q D, Yang C F, Chen Y, Dai Z Q, Yao B Y, Zhang X Y, Cui X L. J. Mater. Sci. Mater. Electron., 2020, 31(11): 8796.

doi: 10.1007/s10854-020-03414-7
[68]
Yang C F, Qiao C, Chen Y, Zhao X Q, Wu L L, Li Y, Jia Y, Wang S Y, Cui X L. Small, 2020, 16(10): 1907365.

doi: 10.1002/smll.201907365
[69]
Bao H H, Wang L, Li C, Luo J. ACS Appl. Mater. Interfaces, 2019, 11(3): 2717.

doi: 10.1021/acsami.8b05051
[70]
Chu P K, Li L H. Mater. Chem. Phys., 2006, 96(2/3): 253.

doi: 10.1016/j.matchemphys.2005.07.048
[71]
Li C, Lu X L, Han Y Y, Tang S F, Ding Y, Liu R R, Bao H H, Li Y L, Luo J, Lu T B. Nano Res., 2018, 11(3): 1714.

doi: 10.1007/s12274-017-1789-7
[72]
Chen Y, Li Q D, Wang W J, Lu Y X, He C L, Qiu D, Cui X L. 2D Mater., 2021, 8: 044012. 8679.
[73]
Zhao Y S, Wan J W, Yao H Y, Zhang L J, Lin K F, Wang L, Yang N L, Liu D B, Song L, Zhu J, Gu L, Liu L, Zhao H J, Li Y L, Wang D. Nat. Chem., 2018, 10(9): 924.

doi: 10.1038/s41557-018-0100-1
[74]
Lu X L, Han Y Y, Lu T B. Acta Phys. Chimica Sin., 2018, 34(9): 1014.
(卢秀利, 韩莹莹, 鲁统部. 物理化学学报, 2018, 34(9): 1014.)
[75]
Bhattacharya B, Seriani N, Sarkar U. Carbon, 2019, 141: 652.

doi: 10.1016/j.carbon.2018.09.077
[76]
Abbas M, Wu Z Y, Zhong J, Ibrahim K, Fiori A, Orlanducci S, Sessa V, Terranova M L, Davoli I. Appl. Phys. Lett., 2005, 87(5): 051923.

doi: 10.1063/1.2006214
[77]
He J J, Wang N, Cui Z L, Du H P, Fu L, Huang C S, Yang Z, Shen X Y, Yi Y P, Tu Z Y, Li Y L. Nat. Commun., 2017, 8: 1172.

doi: 10.1038/s41467-017-01202-2
[78]
Zhong J, Wang J, Zhou J G, Mao B H, Liu C H, Liu H B, Li Y L, Sham T K, Sun X H, Wang S D. J. Phys. Chem. C, 2013, 117(11): 5931.

doi: 10.1021/jp310013z
[79]
Gu H L, Zhong L X, Shi G S, Li J Q, Yu K, Li J, Zhang S, Zhu C Y, Chen S H, Yang C L, Kong Y, Chen C, Li S Z, Zhang J, Zhang L M. J. Am. Chem. Soc., 2021, 143(23): 8679.

doi: 10.1021/jacs.1c02326
[80]
Zhang S Q, Wang J Y, Li Z Z, Zhao R Q, Tong L M, Liu Z F, Zhang J, Liu Z R. J. Phys. Chem. C, 2016, 120(19): 10605.

doi: 10.1021/acs.jpcc.5b12388
[81]
Zhao Y S, Zhang L J, Qi J, Jin Q, Lin K F, Wang D. Acta Phys. Chimica Sin., 2018, 34(9): 1048.
(赵亚松, 张丽娟, 齐健, 金泉, 林凯峰, 王丹. 物理化学学报, 2018, 34(9): 1048.)
[82]
Wang S, Yi L X, Halpert J E, Lai X Y, Liu Y Y, Cao H B, Yu R B, Wang D, Li Y L. Small, 2012, 8(2): 265.

doi: 10.1002/smll.201101686
[83]
Li J Q, Xie Z Q, Xiong Y, Li Z Z, Huang Q X, Zhang S Q, Zhou J Y, Liu R, Gao X, Chen C G, Tong L M, Zhang J, Liu Z F. Adv. Mater., 2017, 29(19): 1700421.

doi: 10.1002/adma.201700421
[84]
Dong Y Z, Zhao Y M, Chen Y H, Feng Y Q, Zhu M Y, Ju C G, Zhang B, Liu H B, Xu J L. J. Mater. Sci., 2018, 53(12): 8921.

doi: 10.1007/s10853-018-2210-y
[85]
Thangavel S, Krishnamoorthy K, Krishnaswamy V, Raju N, Kim S J, Venugopal G. J. Phys. Chem. C, 2015, 119(38): 22057.

doi: 10.1021/acs.jpcc.5b06138
[86]
Lin Y, Liu H Y, Yang C P, Wu X, Du C, Jiang L M, Zhong Y Y. Appl. Catal. B Environ., 2020, 264: 118479.

doi: 10.1016/j.apcatb.2019.118479
[87]
Guo S Y, Jiang Y N, Wu F, Yu P, Liu H B, Li Y L, Mao L Q. ACS Appl. Mater. Interfaces, 2019, 11(3): 2684.

doi: 10.1021/acsami.8b04463
[88]
Chen T, Li W Q, Chen X J, Guo Y Z, Hu W B, Hu W J, Liu Y A, Yang H, Wen K. Chem. Eur. J., 2020, 26(10): 2269.

doi: 10.1002/chem.201905133
[89]
Zhang X, Zhu M S, Chen P L, Li Y J, Liu H B, Li Y L, Liu M H. Phys. Chem. Chem. Phys., 2015, 17(2): 1217.

doi: 10.1039/c4cp04683h pmid: 25418916
[90]
Wang R, Shi M S, Xu F Y, Qiu Y, Zhang P, Shen K L, Zhao Q, Yu J G, Zhang Y F. Nat. Commun., 2020, 11: 4465.

doi: 10.1038/s41467-020-18267-1 pmid: 32901012
[91]
Li J, Gao X, Liu B, Feng Q L, Li X B, Huang M Y, Liu Z F, Zhang J, Tung C H, Wu L Z. J. Am. Chem. Soc., 2016, 138(12): 3954.

doi: 10.1021/jacs.5b12758
[92]
Li J, Gao X, Li Z Z, Wang J H, Zhu L, Yin C, Wang Y, Li X B, Liu Z F, Zhang J, Tung C H, Wu L Z. Adv. Funct. Mater., 2019, 29(16): 1970107.

doi: 10.1002/adfm.201970107
[93]
Han Y Y, Lu X L, Tang S F, Yin X P, Wei Z W, Lu T B. Adv. Energy Mater., 2018, 8(16): 1702992.

doi: 10.1002/aenm.201702992
[94]
Si H Y, Deng Q X, Yin C, Tavakoli M M, Zhang J, Kong J. Adv. Mater. Interfaces, 2020, 7(8): 1902083.

doi: 10.1002/admi.201902083
[95]
Ramakrishnan V, Kim H, Yang B. New J. Chem., 2019, 43(33): 12896.

doi: 10.1039/c9nj02351h
[96]
Zhang S C, Yin C, Kang Z, Wu P W, Wu J, Zhang Z, Liao Q L, Zhang J, Zhang Y. ACS Appl. Mater. Interfaces, 2019, 11(3): 2745.

doi: 10.1021/acsami.8b06382
[97]
Zhang T, Hou Y, Dzhagan V, Liao Z Q, Chai G L, Löffler M, Olianas D, Milani A, Xu S Q, Tommasini M, Zahn D R T, Zheng Z K, Zschech E, Jordan R, Feng X L. Nat. Commun., 2018, 9: 1140.

doi: 10.1038/s41467-018-03444-0 pmid: 29555937
[98]
Li M, Wang H J, Zhang C, Chang Y B, Li S J, Zhang W, Lu T B. Sci. China Chem., 2020, 63(8): 1040.

doi: 10.1007/s11426-020-9763-9
[99]
Gao B W, Sun M X, Ding W, Ding Z P, Liu W Z. Appl. Catal. B Environ., 2021, 281: 119492.

doi: 10.1016/j.apcatb.2020.119492
[100]
Si H Y, Mao C J, Zhou J Y, Rong X F, Deng Q X, Chen S L, Zhao J J, Sun X G, Shen Y M, Feng W J, Gao P, Zhang J. Carbon, 2018, 132: 598.

doi: 10.1016/j.carbon.2018.02.107
[101]
Lv J X, Zhang Z M, Wang J, Lu X L, Zhang W, Lu T B. ACS Appl. Mater. Interfaces, 2019, 11(3): 2655.

doi: 10.1021/acsami.8b03326
[102]
Yin X P, Luo S W, Tang S F, Lu X L, Lu T B. Chin. J. Catal., 2021, 42(8): 1379.

doi: 10.1016/S1872-2067(20)63601-4
[103]
Li Y B, Yang H, Wang G R, Ma B Z, Jin Z L. ChemCatChem, 2020, 12(7): 1985.

doi: 10.1002/cctc.201902405
[104]
Shen H, Zhou W X, He F, Gu Y N, Li Y J, Li Y L. J. Mater. Chem. A, 2020, 8(9): 4850.

doi: 10.1039/C9TA14047F
[105]
Xu F Y, Meng K, Zhu B C, Liu H B, Xu J S, Yu J G. Adv. Funct. Mater., 2019, 29(43): 1904256.

doi: 10.1002/adfm.201904256
[106]
Cao S W, Wang Y J, Zhu B C, Xie G C, Yu J G, Gong J R. J. Mater. Chem. A, 2020, 8(16): 7671.

doi: 10.1039/D0TA02256J
[107]
Sun C, Liu Y Y, Wang Z Y, Wang P, Zheng Z K, Cheng H F, Qin X Y, Zhang X Y, Dai Y, Huang B B. J. Alloys Compd., 2021, 868: 159045.

doi: 10.1016/j.jallcom.2021.159045
[108]
Pan Q Y, Liu H, Zhao Y J, Chen S Q, Xue B, Kan X N, Huang X W, Liu J, Li Z B. ACS Appl. Mater. Interfaces, 2019, 11(3): 2740.

doi: 10.1021/acsami.8b03311
[109]
Mateo D, García-Mulero A, Albero J, García H. Appl. Catal. B Environ., 2019, 252: 111.

doi: 10.1016/j.apcatb.2019.04.011
[110]
Saha A, Moya A, Kahnt A, Iglesias D, Marchesan S, Wannemacher R, Prato M, Vilatela J J, Guldi D M. Nanoscale, 2017, 9(23): 7911.

doi: 10.1039/C7NR00759K
[111]
Yang N L, Liu Y Y, Wen H, Tang Z Y, Zhao H J, Li Y L, Wang D. ACS Nano, 2013, 7(2): 1504.

doi: 10.1021/nn305288z
[112]
Yang F, Ke Z J, Li Z D, Patrick M, Abboud Z, Yamamoto N, Xiao X H, Gu J. ChemSusChem, 2020, 13(13): 3391.

doi: 10.1002/cssc.202000203 pmid: 32281306
[113]
Zhang J, Cao S, Hu W, Piao L. Prog. Chem., 2020, 32(9): 1376.
[114]
Gu J X, Magagula S, Zhao J X, Chen Z F. Small Methods, 2019, 3(9): 1800550.

doi: 10.1002/smtd.201800550
[115]
Lv Q, Si W Y, Yang Z, Wang N, Tu Z Y, Yi Y P, Huang C S, Jiang L, Zhang M J, He J J, Long Y Z. ACS Appl. Mater. Interfaces, 2017, 9(35): 29744.

doi: 10.1021/acsami.7b08115
[116]
Zhang J, Feng X L. Joule, 2018, 2(8): 1396.

doi: 10.1016/j.joule.2018.07.031
[117]
Torres-Pinto A, Silva C G, Faria J L, Silva A M T. Adv. Sci., 2021, 8(10): 2003900.

doi: 10.1002/advs.202003900
[118]
Zhao Y S, Tang H J, Yang N L, Wang D. Adv. Sci., 2018, 5(12): 1800959.

doi: 10.1002/advs.201800959
[119]
Ding W, Sun M X, Zhang Z H, Lin X J, Gao B W. Ultrason. Sonochemistry, 2020, 61: 104850.

doi: 10.1016/j.ultsonch.2019.104850
[120]
Kudo A, Miseki Y. Chem. Soc. Rev., 2009, 38(1): 253.

doi: 10.1039/B800489G
[1]
Shih C F, Zhang T, Li J H, Bai C L. Joule, 2018, 2(10): 1925.

doi: 10.1016/j.joule.2018.08.016
[2]
Bard A J. J. Photochem., 1979, 10(1): 59.

doi: 10.1016/0047-2670(79)80037-4
[3]
Centi G, Perathoner S. ChemSusChem, 2010, 3(2): 195.

doi: 10.1002/cssc.200900289
[4]
Ma X Q, Chen Y, Lee J, Yang C F, Cui X L. New J. Chem., 2018, 42(2): 1300.

doi: 10.1039/C7NJ03631K
[5]
Guo L J, Li R, Liu J X, Xi Q, Fan C M. Progress in Chemistry, 2020, 32(1): 46.
(郭丽君, 李瑞, 刘建新, 席庆, 樊彩梅. 化学进展, 2020, 32(1): 46.)

doi: 10.7536/PC190528
[6]
Zhang G Q, Li Y L, He C X, Ren X Z, Zhang P X, Mi H W. Adv. Energy Mater., 2021, 11(11): 2003294.

doi: 10.1002/aenm.202003294
[7]
Ma X Q, Cui X L, Zhao Z Q, Melo M A, Roberts E J, Osterloh F E. J. Mater. Chem. A, 2018, 6(14): 5774.

doi: 10.1039/C7TA10934B
[8]
Ma X Q, Wu Z K, Roberts E J, Han R R, Rao G D, Zhao Z Q, Lamoth M, Cui X L, Britt R D, Osterloh F E. J. Phys. Chem. C, 2019, 123(41): 25081.

doi: 10.1021/acs.jpcc.9b06727
[9]
Li H, Cui X L. Int. J. Hydrog. Energy, 2014, 39(35): 19877.

doi: 10.1016/j.ijhydene.2014.10.010
[10]
Ma X Q, Chen Y, Li H, Cui X L, Lin Y H. Mater. Res. Bull., 2015, 66: 51.

doi: 10.1016/j.materresbull.2015.02.005
[11]
Feng X, Ren Y W, Jiang H F. Progress in Chemistry, 2020, 32(11): 1697.
(封啸, 任颜卫, 江焕峰. 化学进展, 2020, 32(11): 1697.)

doi: 10.7536/PC200407
[12]
Li Y, Wang X Y, Gong J, Xie Y H, Wu X Y, Zhang G K. ACS Appl. Mater. Interfaces, 2018, 10(50): 43760.

doi: 10.1021/acsami.8b17580
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[4] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[5] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[6] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[7] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[8] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[9] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[10] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[11] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[12] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[13] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[14] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[15] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.