中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (1): 13-24 DOI: 10.7536/PC201045 Previous Articles   Next Articles

• Invited Account •

Single-Virus Tracking

Zhi-Gang Wang1, Shu-Lin Liu1, An-An Liu1, Li-Juan Zhang2, Cong Yu2, Dai-Wen Pang1,*()   

  1. 1 Key Laboratory of Medicinal Chemistry Biology, College of Chemistry, Research Center for Analytical Sciences, School of Medicine, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
    2 College of Chemistry and Molecular Sciences, Research Center of Analytical Sciences, Wuhan University,Wuhan 430072, China
  • Received: Revised: Online: Published:
  • Contact: Dai-Wen Pang
  • Supported by:
    the National Natural Science Foundation of China(21877102); the National Natural Science Foundation of China(21977054); the National Natural Science Foundation of China(91859123); the National Natural Science Foundation of China(91953107); Dedicated to the 100th anniversary of Chemistry at Nankai University
Richhtml ( 73 ) PDF ( 659 ) Cited
Export

EndNote

Ris

BibTeX

Viruses are one of the biggest threats to human health, and the outbreak of viral diseases not only poses a great threat to human health and national security, but also causes great losses to the social economy. Uncovering the mechanisms of virus infection is crucial for preventing the spread of viruses and treating viral diseases. The dynamic process of virus infection in host cells involves intricate interactions between viral components and cellular structures or organelles, but conventional methods lack the ability to acquire dynamic information on individual viruses during the infection process. Single-virus tracking(SVT) technique is a powerful approach for studying the real-time and in-situ dynamics of viral processes in live cells and it plays an increasingly important role in the study of viral infection mechanism. SVT allows researchers to obtain the dynamic information on individual viruses during the infection process, including viral entry, trafficking, and genome release, which is meaningful to study the infection mechanisms on the molecular level. In this article, we first discuss the measurement techniques, viral labeling strategies and data analysis methods for SVT, then summarize a couple of applications of SVT and finally propose the challenges and future possibilities of the SVT technique.

Contents

1 Introduction

2 Single-virus tracking technique

2.1 Measurement techniques

2.2 Viral labeling strategies

2.3 Data acquisition

3 Applications of single-virus tracking in virological research

3.1 Virus internalization

3.2 Virus transport

3.3 Genome release of viruses

3.4 Assembly and egress of viruses

4 Challenges and solutions

4.1 Viral labeling strategies

4.2 Measurement techniques

5 Conclusion and outlooks

Fig. 1 Various types of virion morphologies. (A) spherical virus(Human immunodeficiency virus),(B) rod-shaped virus(Baculovirus),(C) filamentous virus(Ebol a),(D) bullet-shaped virus(Rabies Virus),(E) brick-shaped virus(Orthopoxvirus),(F) spherical virus with spike protein on the surface(Coronavirus),(G) non-envelope asteroid shaped virus(Astrovirus),(H) icosahedron shaped virus(Adenovirus)[4 ? ? ? ? ? ? ?~12]
Fig. 2 Image processing for single-virus tracking.(A) Schematic diagram of particle detection. For one bright particle, the image can be acquired using a fluorescence microscope, which has an ellipsoid shape with ~250 nm in the lateral direction, and ~500 nm in the axial direction. By 2D imaging, the intensity of the particle is more like the 2D Gaussian function. Localization methods are utilized to obtain the accurate position of the particle.(B) Four steps of image processing for single-virus tracking.(1) Recording the particle movements using a microscope in a series of images.(2) Detecting the particle positions in each frame. According to localization algorithms, the accurate particle positions can be acquired.(3) Reconstructing the particle trajectories in the images.(4) Analyzing the trajectories of the particles. According to the relationship between MSD and nΔt, the particle movements can be divided into four types.(i) Directed motion with diffusion.(ii) Normal diffusion.(iii) Anomalous diffusion.(iv) Corralled diffusion[33]
Fig. 3 (A) Snapshots of IAV recruiting clathrin and dynamin on plasma membrane. Scale bar, 5 μm.(B) Kymograph images of the virus, clathrin and dynamin signals in panel A.(C) Time trajectories of virus speed and fluorescence intensity of clathrin and dynamin in panel A.(D) Models of IAV entry into cells via clathrin-dependent and clathrin-independent endocytic pathways[29]
Fig. 4 (A) Myosin VI(MyoVI) driving IAV along microfilaments(MF).(B) Dynein driving IAV along microtubules(MT).(C) Model for IAV moving along microfilaments and microtubules[52]
Fig. 5 Uncovering the Rab5-independent autophagic trafficking of influenza A virus by SVT
Fig. 6 (A) Labeling the different genome segments of IAV with different quantum dots.(B and C) A virus particle with QD625(red)- and QD705(green)-labeled genome and QD525(cyan)-labeled envelope releasing its genome near the nucleus. Scale bars, 10 μm in panel B and 2 μm in panel C.(D and E) Percentages of viruses releasing genomes in normal and amantadine-treated cells. Scale bar, 10 μm[59]
Fig. 7 (A) Schematic diagram for the visualization of the translation of full-length HIV RNA.(B) Nontranslating RNA(red) interacting and being colocalized with Gag(cyan) near the plasma membrane.(C) Translating RNA(yellow) reaching and leaving the plasma membrane.(D) Residence time of the RNA in translation staying near the plasma membrane[60]
Fig. 8 (A) Schematic diagram of labeling parental and progeny PrV with Halo tags.(B~D) The fluorescence image, transmission electron image and three dimensional fluorescence image of progeny capsids in the cell nucleus. Scale bars, 10 μm(E) Speeds and MSD of the arrowed capsid in panel B, and statistical diffusion coefficient of capsids diffusing in cell nuclei[63]
[1]
Cui J, Li F, Shi Z L. Nat. Rev. Microbiol., 2019, 17: 181.

doi: 10.1038/s41579-018-0118-9
[2]
Lai C C, Shih T P, Ko W C, Tang H J, Hsueh P R. Int. J. Antimicrob. Agents , 2020, 55: 105924.

doi: 10.1016/j.ijantimicag.2020.105924
[3]
Holmes E C, Dudas G, Rambaut A, Andersen K G. Nature , 2016, 538: 193.

doi: 10.1038/nature19790
[4]
Wessler T, Chen A, McKinley S A, Cone R, Forest M G, Lai S K. ACS Infect. Dis., 2016, 2: 82.

doi: 10.1021/acsinfecdis.5b00108
[5]
Pidre M L, Ferrelli M L, Haase S, Romanowski V. Current Issues in Molecular Virology-Viral Genetics and Biotechnological Applications , IntechOpen , 2013, 137.
[6]
Reddy D, Kumavath R, Barh D, Azevedo V, Ghosh P. Molecules , 2020, 25: 3596.

doi: 10.3390/molecules25163596
[7]
Riedel C, Hennrich A A, Conzelmann K K. Viruses , 2020, 12: 959.

doi: 10.3390/v12090959
[8]
Fisher C R, Streicker D G, Schnell M J. Nat. Rev. Microbiol., 2018, 16: 241.

doi: 10.1038/nrmicro.2018.11
[9]
Okoli A, Okeke M I, Tryland M, Moens U. Viruses , 2018, 10: 50.

doi: 10.3390/v10010050
[10]
Al-Tannak N F, Novotny L, Alhunayan A. Sci. Pharm. , 2020, 88: 29.

doi: 10.3390/scipharm88020029
[11]
Arias C F, DuBois R M. Viruses , 2017, 9: 15.

doi: 10.3390/v9010015
[12]
Besson S, Vragniau C, Vassal-Stermann E, Dagher M C, Fender P. Viruses , 2020, 12: 718.

doi: 10.3390/v12070718
[13]
Kusumi A, Tsunoyama T A, Hirosawa K M, Kasai R S, Fujiwara T K. Nat. Chem. Biol., 2014, 10: 524.

doi: 10.1038/NCHEMBIO.1558
[14]
Liu S L, Wang Z G, Hu Y, Xin Y, Singaram I, Gorai S, Zhou X, Shim Y, Min J H, Gong L W, Hay N, Zhang J, Cho W. Mol. Cell , 2018, 71: 1092.

doi: 10.1016/j.molcel.2018.07.035
[15]
Xia T, Li N, Fang X H. Annu. Rev. Phys. Chem., 2013, 64: 459.

doi: 10.1146/annurev-physchem-040412-110127
[16]
Seisenberger G, Ried M U, Endress T, Buning H, Hallek M, Brauchle C. Science , 2001, 294: 1929.

doi: 10.1126/science.1064103
[17]
Lakadamyali M, Rust M J, Babcock H P, Zhuang X. Proc. Natl. Acad. Sci. U. S. A., 2003, 100: 9280.
[18]
Rust M J, Lakadamyali M, Zhang F, Zhuang X. Nat. Struct. Mol. Bio l. , 2004, 11: 567.
[19]
Fernandez-Suarez M, Ting A Y. Nat. Rev. Mol. Cell Biol., 2008, 9: 929.

doi: 10.1038/nrm2531
[20]
Muller B, Heilemann M. Trends Microbiol., 2013, 21: 522.

doi: 10.1016/j.tim.2013.06.010
[21]
Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan G B. Cell , 2009, 137: 433.

doi: 10.1016/j.cell.2009.02.046
[22]
Chudakov D M, Matz M V, Lukyanov S, Lukyanov K A. Physiol. Rev., 2010, 90: 1103.

doi: 10.1152/physrev.00038.2009
[23]
Alivisatos A P, Gu W W, Larabell C. Annu. Rev. Biomed. Eng., 2005, 7: 55.

doi: 10.1146/annurev.bioeng.7.060804.100432
[24]
Zhou J, Yang Y, Zhang C Y. Chem. Rev., 2015, 115: 11669.

doi: 10.1021/acs.chemrev.5b00049
[25]
Wegner K D, Hildebrandt N. Chem. Soc. Rev., 2015, 44: 4792.

doi: 10.1039/C4CS00532E
[26]
Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Nat. Methods , 2008, 5: 763.

doi: 10.1038/nmeth.1248
[27]
Liu S L, Zhang Z L, Tian Z Q, Zhao H S, Liu H, Sun E Z, Xiao G F, Zhang W, Wang H Z, Pang D W. ACS Nano , 2012, 6: 141.

doi: 10.1021/nn2031353
[28]
Wang Z G, Liu S L, Zhang Z L, Tian Z Q, Tang H W, Pang D W. Small , 2014, 10: 2712.

doi: 10.1002/smll.201303532
[29]
Sun E Z, Liu A A, Zhang Z L, Liu S L, Tian Z Q, Pang D W. ACS Nano , 2017, 11: 4395.

doi: 10.1021/acsnano.6b07853
[30]
Zhang L J, Xia L, Xie H Y, Zhang Z L, Pang D W. Anal. Chem., 2019, 91: 532.

doi: 10.1021/acs.analchem.8b04721
[31]
Li Q, Yin W, Li W, Zhang Z, Zhang X, Zhang X E, Cui Z. Nano Lett., 2018, 18, 7457.

doi: 10.1021/acs.nanolett.8b02800
[32]
Ma Y, Wang M, Li W, Zhang Z, Zhang X, Tan T, Zhang X E, Cui Z. Nat. Commun., 2017, 8, 15318.

doi: 10.1038/ncomms15318
[33]
Liu S L, Wang Z G, Zhang Z L, Pang D W. Chem. Soc. Rev., 2016, 45: 1211.

doi: 10.1039/C5CS00657K
[34]
Ruthardt N, Lamb D C, Brauchle C. Mol. Ther., 2011, 19: 1199.

doi: 10.1038/mt.2011.102
[35]
Liu S L, Li J, Zhang Z L, Wang Z G, Tian Z Q, Wang G P, Pang D W. Sci. Rep., 2013, 3: 2462.

doi: 10.1038/srep02462
[36]
Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid S L, Danuser G. Nat. Methods , 2008, 5: 695.

doi: 10.1038/nmeth.1237
[37]
Marsh M, Helenius A. Cell , 2006, 124: 729.

doi: 10.1016/j.cell.2006.02.007
[38]
van der Schaar H M, Rust M J, Chen C, van der Ende-Metselaar H, Wilschut J, Zhuang X, Smit J M. PLoS Pathog., 2008, 4: e1000244.

doi: 10.1371/journal.ppat.1000244
[39]
Hao X, Shang X, Wu J Z, Shan Y P, Cai M J, Jiang J G, Huang Z, Tang Z Y, Wang H D. Small , 2011, 7: 1212.

doi: 10.1002/smll.201002020
[40]
Huang L L, Wu L L, Li X, Liu K J, Zhao D X, Xie H Y. Anal. Chem. , 2018, 90: 3452.

doi: 10.1021/acs.analchem.7b05183
[41]
Brandenburg B, Zhuang X. Nat. Rev. Microbiol., 2007, 5: 197.

doi: 10.1038/nrmicro1615
[42]
Zhang L J, Wang S, Xia L, Lv C, Tang H W, Liang Z, Xiao G, Pang D W. mBio , 2020, 11: e00135.
[43]
Huotari J, Helenius A. EMBO J., 2011, 30: 3481.

doi: 10.1038/emboj.2011.286
[44]
Hoornweg T E, van Duijl-Richter M K S, Nunez N V A, Albulescu I C, van Hemert M J, Smit J M. J. Virol., 2016, 90: 4745.

doi: 10.1128/JVI.03184-15
[45]
Li Q, Li W, Yin W, Guo J, Zhang Z P, Zeng D, Zhang X, Wu Y, Zhang X E, Cui Z. ACS Nano , 2017, 11: 3890.

doi: 10.1021/acsnano.7b00275
[46]
Qin F J, Xu C R, Hu J, Lei C F, Zheng Z H, Peng K, Wang H Z, Sun X L. J. Virol., 2019, 93: e00033- 19.
[47]
Liu J, Xu M Y, Tang B, Hu L B, Deng F, Wang H L, Pang D W, Hu Z H, Wang M L, Zhou Y W. Small , 2019, 15: e1803788.
[48]
Greber U F, Way M. Cell , 2006, 124: 741.

doi: 10.1016/j.cell.2006.02.018
[49]
Wang I H, Burckhardt C J, Yakimovich A, Greber U F. Viruses , 2018, 10: 166.

doi: 10.3390/v10040166
[50]
Liu S L, Wu Q M, Zhang L J, Wang Z G, Sun E Z, Zhang Z L, Pang D W. Small , 2014, 10: 4746.

doi: 10.1002/smll.201400944
[51]
Liu S L, Zhang L J, Wang Z G, Zhang Z L, Wu Q M, Sun E Z, Shi Y B, Pang D W. Anal. Chem., 2014, 86: 3902.

doi: 10.1021/ac500640u
[52]
Zhang L J, Xia L, Liu S L, Sun E Z, Wu Q M, Wen L, Zhang Z L, Pang D W. ACS Nano , 2018, 12: 474.

doi: 10.1021/acsnano.7b06926
[53]
Wu Q M, Liu S L, Chen G, Zhang W, Sun E Z, Xiao G F, Zhang Z L, Pang D W. Small , 2018, 14: e1702841.
[54]
Chu L W, Huang Y L, Lee J H, Huang L Y, Chen W J, Lin Y H, Chen J Y, Xiang R, Lee C H, Ping Y H. J. Biomed. Opt. , 2014, 19: 011018.

doi: 10.1117/1.JBO.19.1.011018
[55]
Liu S L, Wang Z G, Xie H Y, Liu A A, Lamb D C, Pang D W. Chem. Rev., 2020, 120: 1936.
[56]
Krishnan M N, Sukumaran B, Pal U, Agaisse H, Murray J L, Hodge T W, Fikrig E. J. Virol. , 2007, 81: 4881.

doi: 10.1128/JVI.02210-06
[57]
Kalia M, Khasa R, Sharma M, Nain M, Vrati S. J. Virol. , 2013, 87: 148.

doi: 10.1128/JVI.01399-12
[58]
Wen L, Lin Y, Zhang Z L, Lu W, Lv C, Chen Z L, Wang H Z, Pang D W. Biomaterials , 2016, 99: 24.

doi: 10.1016/j.biomaterials.2016.04.038
[59]
Qin C, Li W, Li Q, Yin W, Zhang X W, Zhang Z P, Zhang X E, Cui Z Q. Proc. Natl. Acad. Sci. U. S. A., 2019, 116: 2577.
[60]
Chen J B, Liu Y, Wu B, Nikolaitchik O A, Mohan P R, Chen J J, Pathak V K, Hu W S. Proc. Natl. Acad. Sci. U. S. A., 2020, 117: 6145.
[61]
Baumgartel V, Ivanchenko S, Dupont A, Sergeev M, Wiseman P W, Krausslich H G, Brauchle C, Muller B, Lamb D C. Nat. Cell Biol., 2011, 13: 469.
[62]
Rahman S A, Koch P, Weichsel J, Godinez W J, Schwarz U, Rohr K, Lamb D C, Krausslich H G, Muller B. J. Virol., 2014, 88: 7904.

doi: 10.1128/JVI.00431-14
[63]
Liu A A, Zhang Z F, Sun E Z, Zheng Z H, Zhang Z L, Hu Q X, Wang H Z, Pang D W. ACS Nano , 2016, 10: 1147.

doi: 10.1021/acsnano.5b06438
[64]
Sugimoto K, Uema M, Sagara H, Tanaka M, Sata T, Hashimoto Y, Kawaguchi Y. J. Virol., 2008, 82: 5198.

doi: 10.1128/JVI.02681-07
[65]
Hogue I B, Bosse J B, Hu J R, Thiberge S Y, Enquist L W. PLoS Pathog., 2014, 10: e1004535.

doi: 10.1371/journal.ppat.1004535
[66]
Alenquer M, Vale-Costa S, Etibor T A, Ferreira F, Sousa A L, Amorim M J. Nat. Commun., 2019, 10: 1629.

doi: 10.1038/s41467-019-09549-4
[67]
Avilov S V, Moisy D, Naffakh N, Cusack S. Vaccine , 2012, 30: 7411.

doi: 10.1016/j.vaccine.2012.09.077
[68]
Amorim M J, Bruce E A, Read E K, Foeglein A, Mahen R, Stuart A D, Digard P. J. Virol., 2011, 85: 4143.

doi: 10.1128/JVI.02606-10
[69]
Gu Y P, Cui R, Zhang Z L, Xie Z X, Pang D W. J. Am. Chem. Soc., 2012, 134: 79.

doi: 10.1021/ja2089553
[70]
Zhao J Y, Chen G, Gu Y P, Cui R, Zhang Z L, Yu Z L, Tang B, Zhao Y F, Pang D W. J. Am. Chem. Soc., 2016, 138: 1893.

doi: 10.1021/jacs.5b10340
[71]
Xiong L H, Tu J W, Zhang Y N, Yang L L, Cui R, Zhang Z L, Pang D W. Sci. China Chem., 2020, 63: 448.

doi: 10.1007/s11426-019-9697-2
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[6] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[7] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[8] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[9] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[10] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[11] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[12] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[13] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.
[14] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[15] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
Viewed
Full text


Abstract

Single-Virus Tracking