中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (6): 1026-1034 DOI: 10.7536/PC200662 Previous Articles   Next Articles

• Review •

Preparation of Polyoxometalates@Metal-Organic Frameworks Materials and Their Application in Wastewater Treatment

Hao Hu1, Yunpeng He1, Shuijin Yang1,2,*()   

  1. 1 College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, China
    2 Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, China
  • Received: Revised: Online: Published:
  • Contact: Shuijin Yang
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(21171053)
Richhtml ( 30 ) PDF ( 746 ) Cited
Export

EndNote

Ris

BibTeX

The pollutants in the wastewater are hazardous to human health due to their complex composition, high biological toxicity and difficult degradation. Therefore, finding and developing some adsorbents that can effectively remove highly toxic and refractory pollutants in wastewater have become an urgent problem to be solved. Metal-organic frameworks(MOFs) materials have the characteristics of orderly and diverse structure, rich topology, ultra-high porosity, large specific surface area, stable framework structure and easy doping with other components, which have attracted wide attention in the field of adsorption. Compared with pure MOFs, the new hybrid materials POMs@MOFs are created by incorporating polyoxometalates(POMs) onto metal-organic frameworks(MOFs). They not only have their unique set of properties, but also combine the strong acidity, oxygen-rich surface, and redox capability of POMs. At the same time, they have overcome shortcomings of POMs and MOFs, such as difficult handling, low surface area, and high solubility. In recent years, researchers have discovered that the composites of POMs and MOFs have excellent performance as adsorbents in the field of wastewater treatment. In this paper, the synthesis and preparation of POMs@MOFs, especially the advantages and disadvantages of various preparation methods, are summarized and analyzed based on the reported researches and the works of our group. This article focuses on the application and development of POMs@MOFs in wastewater treatment. Finally, the development direction and research prospect of POMs@MOFs composite materials are also proposed.

Contents

1 Introduction

2 Preparation of POMs@MOFs materials

2.1 The method of one-pot synthesis

2.2 The method of impregnation synthesis

2.3 The method of mechanical grinding synthesis

3 Application of POMs@MOFs materials in wastewater treatment

3.1 Application of MOFs materials in wastewater treatment

3.2 Application of POMs materials in wastewater treatment

3.3 Application of POMs@MOFs materials in wastewater treatment

4 Conclusion and outlook

Fig.1 Schematic diagram of H3PW12O40@Cu3(BTC)2[64], Co-POM@MIL-101[67] and P5W30@MIL-101(Cr)[68]
Fig.2 Schematic diagram of POMs@MIL-101(Cr)[69], H3PMo12O20@ZIF-67[72]
Fig.3 Schematic diagram of POMs@ZIF-8[75], PW12@MFM-300(In)[77]
Fig.4 The selective adsorption capability of POM@MIL-101 toward the mixed dyes solution[101]
[1]
Le C, Zha Y, Li Y, Sun D, Lu H, Yin B. Environ. Manag., 2010, 45:662.

doi: 10.1007/s00267-010-9440-3
[2]
Michael I, Rizzo L, McArdell C S, Manaia C M, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D. Water Res., 2013, 47:957.

doi: 10.1016/j.watres.2012.11.027 pmid: 23266388
[3]
Bu Q W, Wang B, Huang J, Deng S B, Yu G. J. Hazard. Mater., 2013, 262:189.

doi: 10.1016/j.jhazmat.2013.08.040
[4]
Ali H, Khan E, Sajad M A. Chemosphere, 2013, 91:869.

doi: 10.1016/j.chemosphere.2013.01.075
[5]
Gallo F, Fossi C, Weber R, Santillo D, Sousa J, Ingram I, Nadal A, Romano D. Environ. Sci. Eur., 2018, 30:13.

doi: 10.1186/s12302-018-0139-z
[6]
Lee C M, Palaniandy P, Dahlan I. Environ. Earth Sci., 2017, 76:611.

doi: 10.1007/s12665-017-6924-y
[7]
Feng M B, Zhang P, Zhou H C, Sharma V K. Chemosphere, 2018, 209:783.

doi: 10.1016/j.chemosphere.2018.06.114
[8]
Fu Z Y, Guo W J, Dang Z, Hu Q, Wu F C, Feng C L, Zhao X L, Meng W, Xing B S, Giesy J P. Environ. Sci. Technol., 2017, 51:3117.

doi: 10.1021/acs.est.7b00223
[9]
Pophali G R, Hedau S, Gedam N, Rao N N, Nandy T. J. Hazard. Mater., 2011, 189:273.

doi: 10.1016/j.jhazmat.2011.02.030 pmid: 21377786
[10]
Hasan Z, Jhung S H. J. Hazard. Mater., 2015, 283:329.

doi: 10.1016/j.jhazmat.2014.09.046
[11]
Tong M M, Zhao X D, Xie L T, Liu D H, Yan Q Y, Zhong C L. Prog. Chem., 2012, 24(09):1646.
(童敏曼, 赵旭东, 解丽婷, 刘大欢, 阳庆元, 仲崇立. 化学进展, 2012, 24(09): 1646.)
[12]
Fu H, Li X B, Wang J, Lin P F, Chen C, Zhang X J, Suffet I H M. J. Environ. Sci., 2017, 56:145.

doi: 10.1016/j.jes.2016.09.010
[13]
Jiang L H, Liu Y G, Liu S B, Zeng G M, Hu X J, Hu X, Guo Z, Tan X F, Wang L L, Wu Z B. Environ. Sci. Technol., 2017, 51:6352.

doi: 10.1021/acs.est.7b00073
[14]
Khandaker S, Toyohara Y, Saha G C, Awual M R, Kuba T. J. Water Process. Eng., 2020, 33:101055.

doi: 10.1016/j.jwpe.2019.101055
[15]
Cao Y, Li X B. Adsorption, 2014, 20:713.

doi: 10.1007/s10450-014-9615-y
[16]
Hua M, Zhang S J, Pan B C, Zhang W M, Lv L, Zhang Q X. J. Hazard. Mater., 2012, 211/212:317.

doi: 10.1016/j.jhazmat.2011.10.016
[17]
Cook T R, Zheng Y R, Stang P J. Chem. Rev., 2013, 113:734.

doi: 10.1021/cr3002824
[18]
Gross A F, Sherman E, Mahoney S L, Vajo J J. J. Phys. Chem. A, 2013, 117:3771.

doi: 10.1021/jp401039k pmid: 23586479
[19]
Liu Y, Liu J, Lin Y S. Microporous Mesoporous Mater., 2015, 214:242.

doi: 10.1016/j.micromeso.2015.05.001
[20]
Alesaadi S J, Sabzi F. Int. J. Hydrog. Energy, 2014, 39:21076.

doi: 10.1016/j.ijhydene.2014.10.064
[21]
Ethiraj J, Bonino F, Lamberti C, Bordiga S. Microporous Mesoporous Mater., 2015, 207:90.

doi: 10.1016/j.micromeso.2014.12.034
[22]
Chen Z J, Adil K, Weseliński Ł J, Belmabkhout Y, Eddaoudi M. J. Mater. Chem. A, 2015, 3:6276.

doi: 10.1039/C4TA07115H
[23]
Kayal S, Sun B C, Chakraborty A. Energy, 2015, 91:772.

doi: 10.1016/j.energy.2015.08.096
[24]
Sadakiyo M, O? kawa H, Shigematsu A, Ohba M, Yamada T, Kitagawa H. J. Am. Chem. Soc., 2012, 134:5472.

doi: 10.1021/ja300122r pmid: 22409393
[25]
Canivet J, Fateeva A, Guo Y M, Coasne B, Farrusseng D. Chem. Soc. Rev., 2014, 43:5594.

doi: 10.1039/C4CS00078A
[26]
An Y, Li H L, Liu Y Y, Huang B B, Sun Q L, Dai Y, Qin X Y, Zhang X Y. J. Solid State Chem., 2016, 233:194.

doi: 10.1016/j.jssc.2015.10.037
[27]
Kreno L E, Leong K, Farha O K, Allendorf M, van Duyne R P, Hupp J T. Chem. Rev., 2012, 112:1105.

doi: 10.1021/cr200324t
[28]
Sun C Y, Qin C, Wang X L, Su Z M. Expert Opin. Drug Deliv., 2012, 10:89.

doi: 10.1517/17425247.2013.741583
[29]
Peng Y G, Zhang Y X, Huang H L, Zhong C L. Chem. Eng. J., 2018, 333:678.

doi: 10.1016/j.cej.2017.09.138
[30]
Haque E, Lee J E, Jang I T, Hwang Y K, Chang J S, Jegal J, Jhung S H. J. Hazard. Mater., 2010, 181:535.

doi: 10.1016/j.jhazmat.2010.05.047
[31]
Ke F, Qiu L G, Yuan Y P, Peng F M, Jiang X, Xie A J, Shen Y H, Zhu J F. J. Hazard. Mater., 2011, 196:36.

doi: 10.1016/j.jhazmat.2011.08.069
[32]
Kitao T, Zhang Y Y, Kitagawa S, Wang B, Uemura T. Chem. Soc. Rev., 2017, 46:3108.

doi: 10.1039/C7CS00041C
[33]
Tan Y M, Meng H, Zhang X. Prog. Chem., 2019, 31(07):980.
(谭远铭, 孟皓, 张霞. 化学进展, 2019, 31(07): 980.)
[34]
Heravi M M, Hosseinnejad T, Tamimi M, Zadsirjan V, Mirzaei M. J. Mol. Struct., 2020, 1205:127598.

doi: 10.1016/j.molstruc.2019.127598
[35]
Nikoonahad A, Djahed B, Norzaee S, Eslami H, Derakhshan Z, Miri M, Fakhri Y, Hoseinzadeh E, Ghasemi S M, Balarak D, Fallahzadeh R A, Zarrabi M, Taghavi M. PeerJ, 2018, 6:e5501.

doi: 10.7717/peerj.5501
[36]
Omwoma S, Gore C T, Ji Y C, Hu C W, Song Y F. Coord. Chem. Rev., 2015, 286:17.

doi: 10.1016/j.ccr.2014.11.013
[37]
Wu X, Luo B B, Chen M, Chen F F. Appl. Surf. Sci., 2020, 509:145344.

doi: 10.1016/j.apsusc.2020.145344
[38]
Rengifo-Herrera J A, Blanco M, Wist J, Florian P, Pizzio L R. Appl. Catal. B: Environ., 2016, 189:99.

doi: 10.1016/j.apcatb.2016.02.033
[39]
Gong S W, Lu J, Wang H H, Liu L J, Zhang Q. Appl. Energy, 2014, 134:283.

doi: 10.1016/j.apenergy.2014.07.099
[40]
Zhang L J, Shi Z H, Zhang L H, Zhou Y S, Hassan S U. Mater. Lett., 2012, 86:62.

doi: 10.1016/j.matlet.2012.07.028
[41]
Zhang Q Y, Wei F F, Li Q, Huang J S, Feng Y M, Zhang Y T. RSC Adv., 2017, 7:51090.

doi: 10.1039/C7RA10554A
[42]
Tan W, Li G Z, Wang T L, Yang M, Peng J H, Barrow C J, Yang W R, Wang H B. Desalination Water Treat., 2016, 57:7874.

doi: 10.1080/19443994.2015.1085455
[43]
Streb C. Dalton Trans., 2012, 41:1651.

doi: 10.1039/C1DT11220A
[44]
Endo S, Hale S E, Goss K U, Arp H P H. Environ. Sci. Technol., 2011, 45:10124.

doi: 10.1021/es202894k
[45]
Guo D J, Fu S J, Tan W, Dai Z D. J. Mater. Chem., 2010, 20:10159.

doi: 10.1039/c0jm01161d
[46]
Ali M, Nasir S, Ramirez P, Cervera J, Mafe S, Ensinger W. ACS Nano, 2012, 6:9247.

doi: 10.1021/nn303669g
[47]
Du D Y, Yan L K, Su Z M, Li S L, Lan Y Q, Wang E B. Coord. Chem. Rev., 2013, 257:702.

doi: 10.1016/j.ccr.2012.10.004
[48]
Cao Y W, Chen Q Y, Shen C R, He L. Molecules, 2019, 24:2069.

doi: 10.3390/molecules24112069
[49]
Lee A F, Wilson K. Catal. Today, 2015, 242:3.

doi: 10.1016/j.cattod.2014.03.072
[50]
Feng C G, Xu G, Liu X. J. Rare Earths, 2013, 31:44.

doi: 10.1016/S1002-0721(12)60232-4
[51]
Huang B, Yang D H, Han B H. J. Mater. Chem. A, 2020, 8:4593.

doi: 10.1039/C9TA12679A
[52]
Sun J M, Abednatanzi S, van der Voort P, Liu Y Y, Leus K. Catalysts, 2020, 10:578.

doi: 10.3390/catal10050578
[53]
Samaniyan M, Mirzaei M, Khajavian R, Eshtiagh-Hosseini H, Streb C. ACS Catal., 2019, 9:10174.

doi: 10.1021/acscatal.9b03439
[54]
Wang X L, Chang Z H, Lin H Y, Xu C, Luan J, Liu G C, Tian A X. RSC Adv., 2015, 5:35535.

doi: 10.1039/C5RA06204G
[55]
Bo Q B, Zhang H T, Wang H Y, Miao J L, Zhang Z W. Chem. Eur. J., 2014, 20:3712.

doi: 10.1002/chem.v20.13
[56]
Wei M L, Sun J J, Wang X J. J. Sol-Gel Sci. Technol., 2014, 71:324.

doi: 10.1007/s10971-014-3370-0
[57]
Ghahramaninezhad M, Soleimani B, Niknam Shahrak M. New J. Chem., 2018, 42:4639.

doi: 10.1039/C8NJ00274F
[58]
Wasson M C, Buru C T, Chen Z J, Islamoglu T, Farha O K. Appl. Catal. A: Gen., 2019, 586:117214.

doi: 10.1016/j.apcata.2019.117214
[59]
Li J K, Zhao S H, Hu C W. Chin. J. Inorg. Chem.), 2019, 35(11):1934.
(李季坤, 赵帅恒, 胡长文. 无机化学学报, 2019, 35(11):1934.)
[60]
Wang X L, Rong X, Lin H Y, Cao J J, Liu G C, Chang Z H. Inorg. Chem. Commun., 2016, 63:30.

doi: 10.1016/j.inoche.2015.11.004
[61]
Wang B H, Yan B. J. Alloy. Compd., 2019, 777:415.

doi: 10.1016/j.jallcom.2018.10.406
[62]
Buru C T, Farha O K. ACS Appl. Mater. Interfaces, 2020, 12:5345.

doi: 10.1021/acsami.9b19785
[63]
Xia K, Zhou D, Yang Y, Yang S J, Xia Q H. Chem. J. Chin. Univ., 2018, 39(08):1624.
(夏坤, 周丹, 杨赟, 杨水金, 夏清华. 高等学校化学学报, 2018, 39(08): 1624.)
[64]
Du D Y, Qin J S, Li S L, Su Z M, Lan Y Q. Chem. Soc. Rev., 2014, 43:4615.

doi: 10.1039/C3CS60404G
[65]
Sun C Y, Liu S X, Liang D D, Shao K Z, Ren Y H, Su Z M. J. Am. Chem. Soc., 2009, 131:1883.

doi: 10.1021/ja807357r
[66]
Ma F J, Liu S X, Sun C Y, Liang D D, Ren G J, Wei F, Chen Y G, Su Z M. J. Am. Chem. Soc., 2011, 133:4178.

doi: 10.1021/ja109659k
[67]
Yan A X, Yao S, Li Y G, Zhang Z M, Lu Y, Chen W L, Wang E B. Chem. Eur. J., 2014, 20:6927.

doi: 10.1002/chem.201400175
[68]
Yang X J, Feng X J, Tan H Q, Zang H Y, Wang X L, Wang Y H, Wang E B, Li Y G. J. Mater. Chem. A, 2016, 4:3947.

doi: 10.1039/C5TA09507G
[69]
Marandi A, Bahadori M, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Frohnhoven R, Mathur S, Sandleben A, Klein A. New J. Chem., 2019, 43:15585.

doi: 10.1039/C9NJ02607J
[70]
Hoseini A A, Farhadi S, Zabardasti A. Appl. Organomet. Chem., 2018, 33(2):e4656.
[71]
Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I. Science, 2005, 309:2040.

pmid: 16179475
[72]
Maksimchuk N, Timofeeva M, Melgunov M, Shmakov A, Chesalov Y, Dybtsev D, Fedin V, Kholdeeva O. J. Catal., 2008, 257:315.

doi: 10.1016/j.jcat.2008.05.014
[73]
Buru C T, Li P, Mehdi B L, Dohnalkova A, Platero-Prats A E, Browning N D, Chapman K W, Hupp J T, Farha O K. Chem. Mater., 2017, 29:5174.

doi: 10.1021/acs.chemmater.7b00750
[74]
Stuckart M, Monakhov K Y. J. Mater. Chem. A, 2018, 6:17849.

doi: 10.1039/C8TA06213G
[75]
Chen C F, Wu A P, Yan H J, Xiao Y L, Tian C G, Fu H G. Chem. Sci., 2018, 9:4746.

doi: 10.1039/C8SC01454J
[76]
Jeon Y, Chi W S, Hwang J, Kim D H, Kim J H, Shul Y G. Appl. Catal. B: Environ., 2019, 242:51.

doi: 10.1016/j.apcatb.2018.09.071
[77]
Buru C T, Wasson M C, Farha O K. ACS Appl. Nano Mater., 2020, 3:658.

doi: 10.1021/acsanm.9b02176
[78]
Li R, Ren X Q, Zhao J S, Feng X, Jiang X, Fan X X, Lin Z G, Li X G, Hu C W, Wang B. J. Mater. Chem. A, 2014, 2:2168.

doi: 10.1039/C3TA14267A
[79]
Zhong X H, Lu Y, Luo F, Liu Y W, Li X H, Liu S X. Chem. Eur. J., 2018, 24:3045.

doi: 10.1002/chem.v24.12
[80]
Li G P, Zhang K, Li C B, Gao R C, Cheng Y L, Hou L, Wang Y Y. Appl. Catal. B: Environ., 2019, 245:753.

doi: 10.1016/j.apcatb.2019.01.012
[81]
Haque E, Jun J W, Jhung S H. J. Hazard. Mater., 2011, 185:507.

doi: 10.1016/j.jhazmat.2010.09.035
[82]
Tong M M, Liu D H, Yang Q Y, Devautour-Vinot S, Maurin G, Zhong C L. J. Mater. Chem. A, 2013, 1:8534.

doi: 10.1039/c3ta11807j
[83]
Lin S, Song Z L, Che G B, Ren A, Li P, Liu C B, Zhang J S. Microporous Mesoporous Mater., 2014, 193:27.

doi: 10.1016/j.micromeso.2014.03.004
[84]
He Y P, Jin X Y, Li W Z, Yan S J, Lü B L. Chin, J, Inorg, Chem , 2019, 35(06):996.
(何云鹏, 金雪阳, 李文卓, 杨水金, 吕宝兰. 无机化学学报, 2019, 35(06): 996.)
[85]
Du J J, Yuan Y P, Sun J X, Peng F M, Jiang X, Qiu L G, Xie A J, Shen Y H, Zhu J F. J. Hazard. Mater., 2011, 190:945.

doi: 10.1016/j.jhazmat.2011.04.029
[86]
Xu W T, Ma L, Ke F, Peng F M, Xu G S, Shen Y H, Zhu J F, Qiu L G, Yuan Y P. Dalton Trans., 2014, 43:3792.

doi: 10.1039/C3DT52574K
[87]
Li S T, Wu C D, Yan Y S, Lü X M, Huo P W. Prog. Chem. 2008, 05:690.
(李松田, 吴春笃, 闫永胜, 吕晓萌, 霍鹏伟. 化学进展, 2008, 05:690.).
[88]
Mansouri S, Benlounes O, Rabia C, Thouvenot R, Bettahar M M, Hocine S. J. Mol. Catal. A: Chem., 2013, 379:255.

doi: 10.1016/j.molcata.2013.08.006
[89]
Dolbecq A, Mialane P, Keita B, Nadjo L. J. Mater. Chem., 2012, 22:24509.

doi: 10.1039/c2jm33246a
[90]
Zhang J, Li C, Wang B, Cui H, Zhai J P, Li Q. Sci. China Chem., 2013, 56:1285.

doi: 10.1007/s11426-013-4889-6
[91]
Niu P, Hao J C. Langmuir, 2011, 27:13590.

doi: 10.1021/la203178s
[92]
Taghavi M, Tabatabaee M, Ehrampoush M H, Ghaneian M T, Afsharnia M, Alami A, Mardaneh J. J. Mol. Liq., 2018, 249:546.

doi: 10.1016/j.molliq.2017.11.031
[93]
Shi H F, Yan G, Zhang Y, Tan H Q, Zhou W Z, Ma Y Y, Li Y G, Chen W L, Wang E B. ACS Appl. Mater. Interfaces, 2017, 9:422.

doi: 10.1021/acsami.6b13009
[94]
Qiu W, Zheng Y, Haralampides K. Chem. Eng. J., 2007, 125:165.

doi: 10.1016/j.cej.2006.08.025
[95]
Salavati H, Saedi H. Int. J. Electrochem. Sci., 2014, 10:4208.
[96]
Liu X X, Luo J, Zhu Y T, Yang Y, Yang S J. J. Alloy. Compd., 2015, 648:986.

doi: 10.1016/j.jallcom.2015.07.065
[97]
Liu X X, Gong W P, Luo J, Zou C T, Yang Y, Yang S J. Appl. Surf. Sci., 2016, 362:517.

doi: 10.1016/j.apsusc.2015.11.151
[98]
Liu X X, Luo J, Chen X Y, Yang Y, Yang S J. Chem. Res. Chin. Univ., 2017, 33:268.

doi: 10.1007/s40242-017-6350-4
[99]
Zou F, Yu R H, Li R G, Li W. ChemPhysChem, 2013, 14:2825.

doi: 10.1002/cphc.v14.12
[100]
Ren X Q, Li R, Song Y N, Feng X, Wang B. Sci. Sin. Chim., 2014, 44(10):1521.

doi: 10.1360/N032013-00063
(任晓倩, 李锐, 宋玉娜, 冯霄, 王博. 中国科学: 化学, 2014, 44(10): 1521.)
[101]
Yi F Y, Zhu W, Dang S, Li J P, Wu D, Li Y H, Sun Z M. Chem. Commun., 2015, 51:3336.

doi: 10.1039/C4CC09569C
[102]
Zeng L, Xiao L, Long Y K, Shi X W. J. Colloid Interface Sci., 2018, 516:274.

doi: 10.1016/j.jcis.2018.01.070
[103]
Liu L, Zhang H Y, Wang H J, Chen S, Wang J H, Sun J W. Eur. J. Inorg. Chem., 2019, 2019:1839.

doi: 10.1002/ejic.201900086
[104]
Wang X L, Gong C H, Zhang J W, Liu G C, Kan X M, Xu N. CrystEngComm, 2015, 17:4179.

doi: 10.1039/C5CE00411J
[105]
Huo M, Yang W B, Zhang H L, Zhang L, Liao J Z, Lin L, Lu C Z. RSC Adv., 2016, 6:111549.

doi: 10.1039/C6RA10422C
[106]
Li X H, Guo W L, Gao X M, Yue X X. Environ. Prog. Sustainable Energy, 2017, 36:1342.

doi: 10.1002/ep.v36.5
[107]
Liang R W, Chen R, Jing F F, Qin N, Wu L. Dalton Trans., 2015, 44:18227.

doi: 10.1039/C5DT02986D
[108]
Yan J, Zhou W Z, Tan H Q, Feng X J, Wang Y H, Li Y G. CrystEngComm, 2016, 18:8762.

doi: 10.1039/C6CE02021F
[109]
Chen D M, Liu X H, Zhang N N, Liu C S, Du M. Polyhedron, 2018, 152:108.

doi: 10.1016/j.poly.2018.05.059
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Zhixuan Wang, Shaokui Zheng. Selective Ionic Removal Strategy and Adsorbent Preparation [J]. Progress in Chemistry, 2023, 35(5): 780-793.
[4] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[5] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[6] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[7] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[8] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[9] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[10] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[11] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[12] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[13] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[14] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[15] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.