中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (4): 983-991 DOI: 10.7536/PC210122 Previous Articles   Next Articles

• Review •

The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts

Fengshou Yu(), Jiayu Zhan, Lu-Hua Zhang   

  1. National Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology,Tianjin 300131, China
  • Received: Revised: Online: Published:
  • Contact: Fengshou Yu
  • Supported by:
    National Natural Science Foundation of China(21905073); National Natural Science Foundation of China(22008048); Hundred Talents Project of Hebei Province(E2019050015)
Richhtml ( 67 ) PDF ( 972 ) Cited
Export

EndNote

Ris

BibTeX

Electrochemical CO2 reduction to value added chemical feedstocks and fuels driven by renewable electricity gives a promising and appealing approach to address the global challenges in energy and sustainability and eventually close the anthropogenic carbon cycle. The most crucial step for this conversion is to develop robust electrocatalysts promoting adsorption of CO2 molecule and subsequent activation with low energy barriers. Due to the different overpotentials and electron transfer amount needed for various reduction products, there is huge gap of producing price among a variety of products. Based on recent research, formic acid (or formate) is one of the most economically viable and useful reduction product in a couple of chemical processes. In this paper, starting with fundamental understanding of reaction mechanism, we review the main progress of p-block post-transition metal (e.g., Sn, Bi, and In) based electrocatalysts for electrochemical CO2 reduction to produce formic acid. In addition, strategies to facilitate the catalytic performance of CO2 to formic acid) conversion including reduction conversion of metal oxides, morphology control, doping and alloying to modulate the electronic structure are also be briefly reviewed. Finally, we summarize the existing challenges and present perspectives for the future development of this exciting field.

Contents

1 Introduction

2 The mechanism of CO2-to-formate conversion

3 p-block metal-based catalysts

3. 1 Sn-based catalysts

3. 2 Bi-based catalysts

3.3 In-based catalysts

4 Conclusion and outlook

Fig. 1 Market price of select CO2 recycling products as a function of energy content. Lines represent minimum energy and CO2 costs[10]. Copyright 2020, Wiley-VCH
Table 1 The performance of various p-block metal-based electrocatalysts for CO2-to-HCOOH conversion
Fig. 2 Possible reaction pathways for electrochemical CO2 reduction to formate, CO, and other products
Fig. 3 SEM images of porous SnO2 nanosheets on carbon cloth (a), and the current density (b) and corresponding FE (c) for reduction products at various potentials[34]. Copyright 2017, Wiley-VCH. The HRTEM image of the Sn quantum sheets confined in graphene (d) and Linear sweep voltammetric curves (e) and Faradaic efficiencies (f) for formate formation[42]. Copyright 2016, Nature. The structure of Ag-Sn with ultrathin partially oxidized SnO2 shell (g), and the corresponding HAADF-STEM image (h) and electron energy loss spectroscopy (EELS) mappings (i)[55]. Copyright 2017, American Chemical Society
Fig. 4 (a) SEM image of BiOI. (b) potential-dependent Faradaic efficiencies of HCOO-, CO, and H2 on Bi nanosheet in comparison with the Faradaic efficiency of HCOO- on commercial Bi nanopowder[68]. Copyright 2018, Nature. (c) STEM image and schematic representation of BiOx/C. (d) Faradic efficiencies of BiOx/C for the formation of HCOO-, H2, and CO[72]. Copyright 2018, American Chemical Society
[1]
Franco F, Rettenmaier C, Jeon H S, Roldan Cuenya B. Chem. Soc. Rev., 2020, 49(19): 6884.

doi: 10.1039/D0CS00835D
[2]
Zhang S, Fan Q, Xia R, Meyer T J. Acc. Chem. Res., 2020, 53: 255.

doi: 10.1021/acs.accounts.9b00496
[3]
Wu J H, Huang Y, Ye W, Li Y G. Adv. Sci., 2017, 4(11): 1700194.

doi: 10.1002/advs.201700194
[4]
Appel A M, Bercaw J E, Bocarsly A B, Dobbek H, DuBois D L, Dupuis M, Ferry J G, Fujita E, Hille R, Kenis P J A, Kerfeld C A, Morris R H, Peden C H F, Portis A R, Ragsdale S W, Rauchfuss T B, Reek J N H, Seefeldt L C, Thauer R K, Waldrop G L. Chem. Rev., 2013, 113(8): 6621.

doi: 10.1021/cr300463y
[5]
Nielsen D U, Hu X M, Daasbjerg K, Skrydstrup T. Nat. Catal., 2018, 1(4): 244.

doi: 10.1038/s41929-018-0051-3
[6]
Wang W, Wang S P, Ma X B, Gong J L. Chem. Soc. Rev., 2011, 40(7): 3703.

doi: 10.1039/c1cs15008a pmid: 21505692
[7]
Ross M B, de Luna P, Li Y F, Dinh C T, Kim D, Yang P D, Sargent E H. Nat. Catal., 2019, 2(8): 648.

doi: 10.1038/s41929-019-0306-7
[8]
Birdja Y Y, PÉrez-Gallent E, Figueiredo M C, Göttle A J, Calle-Vallejo F, Koper M T M. Nat. Energy, 2019, 4(9): 732.

doi: 10.1038/s41560-019-0450-y
[9]
Raciti D, Wang C. ACS Energy Lett., 2018, 3(7): 1545.

doi: 10.1021/acsenergylett.8b00553
[10]
Han N, Ding P, He L, Li Y Y, Li Y G. Adv. Energy Mater., 2020, 10(11): 1902338.

doi: 10.1002/aenm.201902338
[11]
Philips F M, Gruter M G J, Koper T M M, Schouten J P K. ACS Sustainable Chem. Eng., 2020, 8(41): 15430.

doi: 10.1021/acssuschemeng.0c05215
[12]
Nitopi S, Bertheussen E, Scott S B, Liu X Y, Engstfeld A K, Horch S, Seger B, Stephens I E L, Chan K R, Hahn C, Nørskov J K, Jaramillo T F, Chorkendorff I. Chem. Rev., 2019, 119(12): 7610.

doi: 10.1021/acs.chemrev.8b00705
[13]
Ye L, Ying Y R, Sun D R, Zhang Z Y, Fei L F, Wen Z H, Qiao J L, Huang H T. Angew. Chem. Int. Ed., 2020, 59(8): 3244.

doi: 10.1002/anie.201912751
[14]
Sun Z Y, Ma T, Tao H C, Fan Q, Han B X. Chem, 2017, 3(4): 560.

doi: 10.1016/j.chempr.2017.09.009
[15]
Yu F, Zhang L H. CIESC Journal, 2021, 72 (4): 1815.
(于丰收, 张鲁华. 化工学报, 2021, 72 (4): 1815.).
[16]
Baruch M F, Pander J E III, White J L, Bocarsly A B. ACS Catal., 2015, 5(5): 3148.

doi: 10.1021/acscatal.5b00402
[17]
Yang Z N, Oropeza F E, Zhang K H L. APL Mater., 2020, 8(6): 060901.

doi: 10.1063/5.0004194
[18]
Li Q, Fu J J, Zhu W L, Chen Z Z, Shen B, Wu L H, Xi Z, Wang T Y, Lu G, Zhu J J, Sun S H. J. Am. Chem. Soc., 2017, 139(12): 4290.

doi: 10.1021/jacs.7b00261
[19]
Bai X F, Chen W, Zhao C C, Li S G, Song Y F, Ge R P, Wei W, Sun Y H. Angew. Chem. Int. Ed., 2017, 56(40): 12219.

doi: 10.1002/anie.201707098
[20]
Zhao C C, Wang J L. Chem. Eng. J., 2016, 293: 161.

doi: 10.1016/j.cej.2016.02.084
[21]
Wang S B, Guan B Y, Lou X W D. J. Am. Chem. Soc., 2018, 140(15): 5037.

doi: 10.1021/jacs.8b02200
[22]
Yang H, Han N, Deng J, Wu J H, Wang Y, Hu Y P, Ding P, Li Y F, Li Y G, Lu J. Adv. Energy Mater., 2018, 8(35): 1801536.

doi: 10.1002/aenm.201801536
[23]
Hori Y, Wakebe H, Tsukamoto T, Koga O. Electrochimica Acta, 1994, 39(11/12): 1833.

doi: 10.1016/0013-4686(94)85172-7
[24]
Ding P, Zhao H, Li T, Luo Y, Fan G, Chen G, Gao S, Shi X, Lu S, Sun X. J. Mater. Chem. A, 2020, 8(42): 21947.

doi: 10.1039/D0TA08393C
[25]
Hu H S, Gui L Q, Zhou W, Sun J, Xu J M, Wang Q, He B B, Zhao L. Electrochimica Acta, 2018, 285: 70.

doi: 10.1016/j.electacta.2018.08.002
[26]
Liu S Y, Pang F J, Zhang Q W, Guo R J, Wang Z F, Wang Y C, Zhang W Q, Ou J Z. Appl. Mater. Today, 2018, 13: 135.
[27]
An X W, Li S S, Yoshida A, Wang Z D, Hao X G, Abudula A, Guan G Q. ACS Sustainable Chem. Eng., 2019, 7(10): 9360.

doi: 10.1021/acssuschemeng.9b00515
[28]
Zhang R, Lv W X, Lei L X. Appl. Surf. Sci., 2015, 356: 24.

doi: 10.1016/j.apsusc.2015.08.006
[29]
Chen Y H, Kanan M W. J. Am. Chem. Soc., 2012, 134(4): 1986.

doi: 10.1021/ja2108799
[30]
Wu J J, Risalvato F G, Ma S G, Zhou X D. J. Mater. Chem. A, 2014, 2(6): 1647.

doi: 10.1039/C3TA13544F
[31]
Han N, Wang Y Y, Deng J, Zhou J H, Wu Y L, Yang H, Ding P, Li Y G. J. Mater. Chem. A, 2019, 7(3): 1267.

doi: 10.1039/c8ta10959a
[32]
Yang H, Huang Y, Deng J, Wu Y L, Han N, Zha C Y, Li L G, Li Y G. J. Energy Chem., 2019, 37: 93.

doi: 10.1016/j.jechem.2018.12.004
[33]
Chen Y Y, Vise A, Klein W E, Cetinbas F C, Myers D J, Smith W A, Deutsch T G, Neyerlin K C. ACS Energy Lett., 2020, 5(6): 1825.

doi: 10.1021/acsenergylett.0c00860
[34]
Li F W, Chen L, Knowles G P, MacFarlane D R, Zhang J. Angew. Chem. Int. Ed., 2017, 56(2): 505.

doi: 10.1002/anie.201608279
[35]
Kumar B, Atla V, Brian J P, Kumari S, Nguyen T Q, Sunkara M, Spurgeon J M. Angew. Chem. Int. Ed., 2017, 56(13): 3645.

doi: 10.1002/anie.201612194
[36]
Zheng X L, de Luna P, García de Arquer F P, Zhang B, Becknell N, Ross M B, Li Y F, Banis M N, Li Y Z, Liu M, Voznyy O, Dinh C T, Zhuang T T, Stadler P, Cui Y, Du X W, Yang P D, Sargent E H. Joule, 2017, 1(4): 794.

doi: 10.1016/j.joule.2017.09.014
[37]
Zhang Q, Zhang Y X, Mao J F, Liu J Y, Zhou Y, Guay D, Qiao J L. ChemSusChem, 2019, 12(7): 1443.

doi: 10.1002/cssc.201802725 pmid: 30724477
[38]
Wang X, Lv J, Zhang J X, Wang X L, Xue C Z, Bian G Q, Li D S, Wang Y, Wu T. Nanoscale, 2020, 12(2): 772.

doi: 10.1039/C9NR08726E
[39]
Fu Y, Wang T, Zheng W, Lei C, Hou Y. ACS Appl. Mater. Interfaces, 2020, 12: 16178.

doi: 10.1021/acsami.9b18091
[40]
Li Q Q, Zhang X R, Zhou X D, Li Q Y, Wang H Q, Yi J, Liu Y Y, Zhang J J. J. CO2 Util., 2020, 37: 106.
[41]
Zhang S, Kang P, Meyer T J. J. Am. Chem. Soc., 2014, 136(5): 1734.

doi: 10.1021/ja4113885
[42]
Lei F C, Liu W, Sun Y F, Xu J Q, Liu K T, Liang L, Yao T, Pan B C, Wei S Q, Xie Y. Nat. Commun., 2016, 7: 12697.

doi: 10.1038/ncomms12697
[43]
Liu H, Su Y Q, Kuang S Y, Hensen E J M, Zhang S, Ma X B. J. Mater. Chem. A, 2021, 9(12): 7848.

doi: 10.1039/D1TA00285F
[44]
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Science, 2017, 355(6321): 4998.
[45]
Hong W T, Risch M, Stoerzinger K A, Grimaud A, Suntivich J, Shao-Horn Y. Energy Environ. Sci., 2015, 8(5): 1404.

doi: 10.1039/C4EE03869J
[46]
Man I C, Su H Y, Calle-Vallejo F, Hansen H A, Martínez J I, Inoglu N G, Kitchin J, Jaramillo T F, Nørskov J K, Rossmeisl J. ChemCatChem, 2011, 3(7): 1159.

doi: 10.1002/cctc.201000397
[47]
Egdell R G, Rebane J, Walker T J, Law D S L. Phys. Rev. B, 1999, 59(3): 1792.

doi: 10.1103/PhysRevB.59.1792
[48]
An X W, Li S S, Yoshida A, Yu T, Wang Z D, Hao X G, Abudula A, Guan G Q. ACS Appl. Mater. Interfaces, 2019, 11(45): 42114.

doi: 10.1021/acsami.9b13270
[49]
Zhang Y F, Liu J J, Wei Z X, Liu Q H, Wang C Y, Ma J M. J. Energy Chem., 2019, 33: 22.

doi: 10.1016/j.jechem.2018.08.017
[50]
Wei Y J, Liu J, Cheng F Y, Chen J. J. Mater. Chem. A, 2019, 7(34): 19651.

doi: 10.1039/C9TA06817A
[51]
Ju W B, Zeng J Q, Bejtka K, Ma H, Rentsch D, Castellino M, Sacco A, Pirri C F, Battaglia C. ACS Appl. Energy Mater., 2019, 2(1): 867.

doi: 10.1021/acsaem.8b01944
[52]
Sarfraz S, Garcia-Esparza A T, Jedidi A, Cavallo L, Takanabe K. ACS Catal., 2016, 6(5): 2842.

doi: 10.1021/acscatal.6b00269
[53]
Zheng X L, Ji Y F, Tang J, Wang J Y, Liu B F, Steinrück H G, Lim K, Li Y Z, Toney M F, Chan K R, Cui Y. Nat. Catal., 2021, 4(5): 55.
[54]
Choi Y W, Scholten F, Sinev I, Roldan Cuenya B. J. Am. Chem. Soc., 2019, 141(13): 5261.

doi: 10.1021/jacs.8b12766
[55]
Luc W, Collins C, Wang S W, Xin H L, He K, Kang Y J, Jiao F. J. Am. Chem. Soc., 2017, 139(5): 1885.

doi: 10.1021/jacs.6b10435
[56]
Zhang B, Cao S Y, Wu Y Z, Zhai P L, Li Z W, Zhang Y T, Fan Z Z, Wang C, Zhang X M, Hou J G, Sun L C. ChemElectroChem, 2021, 8(5): 880.

doi: 10.1002/celc.202001613
[57]
Wang Y T, Li Y H, Liu J Z, Dong C X, Xiao C Q, Cheng L, Jiang H L, Jiang H, Li C Z. Angew. Chem. Int. Ed., 2021, 60(14): 7681.

doi: 10.1002/anie.202014341
[58]
Komatsu S, Yanagihara T, Hiraga Y, Tanaka M, Kunugi A. Denki Kagaku Oyobi Kogyo Butsuri Kagaku, 1995, 63(3): 217.

doi: 10.5796/kogyobutsurikagaku.63.217
[59]
Pander J E III, Baruch M F, Bocarsly A B. ACS Catal., 2016, 6(11): 7824.

doi: 10.1021/acscatal.6b01879
[60]
Nolan M. ACS Omega, 2018, 3(10): 13117.

doi: 10.1021/acsomega.8b01957
[61]
Oh W, Rhee C K, Han J W, Shong B. J. Phys. Chem. C, 2018, 122(40): 23084.

doi: 10.1021/acs.jpcc.8b07865
[62]
Walsh A, Payne D J, Egdell R G, Watson G W. Chem. Soc. Rev., 2011, 40(9): 4455.

doi: 10.1039/c1cs15098g pmid: 21666920
[63]
Walker R J, Pougin A, Oropeza F E, Villar-Garcia I J, Ryan M P, Strunk J, Payne D J. Chem. Mater., 2016, 28(1): 90.

doi: 10.1021/acs.chemmater.5b03232
[64]
Deng P L, Wang H M, Qi R J, Zhu J X, Chen S H, Yang F, Zhou L, Qi K, Liu H F, Xia B Y. ACS Catal., 2020, 10(1): 743.

doi: 10.1021/acscatal.9b04043
[65]
Koh J H, Won D H, Eom T, Kim N K, Jung K D, Kim H, Hwang Y J, Min B K. ACS Catal., 2017, 7(8): 5071.

doi: 10.1021/acscatal.7b00707
[66]
Kim S, Dong W J, Gim S, Sohn W, Park J Y, Yoo C J, Jang H W, Lee J L. Nano Energy, 2017, 39: 44.

doi: 10.1016/j.nanoen.2017.05.065
[67]
Zhang W J, Hu Y, Ma L B, Zhu G Y, Zhao P Y, Xue X L, Chen R P, Yang S Y, Ma J, Liu J, Jin Z. Nano Energy, 2018, 53: 808.

doi: 10.1016/j.nanoen.2018.09.053
[68]
Han N, Wang Y, Yang H, Deng J, Wu J H, Li Y F, Li Y G. Nat. Commun., 2018, 9: 1320.

doi: 10.1038/s41467-018-03712-z pmid: 29615621
[69]
García de Arquer F P, Bushuyev O S, de Luna P, Dinh C T, Seifitokaldani A, Saidaminov M I, Tan C S, Quan L N, Proppe A, Kibria M G, Kelley S O, Sinton D, Sargent E H. Adv. Mater., 2018, 30(38): 1802858.

doi: 10.1002/adma.201802858
[70]
Gong Q, Ding P, Xu M, Zhu X, Li Y. Nat. Commun., 2019, 10: 2807.

doi: 10.1038/s41467-019-10819-4
[71]
Liu S B, Lu X F, Xiao J, Wang X, Lou X W D. Angew. Chem. Int. Ed., 2019, 58(39): 13828.

doi: 10.1002/anie.201907674
[72]
Lee C W, Hong J S, Yang K D, Jin K, Lee J H, Ahn H Y, Seo H, Sung N E, Nam K T. ACS Catal., 2018, 8(2): 931.

doi: 10.1021/acscatal.7b03242
[73]
Hoffman Z B, Gray T S, Xu Y, Lin Q Y, Gunnoe T B, Zangari G. ChemSusChem, 2019, 12(1): 231.

doi: 10.1002/cssc.201801708
[74]
Wen G B, Lee D U, Ren B H, Hassan F M, Jiang G P, Cano Z P, Gostick J, Croiset E, Bai Z Y, Yang L, Chen Z W. Adv. Energy Mater., 2018, 8(31): 1870138.

doi: 10.1002/aenm.201870138
[75]
Detweiler Z M, White J L, Bernasek S L, Bocarsly A B. Langmuir, 2014, 30(25): 7593.

doi: 10.1021/la501245p pmid: 24940629
[76]
White J L, Bocarsly A B. J. Electrochem. Soc., 2016, 163(6): 410.
[77]
Luo W, Xie W, Li M, Zhang J, Züttel A. J. Mater. Chem. A, 2019, 7(9): 4505.

doi: 10.1039/C8TA11645H
[78]
Ding C M, Li A L, Lu S M, Zhang H F, Li C. ACS Catal., 2016, 6(10): 6438.

doi: 10.1021/acscatal.6b01795
[79]
Chu S L, Hong S, Masa J, Li X, Sun Z Y. Chem. Commun., 2019, 55(82): 12380.

doi: 10.1039/C9CC05435A
[80]
Xia Z, Freeman M, Zhang D X, Yang B, Lei L C, Li Z J, Hou Y. ChemElectroChem, 2018, 5(2): 253.

doi: 10.1002/celc.201700935
[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[3] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[4] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[5] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[6] Yanyu Zhong, Zhengyun Wang, Hongfang Liu. Progress in Electrochemical Sensing of Ascorbic Acid [J]. Progress in Chemistry, 2023, 35(2): 219-232.
[7] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[8] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[9] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[10] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[11] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[12] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[13] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[14] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[15] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.