中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (11): 1697-1709 DOI: 10.7536/PC200407 Previous Articles   Next Articles

Application of Metal-Organic Framework Materials in the Photocatalytic Carbon Dioxide Reduction

Xiao Feng1, Yanwei Ren1,**(), Huanfeng Jiang1,**()   

  1. 1. School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China
  • Revised: Online: Published:
  • Contact: Yanwei Ren, Huanfeng Jiang
Richhtml ( 86 ) PDF ( 1416 ) Cited
Export

EndNote

Ris

BibTeX

The effective use of CO2 has become a research hotspot worldwide, whose excessive emission led to increasingly serious global environmental problems. Compared with high energy-consuming CO2 capture and storage(CCS) technology, the photocatalytic conversion of CO2 into a valuable energy fuel is an effective way to solve energy and environmental problems. Among them, the development of a photocatalyst with efficient catalytic performance under visible light is the key to this process. Currently, there are still many shortcomings in photoreduction CO2 catalysts, such as weak visible light response ability, high recombination rate of photo-generated electron-hole pairs, low CO2 adsorption capacity, poor product selectivity, and hydrogen-evolution competition in an aqueous environment. Metal-organic frameworks(MOFs), with adjustable porous structures, fast electron migration rate, large CO2 adsorption capacity, etc., are a unique class of porous crystalline materials composed of metal ions/clusters and organic ligands, which have broad application potential in CO2 photocatalytic reduction. The existing methods improving the catalytic performance of MOFs-based catalysts is mainly to enhance the absorption of visible light by functional modification, formation of composites with other functional materials and so on. This review mainly analyzes and discusses the recent advances of MOFs-based photoreduction CO2 catalysts(single MOFs, MOFs-based composites and MOFs-derived materials), and predicts future development trends and prospects of MOFs-based materials in photocatalytic reduction of CO2.

Contents

1 Introduction

2 Single MOFs

2.1 Organic ligands as photosensitizer

2.2 Metalloligands as photosensitizer

3 MOFs-based composites

3.1 MOFs/semiconductor composites

3.2 MOFs/perovskite quantum dot composites

3.3 MOFs/noble metal nanoparticle composites

3.4 MOFs/enzyme composites

4 MOFs-derived materials

5 Conclusion and outlook

Fig.1 Proposed mechanism for photocatalytic CO2 reduction over NH2-UiO-66(Zr) under visible-light irradiation[30]
Fig.2 Dual excitation pathways over amino-functionalized Fe-based MOFs[31]
Fig.3 Photocatalytic mechanisms of CO2 reduction for Co-MOF[32]
Fig.4 Schematic illustration of photocatalytic CO2 reduction over Zr-SDCA-NH2 under visible light irradiation[28]
Fig.5 A scheme of dual photocatalytic routes for CO2 reduction under visible light over NNU-28[35]
Fig.6 Proposed mechanism for photocatalytic CO2 reduction over PCN-222 under visible-light irradiation[39]
Fig.7 The proposed photo-catalytic mechanism of dual catalytic centers in Rh-PMOF-1[41]
Fig.8 The mechanism for photocatalytic CO2 reduction over PCN-138 under visible-light irradiation[42]
Fig.9 The mechanism for CO2 photoreduction over AUBM-4 under visible light irradiation[53]
Fig.10 The mechanism for the photocatalytic reaction of CO2 with UiO-67-Mn(bpy)(CO)3Br[54]
Fig.11 Proposed catalytic cycle for the visible light-driven CO2 reduction reaction catalyzed by mPT-Cu/Re[55]
Fig.12 The mechanism of photocatalytic CO2 reduction with Cd0.2Zn0.8S@UiO-66-NH2 under visible light irradiation[61]
Fig.13 The charge migration path in NUZ/HGN composites[64]
Fig.14 The Z-scheme photocatalytic mechanism over PCN-224(Cu)/TiO2[65]
Fig.15 Schematic illustration of CO2 photoreduction process of CsPbBr3/ZIFs[69]
Fig.16 Schematic illustration of possible mechanism of photocatalytic CO2 reduction over CsPbBr3 QDs/UiO-66(NH2)[70]
Fig.17 Photocatalytic conversion of CO2 over Ag?Re3-MOF[74]
Fig.18 Schematic illustration of the electron transfer process in MIL-101(Cr)-Ag Hybrids[75]
Fig.19 Schematic illustration showing the electron transfer process at the Pt and NH2-UiO-68 interface[76]
Fig.20 The schematic diagram of the primary catalytic cycle over FDH@Rh-NU-100[79]
Fig.21 Mechanism illustration for the In2S3-CuInS2 heterojunction for CO2 reduction[83]
Fig.22 The electron-hole migration path in ZnO/NiO[84]
Fig.23 Possible photosensitized CO2 reduction process on the Ni@GC Catalyst[85]
[1]
Zhang N, Long R, Gao C , Xiong Y. Sci. China Mater., 2018,61:771.
[2]
Yu S, Wilson A J, Kumari G, Zhang X , Jain P K. ACS Energy Lett., 2017,2:2058.
[3]
Kondratenko E V, Mul G, Baltrusaitis J, Larrazabal G O, Perez-Ramirez J. Energy Environ . Sci., 2013,6, 3112.
[4]
Li K, Peng B, Peng T. ACS Catal ., 2016,6:7485.
[5]
Xie S J, Zhang Q H, Liu G D, Wang Y. . Chem. Commun., 2016,52:35.
[6]
Lei Z, Xue Y, Chen W, Qiu W, Zhang Y, Horike S , Tang L. Adv. Energy Mater., 2018,8, 1801587.
[7]
Elgrishi N, Chambers M B, Wang X , Fontecave M. Chem. Soc. Rev., 2017,46:761.
[8]
Ouyang T, Huang H H, Wang J W, Zhong D C , Lu T B. Angew. Chem. Int. Ed., 2017,56:738.
[9]
Kuramochi Y, Fujisawa Y, Satake A . Am. Chem. Soc., 2020,142:705.
[10]
Liu X, Inagaki S J , Gong J L. Angew. Chem. Int. Ed., 2016,55:14924.
[11]
Zhang S, Li M, Qiu W, Han J, Wang H, Liu X. Appl. Catal . B -Environ., 2019,259:118113.
[12]
Xu S Z , Carter E A. Chem. Rev., 2019,119:6631.
[13]
Luo Y, Dong L, Liu J, Li S , Lan Y Q. Coordin. Chem. Rev., 2019,390:86.
[14]
Li X, Wen J, Low J, Fang Y , Yu J. Sci. China Mater., 2014,57:70.
[15]
Nasalevich M A, van der Veen M, Kapteijn F, Gascon J . CrystEngComm, 2014,16:4919.
[16]
Tu W, Zhou Y, Zou Z. Adv. Mater ., 2014,26:4607.
[17]
Zhou H C , Kitagawa S. Chem. Soc. Rev., 2014,43:5415.
[18]
Jiao L , Seow J Y R, Skinner W S, Wang Z U, Jiang H L. Mater. Today, 2019,27:43.
[19]
Li B, Wen H M, Cui Y, Zhou W, Qian G, Chen B. Adv. Mater ., 2016,28:8819.
[20]
李嘉伟 ( Li J W), 任颜卫(Ren Y W), 江焕峰(Jiang H F). 化学进展( Progress in Chemistry), 2019,31(10):1350.
[21]
肖娟定 ( Xiao J D), 李丹丹,(Li D D), 江海龙(Jiang H L). 中国科学: 化学( Science China: Chemistry), 2018,48:1058.
[22]
Lu K, Aung T, Guo N, Weichselbaum R, Lin W. Adv. Mater ., 2018,30:1707634.
[23]
姜信欣 ( Jiang X X), 赵成军(Zhao C J), 钟春菊(Zhong C J), 李建平(Li J P). 化学进展( Progress in Chemistry), 2017,29(10):1206.
[24]
Liang Y, Shang R, Lu J, An W, Hu J, Liu L, Cui W. Int. J . Hydrogen Energy, 2019,44:2797.
[25]
Ding R, Zheng W, Yang K, Dai Y, Ruan X H, Yan X M , He G H. Sep. Purif. Technol., 2020,236:116209.
[26]
Wang X, Liu J, Zhang L, Dong L, Li S, Kan Y, Li D , Lan Y Q. ACS Catal., 2019,9:1726.
[27]
Lan Y, Dong L, Zhang L, Huang Q, Lu M, Ji W, Liu J. Angew. Chem ., 2020,132:2681.
[28]
Sun M, Yan S, Sun Y, Yang X, Guo Z, Du J, Chen D, Chen P , Xing H Z. Dalton Trans., 2018,47:9.
[29]
Fu Y, Sun D, Chen Y, Huang R, Ding Z, Fu X , Li Z H. Angew. Chem. Int. Ed., 2012,51:3364
[30]
Sun D, Fu Y, Liu W, Ye L, Wang D, Yang L, Fu X , Li Z H. Chem. Eur. J., 2013,19:14279.
[31]
Wang D, Huang R, Liu W, Sun D, Li Z. ACS Catal ., 2014,4(12):4254.
[32]
Liao W, Zhang J, Wang Z, Lu Y, Yin S, Wang H, Fan Y, Pan M , Su C Y. Inorg. Chem., 2018,57:11436.
[33]
Pu S, Sun L , Du H B. Inorg. Chem. Commun., 2015,52:50.
[34]
Gutierrez M, Cohen B, Sanchez F , Douhal A. Phys. Chem. Chem. Phys., 2016,18:27761.
[35]
Chen D, Xing H, Wang C, Su Z M . J. Mater. Chem. A, 2016,4:2657.
[36]
Gao W, Chrzanowski M , Ma S Q. Chem. Soc. Rev., 2014,43:5841.
[37]
Feng D, Gu Z, Li J, Jiang H, Wei Z , Zhou H C. Angew. Chem. Int. Ed., 2012,51:10307.
[38]
Sadeghi N, Sharifnia S, Sheikh Arabi M . J. CO2 Util., 2016,16:450.
[39]
Xu H, Hu J, Wang D, Li Z, Zhang Q, Luo Y, Yu S, Jiang H L . Am. Chem. Soc., 2015,137:13440.
[40]
Chen E X, Qiu M, Zhang Y F, Zhu Y S, Liu L Y, Sun Y Y, Bu X H, Zhang J , Lin Q P. Adv. Mater., 2018,30:1704388.
[41]
Liu J, Fan Y Z, Li X, Wei Z, Xu Y W, Zhang L, Su C Y.Appl. Catal . B Environ., 2018,231:173.
[42]
Qiu Y C, Yuan S, Li X X, Du D Y, Wang C, Qin J S, Drake H F, Lan Y Q, Jiang L, Zhou H C . Am. Chem. Soc., 2019,141:13841.
[43]
Morimoto T, Nakajima T, Sawa S, Nakanishi R, Imori D, Ishitani O . Am. Chem. Soc., 2013,135:16825.
[44]
Kobayashi K, Kikuchi T, Kitagawa S , Tanaka K. Angew. Chem. Int. Ed., 2014,53:11813.
[45]
Genoni A, Chirdon D N, Boniolo M, Sartorel A, Bernhard S, Bonchio M. ACS Catal ., 2017,7:154.
[46]
Castillo C E, Armstrong J, Laurila E, Oresmaa L, Haukka M, Chauvin J, Chardon-Noblat S, Deronzier A . ChemCatChem, 2016,8:2667.
[47]
Bonin J, Robert M, Routier M . Am. Chem. Soc., 2014,136:16768.
[48]
Chan S L F, Lam T L, Yang C, Yan S C, Cheng N M . Chem. Commun., 2015,51:7799.
[49]
Wang J, Liu W, Zhong D , Lu T B. Coordin. Chem. Rev., 2019,378:237.
[50]
Guo Z, Yu F, Yang Y, Leung C, Ng S, Ko C, Cometto C, Lau T C, Robert M . ChemSusChem, 2017,10:4009.
[51]
Bourrez M, Orio M, Molton F, Vezin H, Duboc C, Deronzier A , Chardon-Noblat S. Angew. Chem. Int. Ed., 2014,53:240.
[52]
Woo S J, Choi S H, Kim S Y, Kim P S, Jo J H, Kim C H, Son H J, Pac C , Kang S O. ACS Catal., 2019,9:2580.
[53]
Elcheikh M M, Audi H, Assoud A, Ghaddar T H, Hmadeh M . Am. Chem. Soc., 2019,141:7115.
[54]
Fei H, Sampson M, Lee Y, Kubiak C P , Cohen S M. Inorg. Chem., 2015,54:6821.
[55]
Feng X, Pi Y, Song Y, Brzezinski C, Xu Z, Li Z, Lin W B . Am. Chem. Soc., 2020,142:690.
[56]
Fujishima A, Honda K . Nature, 1972,238:37.
[57]
Abdellah M , El-Zohry A M, Antila LJ, Windle C D, Reisner E, Hammarström L.[J]. Am. Chem. Soc., 2017,139:1226.
[58]
Pan Y, Sun Z, Cong H, Men Y, Xin S, Song J , Yu S H. Nano Res., 2016,9:1689.
[59]
Di Credico B, Redaelli M, Bellardita M, Calamante M, Cepek C, Cobani E , D’Arienzo M, Evangelisti C, Marelli M, Moret M, Palmisano L, Scotti R. Catalysts, 2018,8:353.
[60]
Huang Z, Dong P, Zhang Y, Nie X, Wang X, Zhang X . J. CO2 Util., 2018,24:369.
[61]
Su Y, Zhang Z, Liu H, Wang Y. Appl. Catal . B Environ., 2017,200:448.
[62]
Xu G, Zhang H, Wei J, Zhang H X, Wu X, Li Y, Li C, Zhang J, Ye J . ACS Nano, 2018,12:5333.
[63]
Tian L, Yang X, Liu Q, Qu F , Tang H. Appl. Surf. Sci., 2018,455:403.
[64]
Wang Y, Guo L, Zeng Y, Guo H, Wan S, Ou M, Zhang S L, Zhong Q. ACS Appl . Mater. Interfaces, 2019,11:30673.
[65]
Wang L, Jin P X, Huang J W, She H D , Wang Q Z. ACS Sustainable Chem. Eng., 2019,7:15660.
[66]
Ren J, Li T, Zhou X, Dong X, Shorokhov A V, Semenov M B, Krebchik V D , Wang Y H. Chem. Eng. J., 2019,358:30.
[67]
Hou J, Cao S, Wu Y, Gao Z, Liang F, Sun Y, Lin Z , Sun L C. Chem. Eur. J., 2017,23:9481.
[68]
You S, Guo S, Zhao X, Sun M, Sun C, Su Z , Wang X L. Dalton Trans., 2019,48:14115.
[69]
Kong Z, Liao J, Dong Y, Xu Y, Chen H, Kuang D , Su C Y. ACS Energy Lett., 2018,3:2656.
[70]
Wan S P, Ou M, Zhong Q , Wang X M. Chem. Eng. J. 2019,358:1287.
[71]
Wu L, Mu Y, Guo X, Zhang W, Zhang Z, Zhang M , Lu T B. Angew. Chem. Int. Ed., 2019,58:9491.
[72]
Yuan X, Wang H, Wu Y, Zeng G, Chen X, Leng L, Wu Z B , Li H. Appl. Organomet. Chem., 2016,30:289
[73]
Gu Z, Chen L, Duan B, Luo Q, Liu J , Duan C Y. Chem. Commun., 2016,52:116.
[74]
Choi K M, Kim D, Rungtaweevoranit B, Trickett C A , Barmanbek J T D, Alshammari A S, Yang P D, Yaghi O M.[J]. Am. Chem. Soc., 2017,139:356.
[75]
Guo F, Yang S Z, Liu Y, Wang P, Huang J , Sun W Y. ACS Catal., 2019,9(9):8464.
[76]
Guo F, Wei Y P, Wang S Q, Zhang X Y, Wang F M, Sun W Y . J. Mater. Chem. A, 2019,7:26490.
[77]
Li Y, Wen L Y, Tan T W , Lv Y Q. Front. Bioeng. Biotechnol., 2019,7:394.
[78]
Dibenedetto A, Stufano P, Macyk W, Baran T, Fragale C, Costa M, Aresta M . ChemSusChem, 2012,5:373.
[79]
Chen Y, Li P, Zhou J, Buru C T , Dorđevi L, Li P, Zhang X, Mustafa Cetin M, Fraser Stoddart J, Stupp S I, Wasielewski M R, Farha O K. [J]. Am. Chem. Soc., 2020,142:1768.
[80]
Khaletskaya K, Pougin A, Medishetty R, RÖsler C, Wiktor C, Strunk J , Fischer R A. Chem. Mater., 2015,27:7248.
[81]
Wang S, Guan B Y, Lu Y , Lou X W D.[J]. Am. Chem. Soc., 2017,139:17305.
[82]
Wang S, Guan B Y , Lou X W D.[J]. Am. Chem. Soc., 2018,140:5037.
[83]
Yang J, Zhu X, Mo Z, Yi J, Yan J, Deng J, Xu Y, She Y, Qian J, Xu H , Li H. Inorg. Chem. Front., 2018,5:3163.
[84]
Chen S, Yu J, Zhang J . J. CO2 Util., 2018,24:548.
[85]
Lin X, Wang S, Tu W, Wang H, Hou Y, Dai W , Xu R. ACS Appl. Energy Mater., 2019,2:7670.
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[3] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[4] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[5] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[6] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[7] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[8] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[9] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[10] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[11] Hao Hu, Yunpeng He, Shuijin Yang. Preparation of Polyoxometalates@Metal-Organic Frameworks Materials and Their Application in Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(6): 1026-1034.
[12] Yuzhou Yang, Zheng Li, Yanfeng Huang, Jixian Gong, Changsheng Qiao, Jianfei Zhang. Preparation and Application of MOF-Based Hydrogel Materials [J]. Progress in Chemistry, 2021, 33(5): 726-739.
[13] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[14] Jiangjiexing Wu, Hui Wei. Efficient Design Strategies for Nanozymes [J]. Progress in Chemistry, 2021, 33(1): 42-51.
[15] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.