中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (5): 548-561 DOI: 10.7536/PC190922 Previous Articles   Next Articles

• Review •

Preparation of Solid-State Fluorescent Carbon Dots

Shijia Li1,2, Ernan Pang1,2, Caihong Hao3, Tingting Cai1, Shengliang Hu3,**()   

  1. 1.School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
    2.Shanxi Institute of Mechanical & Electrical Engineering, Changzhi 046011, China
    3.School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
  • Received: Revised: Online: Published:
  • Contact: Shengliang Hu
  • About author:
    ** e-mail:
  • Supported by:
    Specialized Research Fund for Sanjin Scholars Program of Shanxi Province, the Program for the Innovative Talents of Higher Education Institutions of Shanxi, the Key Research and Development Plan(International Cooperation) of Shanxi Province(201903D421082); Specialized Research Fund for Sanjin Scholars Program of Shanxi Province, the Program for the Innovative Talents of Higher Education Institutions of Shanxi, the Key Research and Development Plan(201803D421091); Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi (TSTAP), China()
Richhtml ( 74 ) PDF ( 1263 ) Cited
Export

EndNote

Ris

BibTeX

Fluorescent carbon dots have attracted significant interest for their non-toxicity, low cost and unique photoluminescence properties. Generally, the preparation and usage of carbon dots(CDs) are in solution. With the increase of CDs concentration, their fluorescence intensity may be reduced or even quenched. Following, the solid-state fluorescent CDs powder obtained by simple drying often lack of fluorescence properties. Therefore, there are relatively few researches on the preparation and related applications of solid-state fluorescent CDs. The article describes recent preparation methods of solid-state fluorescent CDs, including post-processing methods(matrix dispersion method, surface engineering) and direct synthesis method. The changes of fluorescence properties of CDs before and after treatment are compared, and the main problems in preparation and application of solid CDs are summarized. Meanwhile, the preparation, performance modulation of solid-state fluorescent CDs are prospected. It is very crucial to exploit the CDs with the enhancement of aggregation induced emission, which provides a new strategy for the development of solid-state fluorescence CDs.

Contents

1 Introduction

2 Preparation of solid-state fluorescent carbon dots by post-processing method

2.1 Matrix dispersion method

2.2 Surface engineering method

3 Preparation of solid-state fluorescent carbon dots by direct synthesis method

4 Conclusion

Fig. 1 Possible mechanism of fluorescence quenching
Fig. 2 Photographs of CDs@starch powder with a mass ratio of 1∶450,1∶70,1∶20 under sunlight (a) and ultraviolet (b). Fluorescence photographs of CDs@starch powder with a mass ratio of 1∶70 excited by ultraviolet(c and c'), blue light(d and d'), and green light(e and e') [63]. Copyright 2014, Royal Society of Chemistry
Fig. 3 (a) Schematic of the formation process of the CDs-ZnO@APTES.(b) PLE spectra of the CDs-ZnO@APTES powder and fluorescence spectra with different excitation wavelengths[65]. Copyright 2018,Royal Society of Chemistry
Fig. 4 (a) Optical and(b) fluorescent images of resulting CDs@NaCl powder. (c) and (d) SEM images of CDs@NaCl powders.[67] Copyright 2017, Elsevier
Fig. 5 (a)Chemical structure of TMA-POSS.(b) Photographs of CDs@TMA-POSS powders under daylight(top) and UV light(bottom).(c)TEM image of CDs@TMA-POSS[68]. Copyright 2015,Royal Society of Chemistry
Fig. 6 SEM of F-CDs @SrCO3(a) and F-CDs@BaCO3(d). Optical microscopy images(b, e, g, j) and confocal fluorescence microscopy images(c, f, h, k) of F-CDs@SrCO3(b, c), F-CDs @BaCO3(e, f),F-CDs@CaSO4 ·2H2O(g, h) and F-CDs@SrSO4(j, k).Distribution models of F-CDs@CaSO4 ·2H2O(i) and F-CDs@SrSO4(l).(m)Photographs of the nine F-CDs/inorganic nanocomposites upon UV excitation and after removal of UV excitation. Steady-state photoluminescence emission spectra of Ca, Sr and Ba carbonates(n), sulphates(o) and oxalates(p) F-CDs/inorganic nanocomposites[69]. Copyright 2019, Nature
Fig. 7 The pictures of CDs ethanol solution(a, a'), CDs powder(b, b'), CD@SiO2 film(c, c') and CD@SiO2 powder(d, d') under daylight(up) and ultraviolet(down) lamps[70]. Copyright 2018,Elsevier
Fig. 8 (a,b)Excitation and emission spectra of CDs aqueous solution and Zr-MOF.(c) PL emission spectra of CDs, Zr-MOF and CDs@Zr-MOF excited under 365 nm.(d)PL decays of CDs(blue), Zr-MOF(red) and CDs@Zr-MOF(black)[71]. Copyright 2019, Royal Society of Chemistry
Table 1 Summary of optical properties and applications of the CDs from various precursors and preparation methods
Precursor Method Synthesized CDs Size/nm Ex/nm Em/nm QY/% Application ref
CA
Urea
starch
water(MW, 750 W,
5 min)
chemical adsorption
g-CDs
CDs@starch
(mass ratio:1:70)
2~20[89]
20~40
(μm)
420
420
540
515
18
50
LEDs,
temperature
sensors
63
CA
Urea
BaCl2,Na2SO4
water(MW, 750 W,
5 min)
electrostatic adsorption
g-CDs
CDs@BaSO4
2~20
60~150
405
405
522
520
17
27
LEDs 64
CA, ethylenediamine
Zn(Ac)·2H2O, KOH
APTES
water(300 ℃, 5 h)
stirring
electrostatic adsorption
CDs
ZnO
CDs-ZnO@APTES
2~10
4~6
2~10
300
370
365
450
540
450~540
49 WLEDs 65
AAPMS, CA
KBr,KCl,NaCl
(240 ℃, 1 h)
physical embedding
CDs
CDs@salt
360
360
440
440
LEDs 58, 66
CA, Urea
NaCl
water(MW, 750 W,
5 min)
physical embedding
g-CDs
CDs@NaCl
2~5
2~5
(μm)
405
405
522
510
14
25
WLEDs 67
CA, L-cysteine
TMA-POSS
water(200 ℃, 3 h)
physical embedding
CDs
CDs@TMA-POSS
(2×105:1)
3.0~6.5 200~400
260~400
420
415
78
60
solid-state lighting
devices
68, 90
sodiumfolate
CaCl2·2H2O,Na2CO3
SrCl2·6H2O,Na2CO3
BaCl2,Na2CO3
CaCl2·2H2O,Na2SO4
SrCl2·6H2O,Na2SO4
BaCl2,Na2SO4
CaCl2·2H2O,Na2C2O4
SrCl2·6H2O,Na2C2O4
BaCl2,Na2C2O4
water(200 ℃, 12 h) F-CNDs
F-CNDs@CaCO3
F-CNDs@SrCO3
F-CNDs@BaCO3
F-CNDs@CaSO4·2H2O
F-CNDs@SrSO4
F-CNDs@BaSO4
F-CNDs@CaC2O4·H2O
F-CNDs@SrC2O4·H2O
F-CNDs@BaC2O4·0.5H2O
3~5 320
320
320
320
320
320
320
320
320
320
398
398
398
398
398
398
398
398
398
398
11
6.8
3.2
0.5
7.2
1.7
0.0
2.7
0.3
0.6
theranostic agents
forbackgroundless bio-imaging
pH-responsive controlled-
release materials
69
Precursor Method Synthesized CDs Size/nm Ex/nm Em/nm QY/% Application ref
PPDA
KH-792
ethanol(180 ℃,6 h)
physical embedding
CDs
CDs@silica powder
4.0~9.0 365~525
385~525
600
597
52.46
41.72
LEDs 70
CA, urea
H4L, benzoic acid
ZrOCl2·8H2O, DMF
AEATMS
ammonia water
(MW,700 W,6 min)
(120 ℃,72 h)
CDs

CDs@Zr-MOF
(dispersed in AEATMS)
4 365

365
450

450
511
550
22

37
WLEDs 71
ethylene glycol
DMF
(200 ℃, 5 h)
ethylenediamine modification
surface functionalization
N-CDs
CDs@DMF
(VN-CDs/VDMF :0.25)
1~5 445
445
new devices
and materials
73, 91
CA
SBA-15
water(200 ℃, 5 h)
ammonia solution
(200 ℃,5 h)
surface functionalization
CDs
CDs@SBA-15
3.0
9.5
400
340
480
410
sensing 74, 92
CA
NH2-POSS
water(200 ℃, 5 h)
surface functionalization
CDs
CDs@NH2-POSS
2~7
2~9
300~380
300~380
445
450
6.4
10.2
composite fillers 75, 93
CA
H2O2
ammonia water
(MW,650 W,5 min)
(70 ℃,2 h)
surface functionalization
CDs
Ox-CDs
Ox-CDs powder
2~4
2~4
2~4
330~370
340~370
270~500
435
435
520
21
17
25
solid-state lightning,
high-speed VLC,
LEDs
76
PVA,EDA

PVA

PVA,DETA

PVA,TEPA
water(220 ℃, 10 h)

water(220 ℃, 10 h)

water(220 ℃, 10 h)

water(220 ℃, 10 h)
CDs220 aqueous solution
CDs220 powder
PVA220 aqueous solution
PVA220 powder
d-CDs220 aqueous solution
d-CDs220 powder
t-CDs220 aqueous solution
t-CDs220 powder
9 340
340

365
350
365
360
365

540

460
450
580
470
550
35

1

20

22
LEDs 78
Tween 80 phosphoric acid,
sulfuric acid(90 ℃, 3 h)
one-step carbonization
CDs(CH2Cl2)

CDs powder
3.5~5.3 363

365
435

455
2.1

2.0
visualizationoffing-erprints,LEDs 79
trisodium

citrate dehydrate
urea
DMF(160 ℃, 4 h)
In-situ embedding
DMAC(160 ℃, 4 h)
In-situ embedding
DEF(160 ℃, 4 h)
In-situ embedding
CDs11 aqueous solution
CDs11powder
CDs12 aqueous solution
CDs12powder
CDs21 aqueous solution
CDs21powder

400

100~500

300~500
422
422
412
412
414
414

537

530

513
20.8
21.6
14.9
18.7
17.5
17.6
WLEDs,
fluorescent plates
80
Al(OiPr)3
H3PO4
HF
Al(OiPr)3
H3PO4
trimethylamine
triethylene glycol
(180 ℃, 3 days)
4,7,10-trioxa-1,
13-tridecanediamine triethylene glycol
(180 ℃, 3 days)
CDs@AlPO-5


CDs@2D-AlPO
3.7 nm


3.5 nm
370


370
430


440
15.53


52.14
smart material in
dual-mode security protection
81
Al(OiPr)3
H3PO4
MgHPO4 ·3H2O,H2O
4,7,10-trioxa-1,
13-tridecanediamine
(180 ℃, 3 days)
In-situ embedding
CDs@MgAPO-5 3.4 nm 370 425 22.77
MA,DTSA acetic acid
(180 ℃,10 h)
H-CDs(acetic acid)
H-CD powder
4~10
4~10
360
559
467
620
5.96 luminescence ink,
encryption tool
82
CA,Urea,CaCl2 vacuum heating v-CDs(ethanol solution) 4.1 380~430 510~514 72 encryption medium 83
CA,L-cysteine
KCl
one-pot microwave
heating(5 min)
CDs solution
(0.2 mg·mL-1)
CDs powder
2.1 340~380

430~500
435

500~620
84

65
WLEDs 84
Fig. 9 (a,b) SEM images of the solid assemblies.(c) SEM image of the ramified precipitates.(d) PL spectra of N-CD’s solution, solid assemblies, ramified precipitates and powders without N-CDs.(e) Schematic diagram of Schiff base formation[73]. Copyright 2015, Royal Society of Chemistry
Fig. 10 (a) Schematic diagram of CDs@SBA-15, (b) PL excitation and emission spectra of NCDs and NCDs@SBA-15.(c) PL spectra of NCDs@SBA-15 in water, concentrated HCl and ammonia solution(λex=340 nm).(d) Photographs of CDs@SBA-15 under UV light[74]. Copyright 2019, Royal Society of Chemistry
Fig. 11 (a) UV-visible absorption spectra of CDs and ox-CDs aqueous solutions.(b) Diffuse reflection absorption spectra of solid phases of CDs and ox-CDs[76]. Copyright 2018, Wiley
Fig. 12 (a), (b) TEM images of CDs220 ethanol solution.(c) Fluorescence emission spectra of CDs220 aqueous solution and CDs220 powders excited at 340 nm.(d) Images of d-CDs220(1), t-CDs220(2), CDs220(3), PVA220(4) and CDs220@starch(5) under daylight(top) and ultraviolet(bottom). (e) Solid-state fluorescence spectra of the above powders[78]. Copyright 2015, Wiley
Fig. 13 Schematic diagram of CDs powders preparation route[79]. Copyright 2018,Elsevier
Fig. 14 (a) Schematic of in situ formation process of CDs11 powder.(b) TEM image of CDs12 powder.(c) TEM image of CDs21 powder[80]. Copyright 2018, Elsevier
Fig. 15 (a)SEM image(left) and fluorescence microscopy images(right) excited under UV, blue and green light of CDs @AlPO-5 composite.(b)SEM image(left) and fluorescence microscopy images(right) excited under UV, blue and green light of CDs@2D-AlPO composite.(c)SEM image(left) and fluorescence microscopy images(right) excited under UV, blue and green light of CDs@MgAPO-5.(d)PL decays of CDs@AlPO-5 at room temperature[81]. Copyright 2017, Science
Fig. 16 (a) The schematic diagram of blue H-CDs monomers and red aggregates.(b) The schematic diagram of H-CDs formation from dispersion to aggregate.(c) Principle of blue fluorescence quenching and red fluorescence opening(left) and proposed surface and core structure of H-CDs(right)[82]. Copyright 2019,Nature
[1]
Sun Y P, Zhou B, Lin Y, Wang W, Shiral F K A, Pankaj P, Mohammed J M, Barbara A H, Wang X, Wang H F, Luo P G, Yang H, Muhammet E K, Chen B L, Veca L M, Xie S Y. Journal of the American Chemical Society, 2006,128:7756. https://pubs.acs.org/doi/10.1021/ja062677d

doi: 10.1021/ja062677d
[2]
Bhattacharyya S, Ehrat F, Urban P, Teves R, Wyrwich R, Doblinger M, Feldmann J, Urban A S, Stolarczyk J K. Nature Communications, 2017,8(1):1401. http://www.nature.com/articles/s41467-017-01463-x

doi: 10.1038/s41467-017-01463-x
[3]
Li W D, Liu Y, Wu M, Feng X L, Redfern S A T, Shang Y, Yong X, Feng T L, Wu K F, Liu Z Y, Li B J, Chen Z M, Tse J S, Lu S Y, Yang B. Advanced Materials, 2018,30(31):1800676. http://doi.wiley.com/10.1002/adma.v30.31

doi: 10.1002/adma.v30.31
[4]
Liu C A, Fu Y J, Xia Y J, Zhu C, Hu L L, Zhang K, Wu H H, Huang H, Liu Y, Xie T F, Zhong J, Kang Z H. Nanoscale, 2018,10(5):2454. http://xlink.rsc.org/?DOI=C7NR08000J

doi: 10.1039/C7NR08000J
[5]
Zhang J Y, Wu S H, Lu X M, Wu P, Liu J W. Nano Letters, 2019,19(5):3214 https://pubs.acs.org/doi/10.1021/acs.nanolett.9b00725

doi: 10.1021/acs.nanolett.9b00725
[6]
金静(Jin J), 朱守俊(Zhu S J), 宋玉彬(Song Y B), 宋薇(Song W), 杨柏(Yang B), 赵冰(Zhao B). 光谱学与光谱分析 (Spectroscopy and Spectral Analysis), 2016,36:291.
[7]
白静静(Bai J J), 胡国胜(Hu G S), 张静婷(Zhang J T), 刘冰肖(Liu B X), 王玉龙(Wang Y L), 李振中(Li Z Z). 光子学报 (Acta Photonica Sinica), 2019,48(4):0416001
[8]
Jiang K, Sun S, Zhang L, Wang Y H, Cai C Z, Lin H W. ACS Applied Materials & Interfaces, 2015,7(41):23231. https://pubs.acs.org/doi/10.1021/acsami.5b07255

doi: 10.1021/acsami.5b07255
[9]
Miao X, Yan X L, Qu D, Li D B, Tao F F, Sun Z C. ACS Applied Materials & Interfaces, 2017,9(22):18549. https://pubs.acs.org/doi/10.1021/acsami.7b04514

doi: 10.1021/acsami.7b04514
[10]
Chen J, Wei J S, Zhang P, Niu X Q, Zhao W, Zhu Z Y, Ding H, Xiong H M. ACS Applied Materials & Interfaces, 2017,9(22):18429. https://pubs.acs.org/doi/10.1021/acsami.7b03917

doi: 10.1021/acsami.7b03917
[11]
曲松楠(Qu S N), 刘星元(Liu X Y), 申德振(Shen D Z). 发光学报 (Chinese Journal of Luminescence), 2014,35:1019.
[12]
Liu J J, Li D W, Zhang K, Yang M X, Sun H C, Yang B. Small, 2018,14(15):1703919. http://doi.wiley.com/10.1002/smll.201703919

doi: 10.1002/smll.201703919
[13]
Yang L, Jiang W H, Qiu L P, Jiang X W, Zuo D Y, Wang D K, Yang L. Nanoscale, 2015,7(14):6104. http://xlink.rsc.org/?DOI=C5NR01080B

doi: 10.1039/C5NR01080B
[14]
Yang W N, Zhang H, Lai J X, Peng X Y, Hu Y P, Gu W, Ye L. Carbon, 2018,128:78. https://linkinghub.elsevier.com/retrieve/pii/S0008622317311831

doi: 10.1016/j.carbon.2017.11.069
[15]
Strauss V, Marsh K, Kowal M D, El-Kady M, Kaner R B. Advanced Materials, 2018,30(8):1704449. http://doi.wiley.com/10.1002/adma.v30.8

doi: 10.1002/adma.v30.8
[16]
Wang F, Chen Y H, Liu C Y, Ma D G. Chemical Communications, 2011,47(12):3502. http://dx.doi.org/10.1039/c0cc05391k

doi: 10.1039/c0cc05391k
[17]
Zhang D Z, Liu C Y, Li K Z, Chen Y, Ruan S P, Zhang X D, Li C N. Nanoscale, 2018,10(14):6459. http://xlink.rsc.org/?DOI=C8NR00214B

doi: 10.1039/C8NR00214B
[18]
Li L, Chen Y H, Liu Z H, Chen Q, Wang X D, Zhou H P. Advanced Materials, 2016,28(44):9862 http://doi.wiley.com/10.1002/adma.201603021

doi: 10.1002/adma.201603021
[19]
Sun C, Zhang Y, Ruan C, Yin C Y, Wang X Y, Wang Y D, Yu W W. Advanced Materials, 2016,28(45):10088. http://doi.wiley.com/10.1002/adma.201603081

doi: 10.1002/adma.201603081
[20]
Wang Y L, Yan L P, Ji G Q, Wang C, Gu H M, Luo Q, Chen Q, Chen L W, Yang Y Z, Ma C Q, Liu X G. ACS Applied Materials & Interfaces, 2019,11(2):2243. https://pubs.acs.org/doi/10.1021/acsami.8b17128

doi: 10.1021/acsami.8b17128
[21]
Hu S L, Guo Y, Dong Y G, Yang J L, Liu J, Cao S R. Journal of Materials Chemistry, 2012,22(24):12053. http://dx.doi.org/10.1039/c2jm30584d

doi: 10.1039/c2jm30584d
[22]
Hu S L, Dong Y G, Yang J L, Liu J, Tian F, Cao S R. Asian Journal of Chemistry, 2012,7(11):2711.
[23]
Ray S C, Saha A, Nikhil R J, Rupa S. The Journal of Physical Chemistry C, 2009,113:18546. https://pubs.acs.org/doi/10.1021/jp905912n

doi: 10.1021/jp905912n
[24]
Tian L, Ghosh D, Chen W, Pradhan S, Chang X J, Chen S W. Chemistry of Materials, 2009,21(13):2803. https://pubs.acs.org/doi/10.1021/cm900709w

doi: 10.1021/cm900709w
[25]
Hu C, Yu C, Li M Y, Wang X N, Yang J Y, Zhao Z B, Eychmuller A, Sun Y P, Qiu J S. Small, 2014,10(23):4926. http://dx.doi.org/10.1002/smll.201401328

doi: 10.1002/smll.201401328
[26]
Deng J H, Lu Q J, M N X, Li H T, Liu M L, Xu M C, Tan L, Xie Q J, Zhang Y Y, Yao S Z. Chemistry, 2014,20(17):4993.
[27]
Li H T, He X D, Kang Z H, Huang H, Liu Y, Liu J L, Lian S Y, Tsang C H, Yang X B, Lee S T. Angewandte Chemie International Edition, 2010,49(26):4430. http://doi.wiley.com/10.1002/anie.200906154

doi: 10.1002/anie.200906154
[28]
Zhang Y L, Wang L, Zhang H C, Liu Y, Wang H Y, Kang Z H, Lee S T. RSC Advances, 2013,3(11):3733. http://dx.doi.org/10.1039/c3ra23410j

doi: 10.1039/c3ra23410j
[29]
Bao L, Zhang Z L, Tian Z Q, Zhang L, Liu C, Lin Y, Qi B P, Pang D W. Advanced Materials, 2011,23(48):5801. http://dx.doi.org/10.1002/adma.201102866

doi: 10.1002/adma.201102866
[30]
Guo Y M, Wang Z, Shao H W, Jiang X Y. Carbon, 2013,52:583. http://dx.doi.org/10.1016/j.carbon.2012.10.028

doi: 10.1016/j.carbon.2012.10.028
[31]
卢思宇(Lu S Y), 杨柏(Yang B). 高分子学报 (Acta Polymerica Sinica), 2017,7:1200.
[32]
Jiang K, Sun S, Zhang L, Lu Y, Wu A G, Cai C Z, Lin H W. Angew. Chem. Inter. Ed., 2015,54(18):5450.
[33]
Li D, Jing P T, Sun L H, An Y, Shan X Y, Lu X H, Zhou D, Han D, Shen D Z, Zhai Y C, Qu S N, Zboril R, Rogach A L. Advanced Materials, 2018,30(13):1705913. https://onlinelibrary.wiley.com/toc/15214095/30/13

doi: 10.1002/adma.v30.13
[34]
Ding H, Wei J S, Zhang P, Zhou, Z Y, Gao Q Y, Xiong H M. Small, 2018,14(22):1800612. http://doi.wiley.com/10.1002/smll.v14.22

doi: 10.1002/smll.v14.22
[35]
Yang S H, Sun X H, Wang Z Y, Wang X Y, Guo G S, Pu Q S. Nano Research, 2018,11(3):1369. https://doi.org/10.1007/s12274-017-1751-8

doi: 10.1007/s12274-017-1751-8
[36]
Qu S N, Wang X Y, Lu Q P, Liu X Y, Wang L J. Angewandte Chemie International Edition, 2012,51(49):12215. http://doi.wiley.com/10.1002/anie.v51.49

doi: 10.1002/anie.v51.49
[37]
Wang L, Zhu S J, Wang H Y, Qu S N, Zhang Y L, Zhang J H, Chen Q D, Xu H L, Han W, Yang B, Sun H B. ACS Nano, 2014,8(3):2541. https://pubs.acs.org/doi/10.1021/nn500368m

doi: 10.1021/nn500368m
[38]
Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc, 2004,126:12736. https://pubs.acs.org/doi/10.1021/ja040082h

doi: 10.1021/ja040082h
[39]
Miao X, Qu D, Yang D X, Nie B, Zhao Y K, Fan H Y, Sun Z C. Advanced Materials, 2018,30(1):1704740. http://doi.wiley.com/10.1002/adma.201704740

doi: 10.1002/adma.201704740
[40]
胡胜亮(Hu S L), 白培康(Bai P K), 孙景(Sun J), 曹士锐(Cao S R). 化学进展 (Progress in Chemistry), 2010,22:345. http://www.progchem.ac.cn//CN/abstract/abstract10278.shtml
[41]
Wang B B, Jin J C, Xu Z Q, Jiang Z W, Li X, Jiang F L, Liu Y. Journal of Colloid and Interface Science, 2019,551:101. https://linkinghub.elsevier.com/retrieve/pii/S0021979719305259

doi: 10.1016/j.jcis.2019.04.088
[42]
Bao L, Liu C, Zhang Z L, Pang D W. Advanced Materials, 2015,27(10):1663. http://doi.wiley.com/10.1002/adma.201405070

doi: 10.1002/adma.201405070
[43]
Ding Y F, Zheng J X, Wang J L, Yang Y Z, Liu X G. Journal of Materials Chemistry C, 2019,7(6):1502 http://xlink.rsc.org/?DOI=C8TC04887H

doi: 10.1039/C8TC04887H
[44]
Ding H, Yu S B, Wei J S, Xiong H M. ACS Nano, 2016,10(1):484. https://pubs.acs.org/doi/10.1021/acsnano.5b05406

doi: 10.1021/acsnano.5b05406
[45]
Yuan F L, Wang Z B, Li X H, Li Y C, Tan Z A, Fan L Z, Yang S H. Advanced Materials, 2017,29(3):1604436. http://doi.wiley.com/10.1002/adma.v29.3

doi: 10.1002/adma.v29.3
[46]
Wang Z F, Yuan F L, Li X, Li H, Y, Zhong H Z, Fan L Z, Yang S H. Advanced Materials, 2017,29(37):1702910. https://onlinelibrary.wiley.com/toc/15214095/29/37

doi: 10.1002/adma.v29.37
[47]
Lu S Y, Sui L Z, Liu J J, Zhu S J, Chen A, Jin M X, Yang B. Advanced Materials, 2017,29(15):1603443. http://doi.wiley.com/10.1002/adma.201603443

doi: 10.1002/adma.201603443
[48]
Ehrat F, Bhattacharyya S, Schneider J, Lof A, Wyrwich R, Rogach A L, Stolarczyk J K, Urban A S, Feldmann J. Nano Letters, 2017,17(12):7710. https://pubs.acs.org/doi/10.1021/acs.nanolett.7b03863

doi: 10.1021/acs.nanolett.7b03863
[49]
Krysmann M J, Kelarakis A, Dallas P, Giannelis E P. Journal of the American Chemical Society, 2012,134(2):747. http://dx.doi.org/10.1021/ja204661r

doi: 10.1021/ja204661r
[50]
Essner J B, Kist J A, Polo-Parada L, Baker, G A. Chemistry of Materials, 2018,30(6):1878. https://pubs.acs.org/doi/10.1021/acs.chemmater.7b04446

doi: 10.1021/acs.chemmater.7b04446
[51]
Wang X, Cao L, Lu F S, Meziani M J, Li H T, Qi G, Zhou B, Harruff B A, Kermarrec F, Sun Y P. Chemical Communications, 2009,25:3774.
[52]
Hu S L, Chang Q, Lin K, Yang J L. Carbon, 2016,105:484. https://linkinghub.elsevier.com/retrieve/pii/S0008622316303499

doi: 10.1016/j.carbon.2016.04.078
[53]
丁艳丽(Ding Y L), 胡胜亮(Hu S L), 常青(Chang Q). 高等学校化学学报 (Chemical Journal of Chinese Universities), 2015,36:619. http://www.cjcu.jlu.edu.cn/CN/abstract/abstract25698.shtml

doi: 10.7503/cjcu20140930
[54]
Yuan Y S, Jiang J Z, Liu S P, Yang J D, Zhang H, Yan J J, Hu X L. Sensors and Actuators B: Chemical, 2017,242:545. https://linkinghub.elsevier.com/retrieve/pii/S092540051631841X

doi: 10.1016/j.snb.2016.11.050
[55]
Deng Y H, Chen X, Wang F, Zhang X A, Zhao D X, Shen D Z. Nanoscale, 2014,6(17):10388. http://dx.doi.org/10.1039/c4nr02544j

doi: 10.1039/c4nr02544j
[56]
Xie Z, Wang F, Liu C Y. Advanced Materials, 2012,24(13):1716. http://doi.wiley.com/10.1002/adma.201104962

doi: 10.1002/adma.201104962
[57]
Wang Y, Kalytchuk S, Zhang Y, Shi H C, Kershaw S V, Rogach A L. The Journal of Physical Chemistry Letters, 2014,5(8):1412. https://pubs.acs.org/doi/10.1021/jz5005335

doi: 10.1021/jz5005335
[58]
Gan Z X, Liu L Z, Wang L, Luo G S, Mo C L, Chang C L. Physical Chemistry Chemical Physics, 2018,20(26):18089. http://xlink.rsc.org/?DOI=C8CP02069H

doi: 10.1039/C8CP02069H
[59]
Bhunia S K, Nandi S, Shikler R, Jelinek R. Nanoscale, 2016,8(6):3400. http://xlink.rsc.org/?DOI=C5NR08400H

doi: 10.1039/C5NR08400H
[60]
Wang W T, Kim T H, Yan Z F, Tade M O, Li Q. Advanced Materials Research, 2012,557/559:739. https://www.scientific.net/AMR.557-559

doi: 10.4028/www.scientific.net/AMR.557-559
[61]
Wang Y L, Zhao Y Q, Zhang F, Chen L, Yang Y Z, Liu X G. New Journal of Chemistry, 2016,40(10):8710. http://xlink.rsc.org/?DOI=C6NJ01753C

doi: 10.1039/C6NJ01753C
[62]
Nie H, Li M J, Li Q S, Liang S J, Tan Y Y, Sheng L, Shi W, Zhang S X A. Chemistry of Materials, 2014,26(10):3104. http://dx.doi.org/10.1021/cm5003669

doi: 10.1021/cm5003669
[63]
Sun M Y, Qu S N, Hao Z D, Ji W Y, Jing P T, Zhang H, Zhang L G, Zhao J L, Shen D Z. Nanoscale, 2014,6(21):13076. http://dx.doi.org/10.1039/c4nr04034a

doi: 10.1039/c4nr04034a
[64]
Zhou D, Zhai Y C, Qu S N, Li D, Jing P T, Ji W Y, Shen D Z, Rogach A L. Small, 2017,13(6):1602055. http://doi.wiley.com/10.1002/smll.v13.6

doi: 10.1002/smll.v13.6
[65]
Liu K K, Li X M, Cheng S B, Zhou R, Liang Y C, Dong L, Shan C X, Zeng H B, Shen D Z. Nanoscale, 2018,10(15):7155. http://xlink.rsc.org/?DOI=C8NR01209A

doi: 10.1039/C8NR01209A
[66]
Kim T H, Wang F, McCormick P, Wang L Z, Brown C, Li Q. Journal of Luminescence, 2014,154:1. http://dx.doi.org/10.1016/j.jlumin.2014.04.002

doi: 10.1016/j.jlumin.2014.04.002
[67]
Zhai Y C, Zhou D, Jing P T, Li D, Zeng H B, Qu S N. Journal of Colloid and Interface Science, 2017,497:165. https://linkinghub.elsevier.com/retrieve/pii/S0021979717302503

doi: 10.1016/j.jcis.2017.03.007
[68]
Wang Y, Kalytchuk S, Wang L Y, Zhovtiuk O, Cepe K, Zboril R, Rogach A L. Chemical Communication, 2015,51(14):2950. http://xlink.rsc.org/?DOI=C4CC09589H

doi: 10.1039/C4CC09589H
[69]
Green D C, Holden M A, Levenstein M A, Zhang S H, Johnson B R G, Gala de Pablo J, Ward A, Botchway S W, Meldrum F C. Nature Communications, 2019,10(1):206. https://doi.org/10.1038/s41467-018-08214-6

doi: 10.1038/s41467-018-08214-6
[70]
Wang J L, Zhang F, Wang Y L, Yang Y Z, Liu X G. Carbon, 2018,126:426. https://linkinghub.elsevier.com/retrieve/pii/S0008622317310424

doi: 10.1016/j.carbon.2017.10.041
[71]
Wang A W, Hou Y L, Kang F W, Lyu F C, Xiong Y, Chen W C, Lee C S, Xu Z T, Rogach A L, Lu J, Li Y Y. Journal of Materials Chemistry C, 2019,7(8):2207. http://xlink.rsc.org/?DOI=C8TC04171G

doi: 10.1039/C8TC04171G
[72]
Zhang Q H, Tian Y, Wang C F, Chen S. RSC Advances, 2016,6(53):47616. http://xlink.rsc.org/?DOI=C6RA05689J

doi: 10.1039/C6RA05689J
[73]
Hu S L, Ding Y L, Chang Q, Trinchi A, Lin K, Yang J L, Liu J. Nanoscale, 2015,7(10):4372. http://xlink.rsc.org/?DOI=C4NR07119K

doi: 10.1039/C4NR07119K
[74]
Chang Q, Yang S S, Xue C R, Li N, Wang Y Z, Li Y, Wang H Q, Yang J L, Hu S L. Nanoscale, 2019,11(15):7247. http://xlink.rsc.org/?DOI=C9NR01224A

doi: 10.1039/C9NR01224A
[75]
Wang D, Liu J G, Chen J F, Dai L M. Advanced Materials Interfaces, 2016,3(1), 1500439. http://doi.wiley.com/10.1002/admi.201500439

doi: 10.1002/admi.201500439
[76]
Zhou Z J, Tian P F, Liu X Y, Mei S L, Zhou D, Li D, Jing P T, Zhang W L, Guo R Q, Qu S N, Rogach A L. Advanced Science, 2018,5(8):1800369. http://doi.wiley.com/10.1002/advs.v5.8

doi: 10.1002/advs.v5.8
[77]
Li D, Han D, Qu S N, Liu L, Jing P T, Zhou D, Ji W Y, Wang X Y, Zhang T F, Shen D Z. Light: Science & Applications, 2016,5(7):e16120.
[78]
Chen Y H, Zheng M T, Xiao Y, Dong H W, Zhang H R, Zhuang J L, Hu H, Lei B F, Liu Y L. Advanced Materials, 2015,28(2):312. http://doi.wiley.com/10.1002/adma.201503380

doi: 10.1002/adma.201503380
[79]
Jiang B P, Yu Y X, Guo X L, Ding Z Y, Zhou B, Liang H, Shen X C. Carbon, 2017,128:12. https://linkinghub.elsevier.com/retrieve/pii/S0008622317311843

doi: 10.1016/j.carbon.2017.11.070
[80]
Shen C L, Zang J H, Lou Q, Su L X, Li Z, Liu Z Y, Dong L, Shan C X. Carbon, 2018,136:359. https://linkinghub.elsevier.com/retrieve/pii/S0008622318304743

doi: 10.1016/j.carbon.2018.05.015
[81]
Liu J C, Wang N, Yu Y, Yan Y, Zhang H Y, Li J Y, Yu J H. Science Advances, 2017,3(5):e1603171. https://advances.sciencemag.org/lookup/doi/10.1126/sciadv.1603171

doi: 10.1126/sciadv.1603171
[82]
Yang H Y, Liu Y L, Guo Z Y, Lei B F, Zhuang J L, Zhang X J, Liu Z M, Hu C F. Nature Communication, 2019,10(1):1789. https://doi.org/10.1038/s41467-019-09830-6

doi: 10.1038/s41467-019-09830-6
[83]
Zhou D, Jing P T, Wang Y, Zhai Y C, Li D, Xiong Y, Baranov A V, Qu S N, Rogach A L. Nanoscale Horizons, 2019, 4, ( 2):388. http://xlink.rsc.org/?DOI=C8NH00247A

doi: 10.1039/C8NH00247A
[84]
Zhang Y Q, Zhuo P, Yin H, Fan Y, Zhang J H, Liu X Y, Chen Z Q. ACS Applied Materials & Interfaces, 2019,11(27):24395. https://pubs.acs.org/doi/10.1021/acsami.9b04600

doi: 10.1021/acsami.9b04600
[85]
Wang H J, Yu T T, Chen H L, Nan W B, Xie L Q, Zhang Q Q. Dyes and Pigments, 2018,159:245 https://linkinghub.elsevier.com/retrieve/pii/S0143720818309987

doi: 10.1016/j.dyepig.2018.06.039
[86]
Zhang Y Q, Li C F, FanY, Wang C B, Yang R F, Liu X Y, Zhou L. Nanoscale, 2016,8(47):19744. http://xlink.rsc.org/?DOI=C6NR06553H

doi: 10.1039/C6NR06553H
[87]
Yeh H C, Wu W C, Chen C T. Chemical Communications, 2003, ( 3):404.
[88]
Hong Y N, Lam J W Y, Tang B Z. Chemical Communications, 2009, ( 29):4332.
[89]
Qu S N, Liu X Y, Guo X Y, Chu M H, Zhang L G, Shen D Z. Advanced Functional Materials, 2014,24(18):2689. http://onlinelibrary.wiley.com/doi/10.1002/adfm.201303352/abstract

doi: 10.1002/adfm.201303352
[90]
Dong Y Q, Pang H C, Yang H B, Guo C X, Shao J W, Chi Y W, Li C M, Yu T. Angew. Chem. Int. Ed., 2013,52(30):7800. http://doi.wiley.com/10.1002/anie.v52.30

doi: 10.1002/anie.v52.30
[91]
Hu S L, Tian R X, Dong Y G, Yang J L, Liu J, Chang Q. Nanoscale, 2013,5(23):11665. http://dx.doi.org/10.1039/c3nr03893a

doi: 10.1039/c3nr03893a
[92]
Tian R X, Hu S L, Wu L L, Chang Q, Yang J L, Liu J. Applied Surface Science, 2014,301:156. http://dx.doi.org/10.1016/j.apsusc.2014.02.028

doi: 10.1016/j.apsusc.2014.02.028
[93]
Zhu S J, Meng Q N, Wang L, Zhang J H, Song Y B, Jin H, Zhang K, Sun H C, Wang H Y, Yang B. Angew. Chem. Int. Ed., 2013,52(14):3953. http://doi.wiley.com/10.1002/anie.v52.14

doi: 10.1002/anie.v52.14
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[3] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[4] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[5] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[6] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[7] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[8] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[9] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[10] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[11] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[12] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.
[13] Wen Zhou, Xin Zhang, Hongpeng Ma, Jie Xu, Bin Guo, Panxin Li. Chemical and Physical Mechanism and Method of Preparation of Thermoplastic Starch [J]. Progress in Chemistry, 2021, 33(11): 1972-1982.
[14] Runtian Wang, Chunli Liu, Zhenbin Chen. Imprinted Composite Membranes [J]. Progress in Chemistry, 2020, 32(7): 989-1002.
[15] Jianlei Qi, Qinqin Xu, Jianfei Sun, Dan Zhou, Jianzhong Yin. Synthesis, Characterization and Analysis of Graphene-Supported Single-Atom Catalysts [J]. Progress in Chemistry, 2020, 32(5): 505-518.