中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (11): 1472-1508 DOI: 10.7536/PC190307 Previous Articles   Next Articles

Glycosylated Iminosugars: Isolation, Synthesis and Biological Activities

Xin Yan1,2, Yi-Xian Li1,2,**(), Yue-Mei Jia1,2, Chu-Yi Yu1,2,3,**()   

  1. 1. CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
  • Received: Online: Published:
  • Contact: Yi-Xian Li, Chu-Yi Yu
  • About author:
    ** E-mail: (Yi-Xian Li);
    (Chu-Yi Yu)
  • Supported by:
    National Natural Science Foundation of China(21772206); National Natural Science Foundation of China(21642012)
Richhtml ( 24 ) PDF ( 635 ) Cited
Export

EndNote

Ris

BibTeX

In this paper, the separation, synthesis and biological activities of glycosylated iminosugars are systematically summarized. The naturally occurring glycosylated iminosugar products can be classified into five types according to their iminosugar units. Most of them have important biological activities, especially glycosidase inhibitory activities. Potential pharmacological activities of these compounds promote the study of synthetic strategies. According to the construction methods of glycoside bonds, these strategies can be roughly divided into enzyme catalyzed transglycosylation and chemical synthesis, of which the main difference is reaction condition. Enzyme catalyzed transglycosylation features mild reaction conditions and possible avoidance of protection groups, but the reaction efficiency and selectivity still need further improvement. Many synthetic strategies for ordinary glycosides can be used in chemical synthesis of glycosylated iminosugars, and are applicable for almost all synthetic targets. However, burdensome protection-deprotection procedures pull down the efficiency of chemical synthesis. The development of synthetic strategies have promoted the design and synthesis of the natural products and their analogues, which greatly enriches the variety and biological activities of glycosylated iminosugars. Generally, biological activities of glycosylated iminosugars are influenced by both the glycosyl groups and the iminosugar units. As the cross-domain of traditional carbohydrate chemistry and iminosugar chemistry, the structural diversity of glycosylated iminosugars provides excellent parent skeletons for the development of highly active and selective lead compounds, which endows these compounds with potential applications in drug discovery.

Fig. 1 Some representative iminosugars
Fig. 2 Approved iminosugar drugs
Table 1 Naturally occurring glycosides of iminosugars and their biological activities
Compounds Biological activities Source and Reference
Rat intestinal sucrase-IC50 0.8 μM[10]
Rat intestinal maltase-IC50 4.4 μM[11]
Rice α-glucosidase-IC50 0.95 μM[11]
Root bark, dry fruits and leaves of mulberry trees(Morus alba L.)[10, 11] and Leaves of Morus bombycis[21]
Rice α-glucosidase-IC50 1.6 μM[22]
Trehalase(porcine kidney)-5.6 μM[22]
Root bark of mulberry trees(Morus alba L.)[10, 11]
Rat intestinal sucrase-IC50 0.79 μM[22] Root bark of mulberry trees(Morus alba L.)[11]
Rat intestinal sucrase-IC50 0.31 μM[11]
Rat intestinal maltase-IC50 1.7 μM[11]
Rat intestinal palatinase-IC50 0.23 μM[11]
Rice α-glucosidase-IC50 30 μM[11]
Root bark of mulberry trees(Morus alba L.)[10, 11]
Rat intestinal sucrase-IC50 0.35 μM[22]
Rat intestinal palatinase-IC50 0.90 μM[22]
Rice α-glucosidase-IC50 34 nM[22]
Root bark of mulberry trees(Morus alba L.)[11] and bulbs of Scilla sibirica[23]
Rat intestinal sucrase-IC50 2.5 μM[22]
Rat intestinal palatinase-IC50 2.7 μM[22]
Rice α-glucosidase-IC50 22 μM[22]
Root bark of mulberry trees(Morus alba L.)[10, 11]
Rat intestinal maltase-IC50 2.3 μM[22]
Rat intestinal sucrase-IC50 0.40 μM[22]
Rat intestinal palatinase-IC50 0.47 μM[22]
Rice α-glucosidase-IC50 0.61 μM[22]
Root bark of mulberry trees(Morus alba L.)[11] and P. acidophila[24]
Rat intestinal sucrase-IC50 940 μM[10]
Rat intestinal palatinase- IC50 31 μM[11]
Root bark, dry fruits and leaves of mulberry trees(Morus alba L.)[10, 11]
Rat intestinal sucrase-IC50 35 μM[11]
Rat intestinal maltase-IC50 40 μM[11]
Rice α-glucosidase-IC50 6.0 μM[11]
Root bark of mulberry trees(Morus alba L.)[11]
No inhibition towards α-L-fucosidase[25] Roots of Stemona tuberosa[25]
No inhibition towards α-L-fucosidase[25] Roots of Stemona tuberosa[25]
No inhibition towards α-L-fucosidase[25] Roots of Stemona tuberosa[25]
No inhibition towards α-L-fucosidase[25] Roots of Stemona tuberosa[25]
Crude rat intestinal α-glucosidase-IC50 4.22 μM[26]
Rice α-glucosidase-IC50 0.25 μM[12]
Trehalase(porcine kidney)-IC50 13 nM[12]
Whole plant of Lobelia sessilifolia(Campanulaceae)[12], roots of Stemona tuberosa[25], leaves of Suregada glomerulata[26], whole plant of Aglaonema treubii[27] and bulbs of Hyacinthus orientalis[28]
Crude rat intestinal α-glucosidase-IC50 38.55 μM[26] Leaves of Suregada glomerulata[26]
Crude rat intestinal α-glucosidase-IC50 24.34 μM[26] Leaves of Suregada glomerulata[26]
NDa Leaves of Suregada glomerulata[26] and whole plant of Aglaonema treubii[27]
ND Leaves of Suregada glomerulata[26]
Trehalase(porcine kidney)-53 μM[12] Roots of Adenophora spp.
(Campanulaceae)[12]
Rice α-glucosidase-IC50 0.49 μM[12]
Rat intestinal sucrase-IC50 2.4 μM[12]
Rat intestinal maltase-IC50 6.1 μM[12]
Rat intestinal isomaltase-IC50 2.1 μM[12]
α-Galactosidase(coffee bean)-IC50 1.7 μM[12]
Roots of Adenophora spp.
(Campanulaceae)[12]
NIb[29]
Intraperitoneal administration of 150 μmol/kg of 30 had no effect on the blood glucose levels in STZ-diabetic mice[30]
Leave sand roots of Xanthocercis
zambesiaca(Leguminosae)[29, 30]
NI[29]
31 can reduce the blood glucose level after ip injection of 150 μmol/kg[30]
Leave sand roots of Xanthocercis
zambesiaca(Leguminosae)[29, 30] and
seeds of Xanthocercis zambesiaca
(Leguminosae)[31]
ND Cyclamen coum[32]
NI[33] Aerial parts of Lycopodiastrum
casuarinoides[33]
36a: Silk worm maltase-IC50 530 μM[10]
NI[34]
36b: NI[34]
36a: Root bark, dry fruits and leaves of mulberry trees and silkworms(Morus alba L.)[10, 11], leaves of Morus bombycis[21] and pods of Angylocalyx pynaertii[34]
36b: Pods of Angylocalyx pynaertii[34]
α-Glucosidase(rice)-IC50 0.79 μM[35]
Rat intestinal maltase-IC50 4.7 μM[35]
Rat intestinal isomaltase-IC50 12 μM[35]
Rat intestinal sucrase-IC50 5.0 μM[35]
β-Glucosidase(bovine liver)-IC50 850 μM[35]
β-Galactosidase(bovine liver)-IC50 270 μM;[25]
IC50 465 μM[35]
Trehalase(porcine kidney)-IC50 NI[35]
Roots of Stemona tuberosa[25] and dry leaves of Baphia nitida[35]
α-Glucosidase(rice)-IC50 22 μM[35]
Rat intestinal maltase-IC50 65 μM[35]
Rat intestinal isomaltase-IC50 136 μM[35]
Rat intestinal sucrase-IC50 57 μM[35]
β-Glucosidase(bovine liver)-IC50 NI[35]
β-Galactosidase(bovine liver)-IC50 NI[35]
Trehalase(porcine kidney)-IC50 26 μM[35]
Dry leaves of Baphia nitida[35]
β-Galactosidase(bovine liver)-IC50 40 μM[14]
Rat intestinal lactase-IC50 1.6 μM[14]
Immature fruits and stalks of bluebell(Hyacinthoides non-scripta) and bulbs of Scilla campanulata(Hyacinthaceae)[14] and leaves of bluebell(Hyacinthoides non-scripta)[36]
β-Glucosidase(almond)-IC50 4.6 μM[14]
β-Glucosidase(C. saccharolyticum)-IC50 0.34 μM[14]
β-Galactosidase(bovine liver)-IC50 24 μM[14]
Rat intestinal lactase-IC50 0.18 μM[14]
Immature fruits and stalks of bluebell(Hyacinthoides non-scripta) and bulbs of Scilla campanulata(Hyacinthaceae)[14]
β-Mannosidase(rat epididymis)-IC50 160 μM[23]
α-L-fucosidase(bovine epididymis)-IC50 78 μM[23]
Bulbs of Scilla sibirica[23]
β-Mannosidase(rat epididymis)-IC50 180 μM[23]
α-L-fucosidase(bovine epididymis)-IC50 13 μM[23]
Bulbs of Scilla sibirica[23]
NI[37] Dry branches of Broussonetia kazinoki SIEB.(Moraceae)[37]
NI[37] Dry branches of Broussonetia kazinoki SIEB.(Moraceae)[37]
β-Glucosidase(sweet almond)-IC50 26 nM[15]
β-Galactosidase(bovine liver)-IC50 5 nM[15]
β-Mannosidase(snail acetone powder)-
IC50 0.30 μM[15]
Dry branches of Broussonetia kazinoki SIEB.(Moraceae)[15]
β-Glucosidase(sweet almond)-IC50 17 nM[15]
β-Galactosidase(bovine liver)-IC50 4 nM[15]
β-Mannosidase(snail acetone powder)-
IC50 0.20 μM[15]
Dry branches of Broussonetia kazinoki SIEB.(Moraceae)[15]
β-Glucosidase(sweet almond)-IC50 1.4 μM[38]
β-Galactosidase(bovine liver)-IC50 0.60 μM[38]
β-Mannosidase(snail acetone powder)-
IC50 20.0 μM[38]
Dry branches of Broussonetia kazinoki SIEB.(Moraceae)[38]
ND Dry branches of Broussonetia kazinoki SIEB.(Moraceae)[39]
β-Glucosidase(bovine liver)-IC50 222 μM[40]
α-Galactosidase(coffee bean)-IC50 8 μM[40]
Roots of A. triphylla var. japonica[40]
β-Glucuronidase-IC50 560 μM[41] Cultured filamentous cyanobacterium
Anabaena sp.[41]
51: Competitive inhibitor of metallo-β-lactamase BceII from Bacillus cereus in its two-zinc form.[42]
Compounds 51~53 are potent β-lactam
synergists[8, 43, 44]
51: Pseudomonas acidophila[8] and
Pseudomonas mesoacidophila[43]
52, 53: Pseudomonas mesoacidophila[43]
Potentiators of β-lactam antibiotics[45, 46] Culture broth of Chromobacterium
violaceum[45, 47]
Potentiators of β-lactam antibiotics[45, 46] Culture broth of Chromobacterium
violaceum[45, 47]
α-Glucosidase(rice)-IC50 1.2 μM[18]
Rat intestinal maltase-IC50 0.7 μM[18]
Rat intestinal isomaltase-IC50 3.9 μM[18]
Trehalase(porcine kidney)-IC50 12 μM[18]
Glucoamylase(aspergillus niger)-IC50 4.4 μM[17]; 0.7 μM[18]
Bark of Casuarina equisetifolia L. and leaves of Eugenia jambolana Lam.[48] and Fresh bark of Syzygium malaccense L.[49]
α-Glucosidase(rice)-IC50 1.8 μM[18]
α-Glucosidase(yeast)-IC50 1.6 μM[18]
Rat intestinal maltase-IC50 41 μM[18]
Rat intestinal isomaltase-IC50 2.9 μM[18]
Seeds of C. australe[18]
Rat intestinal sucrase-IC50 0.4 μM[19]
Lysosomal α-glucosidase-IC50 > 400 μM[19]
Seeds of C. australe[18]
α-Glucosidase(caldocellum saccharolyticum)-
IC50 190 μM[10]
α-Galactosidase(coffee beans)-IC50 150 μM[10]
Trehalase(porcine kidney)-1000 μM[10]
Dry fruits and leaves of mulberry trees(Morus alba L.)[10, 50]
Rice α-glucosidase-IC50 1.9 μM[20] Fruits of Nicandra physalodes Boehm.(Solanaceae)[51]
Table 2 Glycosides of iminosugars synthesized by enzymatic method and their biological activities
Compounds Biological activities Ref
Golgi endomannosidase-IC50 1.7 μM[52] 52~54
Weak golgi endomannosidase inhibitor[53] 53
Weak inhibitory activities towards cellulases[55] 55, 56
Improved inhibition against cyclodextrin glycosyltransferase and sharply decreased inhibition towards glucoamylase comparing to their corresponding N-substituted moranolines[57].
n=0, CGT-ase-IC50 46 μM[57]
Glucoamylase-IC50 >1000 μM[57]
n=1, CGT-ase-IC50 38 μM[57]
Glucoamylase-IC50 320 μM[57]
n=2 or 3, CGT-ase-IC50 250 μM[57]
Glucoamylase-IC50 >1000 μM[57]
n=4 or 5, CGT-ase-IC50 260 μM[57]
Glucoamylase-IC50 >1000 μM[57]
n=6, CGT-ase-IC50 180 μM[57]
Glucoamylase-IC50 >1000 μM[57]
57
CGT-ase-IC50 450 μM[57]
Glucoamylase-IC50 >1000 μM[57]
57
n=1, CGT-ase-IC50 500 μM[57]
Glucoamylase-IC50 >1000 μM[57]
n=2, CGT-ase-IC50 >1000 μM[57]
Glucoamylase-IC50 >1000 μM[57]
n=3, CGT-ase-IC50 290 μM[57]
Glucoamylase-IC50 >1000 μM[57]
57
n=2, CGT-ase-IC50 50 μM[57]
Glucoamylase-IC50 >1000 μM[57]
n=3, CGT-ase-IC50 520 μM[57]
Glucoamylase-IC50 >1000 μM[57]
n=4, CGT-ase-IC50 60 μM[57]
Glucoamylase-IC50 >1000 μM[57]
57
NDa 58
ND 58~61
ND 58
ND 58
Potent inhibitor of the cellulases tested[55] 55
Weak inhibitory activities towards cellulases[55] 55
73: Endo-glycanase cex(cellulomonas fimi)-Ki2.0 μM[62]
Cel5A( Bacillus agaradhaerens)-Ki0.7 μM[63]
74: Endo-glycanase cex(cellulomonas fimi)-Ki0.8 μM[62]
Cel5A( Bacillus agaradhaerens)-Ki5 nM[63]
75: Endo-glycanase cex(cellulomonas fimi)-Ki0.6 μM[62]
Cel5A( Bacillus agaradhaerens)-Ki400 nM[63]
76: Endo-glycanase cex(cellulomonas fimi)-Ki1900 μM[62]
77: Endo-glycanase cex(cellulomonas fimi)-Ki1000 μM[62]
Endo-β-1,4-(xylo)glucan hydrolase ( Paenibacillus polymyxa)-IC50 7 μM[64]
78: Endo-glycanase cex(cellulomonas fimi)-Ki80 μM[62]
62
79: Xylanase(Bacillus circulans)-Ki1500 μM[65, 66]
Xylanase(cellulomonas fimi)-Ki5.8 μM[65, 66]
80: Endo-glycanase cex(cellulomonas fimi)-Ki88±6 μM[65]
Cel5A( Bacillus agaradhaerens)-Ki0.16±0.03 μM[65]
81: Endo-glycanase cex(cellulomonas fimi)-Ki1100 μM[65, 66]
Cel5A( Bacillus agaradhaerens)-Ki0.13 μM[65, 66]
82: Endo-glycanase cex(cellulomonas fimi)-Ki63±4 μM[65]
Cel5A( Bacillus agaradhaerens)-Ki0. 018±0.002 μM[65]
65
HPA: human pancreaticα-amylase
HSA: human salivary α-amylase
n=1, HPA-IC50 2.5 mM[67] n=2, HPA-IC50 43 μM[67]
HSA-IC50 2.0 mM[67] HSA-IC50 82 μM[67]
Rat maltase-NI[67] Rat maltase-NI[67]
n=3, HPA-IC50 30 μM[67] n=4, HPA-IC50 0.23 mM[67]
HSA-IC50 49 μM[67] HSA-IC50 0.36 mM[67]
Rat maltase-NI[67] Rat maltase-NI[67]
67
n=1, HPA-IC50 3.0 mM[67] n=2, HPA-IC50 34 μM[67]
HSA-IC50 2.0 mM[67] HSA-IC50 46 μM[67]
Rat maltase-IC50 1.0 mM[67] Rat maltase-NI[67]
n=3, HPA-IC50 25 μM[67] n=4, HPA-IC50 70 μM[67]
HSA-IC50 42 μM[67] HSA-IC50 70 μM[67]
Rat maltase-NI[67] Rat maltase-NI[67]
67
No inhibitory activities towards HPA,HSA and rat maltase[67] 67
NIb[20] 20
α-Galactosidase(green coffee bean)-IC50 26 μM[20]
Weak inhibitor of β-glucosidase, β-galactosidase, trehalase[20]
20
α-Galactosidase(green coffee bean)-IC50 80 μM[20]
Trehalase(porcine kidney)-IC50 34 μM[20]
20
ND 68
Scheme. 1 Synthesis of 4-O-α-D-glucopyranosyl-DNJ by enzymatic method[56]
Scheme. 2 Synthesis of α- or β- glucosylated DNJ derivatives by enzymatic method[22]
Table 3 Concentrations of glucosides of DNJ giving 50% inhibition of glycosidase activities(μM)
Scheme. 3 Synthesis of the naturally occurring 6-O-α-D-galactopyranosyl-DNJ by enzymatic method[69]
Scheme. 4 Synthesis of galactosylated DNJ derivatives by enzymatic method[58]
Scheme. 5 Synthesis of 4-O-β-D-galactopyranosyl-DNJ by enzymatic method[59,60,61]
Scheme. 6 Synthesis of glucosylated DMDP derivatives by enzymatic method[68]
Scheme. 7 Synthesis of cello-oligomers of isofagomine and a tetrahydrooxazine with glycosynthases[62]
Scheme. 8 BhxE334G-catalyzed synthesis of xylanase inhibitors[65]
Table 4 Glycosides of iminosugars synthesized by chemical method and their biological activities
Compounds Biological activities Ref
NDa 54
107: Maltase(yeast)-Ki-5.5 μM; Isomaltase(yeast)-Ki-55 μM
Naringinase(P. decumbes)-Ki-702 μM[70]
108: Maltase(yeast)-Ki-30 μM; Isomaltase(yeast)-Ki-52 μM
Naringinase(P. decumbes)-Ki-187 μM[70]
109: β-Glucosidase(bovine liver)-Ki- 195 μM; Maltase(yeast)-Ki-17 μM
Isomaltase(yeast) -Ki-53 μM; Trehalase(pig kidney)-Ki-549 μM
Naringinase(P. decumbes)-Ki-742 μM[70]
70
110: Maltase(yeast)-Ki-24 μM; Isomaltase(yeast)-Ki-36 μM
Naringinase(P. decumbes)-Ki-160 μM[70]
111: β-Glucosidase(almonds)-Ki- 209 μM[70]
112: β-Glucosidase(bovine liver)-Ki- 190 μM;
β-Glucosidase(almonds)-Ki- 375 μM; Maltase(yeast)-Ki-108 μM
Isomaltase(yeast) -Ki-83 μM; Naringinase(P. decumbes)-Ki-443 μM[70]
70
R1 R2 R3 R4 - Inhibition of rat liver Golgi endomannosidase
113a OH OH OMe H - ND
113b OH OH H H - ND
113c OH OMe OH H - ND
113d OH H OH H - ND
113e OMe OH OH H - ND
113f H OH OH H - IC50 300 μM[52]
113g OH OH OH Me - ND
113h OH OH OH n-propyl - ND
54
R R1 R2 R3 R4 - Inhibition of rat liver Golgi endomannosidase
114a OMe OH OH H CH2OH -IC50 4.4 μM[52]
114b Cl OH OH H CH2OH -IC50 17 μM[52]
114c OH H OH H CH2OH -IC50 390 μM[52]
114d OH OH H H CH2OH - ND
114e OH OH OMe H CH2OH -ND
114f OH OH H OH CH2OH -IC50 10 μM[52]
114g OH OH OH H CH3 -IC50 10 μM[52]
114h OH OH OH H H -ND
71
R R1 R2 - Inhibition of rat liver Golgi endomannosidase
115a H H H - IC50 28 μM[52]
115b OH Me H - IC50 350 μM[52]
115c OH H Me - IC50 400 μM[52]
71
R1 R2 R - Inhibition of endo-α-D-mannosidase
61 OH H H - IC50 5.6 μM[52, 72]
116 H OH H - IC50 25.1 μM[72]
117 H OH (CH2)5CN - ND
118 H OH (CH2)5NH2 - ND
54, 72, 73
BtGH99-Kd=97.7±4.9 μM[74] 74
ND 75
Endo-β-1,4-(xylo)glucan hydrolase ( Paenibacillus polymyxa)-IC50 1.3 μM[64]
Cex(cellulomonas fimi)-Ki28 nM[76]
Cel5A( Bacillus agaradhaerens)-Ki26 nM[76]
64, 76
CtLic26 A(Clostridium thermocellum)-Ki168 nM[76] 76
BtGH99-Kd=0.03±0.01 μM[77]
BxGH99-Kd=0.013±0.002 μM[77]
77
See Table 2[57] 78
See Table 2[57] 78
124 R=Bu, β-Glucocerebrosidase-IC50 56 μM[79]
125 R=H, β-Glucocerebrosidase-NI[79]
79
R1 R2
126 OH H - NKR-P1A IC50 5.5 μM[80], CD69 IC50 3.3 μM[80]
127 H OH - NKR-P1A IC50 6.5 μM[80], CD69 IC50 4.5 μM[80]
80
R1 R2
128 OH H -ND
129 H OH -ND
81
Cel7A -Ki- 40 μM, Cel6A-Ki- 700 μM[82] 82
Cel7A -Ki- 1300 μM, Cel6A-Ki- 300 μM[82] 82
Cel7A -Ki- 190 μM, Cel6A-Ki- 5 μM[82] 82
Cel7A -Ki- 740 μM, Cel6A-Ki- 1 μM[82] 82
Cel7A -Ki- 6000 μM, Cel6A-Ki- 14 μM[82] 82
Cel7A -Ki- 130 μM, Cel6A-Ki- 1 μM[82] 82
ND 74
Cel7A -Ki- 1000 μM, Cel6A-Ki- 130 μM[82] 82, 83
No inhibition at 2 mM[82] 82
Cel7A-IC50 4 mM[84] 84
Weak inhibitor of Cel7A[84] 84
ND 85
ND 85
ND 85
Potent inhibitory effect on the adhesion of fixed HL-60 cells to IL-β-stimulated HUVECs, potency: N-butyl > N-decyl > N-methyl derivative.[86] 86, 87
Potent inhibitory effect on the adhesion of fixed HL-60 cells to IL-β-stimulated HUVECs, potency: N-butyl > N-decyl > N-methyl derivative. The sLea-type analogs(153~156) expressed stronger activity than the corresponding sLex-type analogs(149~152).[86] 86
No antibacterial activity detected[88] 88
No antibacterial activity detected[88] 88
Potential anti-diabetic effects[78] 78, 89
ND 87
Potent inhibitory effect on the adhesion of fixed HL-60 cells to IL-β-stimulated HUVECs. The sulfo Lea-type analogs(161~163) expressed stronger activity than the corresponding sulfo Lex-type analogs(164~166).[86] 86, 90
Potent inhibitory effect on the adhesion of fixed HL-60 cells to IL-β-stimulated HUVECs.[86] 86
Potential anti-diabetic effects[91] 91
Potential anti-diabetic effects[91] 91
Show anti-inflammatory activity and retain the biological activity of the parent PIM structures[92] 92
The introduction of a functionalized spacer of the acylaminocaproyl type onto the piperidine ring of the PIM2 mimic does not alter the immuno-modulating activity of the parent compound. This conjugate binds to macrophage membranes with rapid kinetics, and does not exhibit cytotoxicity while retaining the ability to inhibit LPS-induced production of proin?ammatory cytokines such as TNFα and IL12p40.[93] 93
Signi?cant cytotoxicity[93] 93
ND 94
Barley 1,3-β-D-glucan endo-hydrolase-ID50 7.8 μM[95]
Potent inhibitor of bacterial endo-α-mannosidase[96]
95, 96
BtGH99-Kd=140 nM[97]
BxGH99-Kd=217 nM[97]
97
Barley 1,3-β-D-glucan endo-hydrolase-ID50 3.1 μM[95] 95
Heparanase(melanoma)-IC50 140 μM[98]
Heparanase(colon 26 N-17 cells)-IC50 58-63 μM[98]
98
ND 99
ND 100
ND 101
ND 101
Xylanase Cex(Cellulomonas fimi)-Ki- 0.15 μM[66]
Xylanase Bcx(Bacillus circulans)-Ki- 520 μM[66]
66
Xylanase Cex(Cellulomonas fimi)-Ki- 0.37 μM[66]
Xylanase Bcx(Bacillus circulans)-Ki- 1400 μM[66]
66
Xylanase Cex(Cellulomonas fimi)-Ki- 5.8 μM[66]
Xylanase Bcx(Bacillus circulans)-Ki- 1500 μM[66]
66
Xylanase Cex(Cellulomonas fimi)-Ki- 0.13 μM[66]
Xylanase Bcx(Bacillus circulans)-Ki- 1100 μM[66]
66
Xylanase Cex(Cellulomonas fimi)-Ki- 190 μM[66]
Xylanase Bcx(Bacillus circulans)-NI[66]
66
Xylanase Cex(Cellulomonas fimi)-Ki- 110 μM[66]
Xylanase Bcx(Bacillus circulans)-Ki- 3100 μM[66]
66
Xylanase Cex(Cellulomonas fimi)-Ki- 790 μM[66]
Xylanase Bcx(Bacillus circulans)-NI[66]
66
Wild-type Cex xylanase-Ki- 0.33 μM[102] 102
ND 103
ND 103
ND 103
ND 103
ND 103
ND 104
Transglycosylase(Acinetobacter baumannii): 70% inhibition at 50 μM[105] 105
NIb[106, 107] 106, 107
NI[106, 107] 106, 107
Rat intestinal sucrase-IC50 0.2 μM[108]
Rat intestinal maltase-IC50 1.0 μM[108]
Rat intestinal isomaltase-IC50 8.0 μM[108]
Glucoamylase-IC50 5.0 μM[108]
108
α-Glucosidase(yeast)-IC50 175 μM[109] 109
α-Glucosidase(yeast)-IC50 940 μM[109] 109
α-Glucosidase(yeast)-IC50 53 μM[109] 109
α-Glucosidase(yeast)-IC50 340 μM[109] 109
α-Glucosidase(yeast)-IC50 2400 μM[109] 109
α-Glucosidase(yeast)-IC50 1020 μM[109] 109
α-Glucosidase(yeast)-Ki- 59±2 μM[110]
β-Glucosidase(sweet almonds)-Ki- 2.3±0.4 μM[110]
Isomaltase(yeast) -Ki- 100±10 μM[110]
Glucoamylase(Aspergillus awamori)-Ki- 0.063±0.003 μM[110]
110
α-Glucosidase(yeast)-Ki- 70±8 μM[110]
β-Glucosidase(sweet almonds)-Ki- 0.38±0.02 μM[110]
Isomaltase(yeast) -Ki- 19±2 μM[110]
Glucoamylase(Aspergillus awamori)-Ki- 0.24±0.04 μM[110]
110
α-Glucosidase(yeast)-Ki- 280±60 μM[110]
β-Glucosidase(sweet almonds)-Ki- 150±10 μM[110]
Isomaltase(yeast)-Ki > 1000 μM[110]
Glucoamylase(Aspergillus awamori)-Ki- 94±10 μM[110]
110
α-Glucosidase(yeast)-Ki > 1000 μM[110]
β-Glucosidase(sweet almonds)-Ki- 510±30 μM[110]
Isomaltase(yeast)-Ki-190±20 μM[110]
Glucoamylase(Aspergillus awamori)-Ki- 160±20 μM[110]
110
223: α-1,3-Fucosyltransferase IV-IC50 > 500 μM[111]
224: α-1,3-Fucosyltransferase IV-IC50-233 μM[111]
111
225: α-1,3-Fucosyltransferase IV-IC50-81 μM[111] 111
226: IVT IC50-5.7 μM, RNA IC50-11 μM, MIC(E. coli) > 64 μg/mL, MIC(S. aureus)-64 μg/mL[112]
227: IVT IC50-110 μM, RNA IC50 > 250 μM, MIC(E. coli) > 64 μg/mL, MIC(S. aureus) > 64 μg/mL[112]
228: IVT IC50-75 μM, RNA IC50 > 250 μM, MIC(E. coli) > 64 μg/mL, MIC(S. aureus) > 64 μg/mL[112]
229: IVT IC50-82 μM, RNA IC50 > 250 μM, MIC(E. coli) > 64 μg/mL, MIC(S. aureus) > 64 μg/mL[112]
230: IVT IC50-36 μM, RNA IC50 > 250 μM, MIC(E. coli) > 64 μg/mL, MIC(S. aureus) > 64 μg/mL[112]
231: IVT IC50-75 μM, RNA IC50 > 250 μM, MIC(E. coli) > 64 μg/mL, MIC(S. aureus) > 64 μg/mL[112]
232: IVT IC50 > 1000 μM, RNA IC50 > 250 μM, MIC(E. coli) > 64 μg/mL, MIC(S. aureus) > 64 μg/mL[112]
112
233: IVT IC50 > 1000 μM, RNA IC50 > 250 μM, MIC(E. coli) > 64 μg/mL, MIC(S. aureus) > 64 μg/mL[112] 112
234: IVT IC50-6.4 μM, RNA IC50-12 μM, MIC(E. coli) > 64 μg/mL, MIC(S. aureus)-32 μg/mL[112]
235: IVT IC50-180 μM, RNA IC50-80 μM, MIC(E. coli) > 64 μg/mL, MIC(S. aureus) > 64 μg/mL[112]
112
236: IVT IC50-39 μM, RNA IC50 > 250 μM, MIC(E. coli) > 64 μg/mL, MIC(S. aureus) > 64 μg/mL[112]
237: IVT IC50-370 μM, RNA IC50 > 250 μM, MIC(E. coli) > 64 μg/mL, MIC(S. aureus) > 64 μg/mL[112]
112
238: IVT IC50-47 μM, RNA IC50 > 250 μM, MIC(E. coli) > 64 μg/mL, MIC(S. aureus) > 64 μg/mL[112]
239: IVT IC50-230 μM, RNA IC50 > 250 μM, MIC(E. coli) > 64 μg/mL, MIC(S. aureus) > 64 μg/mL[112]
112
No inhibition at a concentration of 500 μM towards human heparanase[113] 113
No inhibition at a concentration of 500 μM towards human heparanase[113] 113
No inhibition at a concentration of 500 μM towards human heparanase[113] 113
No inhibition at a concentration of 500 μM towards human heparanase[113] 113
244: C. riparius trehalase-IC50 9.36±1.49 μM[114]
Porcine trehalase-IC50 27.64±5.35 μM[114]
245: C. riparius trehalase-IC50 >1000 μM[114]
Porcine trehalase-ND
246: C. riparius trehalase-IC50 >1000 μM[114]
Porcine trehalase-ND
114
247: C. riparius trehalase-IC50 0.784±0.059 μM[114]
Porcine trehalase-IC50 5.84±0.26 μM[114]
114
ND 115
Inhibits the binding of SLex glycoconjugate to immobilized recombinant(E)-selectin with IC50 as 10 mM.[116] 116
Compound 251 is resistant to α-fucosidase and β-galactosidase and is active as inhibitor of SLex glycoconjugate binding to immobilized(E)-selectin with IC50 as 10 mM.[117] 117
ND 118
Devoid of E-selectin binding activity-IC50 > 10 μM[119] 119
254: α-Glucosidase(yeast)-Ki > 0.6 mM[120]
β-Glucosidase(almonds)-Ki- 3.18 mM[120]
255: α-Glucosidase(yeast)-Ki > 1.38 mM[120]
β-Glucosidase(almonds)-Ki- 6.89 mM[120]
256: α-Glucosidase(yeast)-Ki > 2.05 mM[120]
β-Glucosidase(almonds)-NI[120]
120
α-Glucosidase(yeast)-Ki > 0.96 mM[120]
β-Glucosidase(almonds)-Ki- 0.58 mM[120]
120
ND 121
ND 121
ND 121
Mtb GlgE-Ki=237±27 μM[122]
GlgEI-Ki=102±7.52 μM[122]
122
262: GlgEI-Ki=45±4 μM[123]
263: GlgEI-Ki=95±16 μM[123]
123
Binding with plasma protein: KD=8.95 nM(rats), 27.2 nM(monkeys)[124]
Binding wit salivary amylase KD=5.64 nM[124]
124, 125
ND 126
ND 126
ND 126
ND 126
56: Porcine kidney trehalase -Ki- 11 nM[127]
Escherichia coli trehalase(Tre37 A) -Ki- 12 nM[127]
Chironomus riparius trehalase -Ki- 0.66 nM[127]
Aspergillus niger glucoamylase-IC50 4.4 μM[17]
271: Porcine kidney trehalase -Ki > 10 μM[127]
Escherichia coli trehalase(Tre37 A) -Ki- 2.8 μM[127]
Chironomus riparius trehalase -Ki- 157 nM[127]
Aspergillus niger glucoamylase-IC50 23.7 μM[17]
272: Porcine kidney trehalase -Ki- 138 nM[127]
Escherichia coli trehalase(Tre37 A) -Ki- 86 nM[127]
Chironomus riparius trehalase -Ki- 22 nM[127]
Aspergillus niger glucoamylase-IC50 7.7 μM[17]
17, 127
C. riparius trehalase-IC50 29.49±7.26 μM[114]
Porcinetrehalase-IC50 190.60±34.15 μM[114]
114
Aspergillus niger glucoamylase(percentage inhibition at 1 mM concentration)
274: 0[17]
275: 25%[17]
276: 76%[17]
17
The alkaloids can trigger type 1 immune response of antigens, induce the production of IL-2 in dendritic cells, and was also found with anti-HIV activity.[128,129,130] 131
The alkaloids can trigger type 1 immune response of antigens, induce the production of IL-2 in dendritic cells, and was also found with anti-HIV activity.[128,129,130] 131
The alkaloids can trigger type 1 immune response of antigens, induce the production of IL-2 in dendritic cells, and was also found with anti-HIV activity.[128,129,130] 131
ND 132
Human recombinant endo-α-mannosidase(up to 1 mM concentration)-NI[133]
No binding to either the wild-type or E154 A variant(vide infra) BtGH99[133]
133
Devoid of E-selectin binding activity-IC50 > 10 μM[119] 119
E-selectin: No affinity[119]
P-selectin: In low μM range[119]
119
E-selectin: No affinity[119]
P-selectin: In low μM range[119]
119
E-selectin: No affinity[119]
P-selectin: In low μM range[119]
119
ND 134
291: Rat intestinal sucrase-IC50 0.04 μM[19]
Lysosomal α-glucosidase-IC50 40 μM[19]
292: Rat intestinal sucrase-IC50 0.03 μM[19]
Lysosomal α-glucosidase-IC50 40 μM[19]
58: Rat intestinal sucrase-IC50 0.4 μM[19]
Lysosomal α-glucosidase-IC50 > 400 μM[19]
19, 134
Scheme. 9 Synthesis of 3-O-α-D-Glucopyranosyl-DMJ and its derivatives with modified iminosugar ring[54]
Scheme. 10 Synthesis of glycosylated Sialyl Lewis X derivatives[118]
Scheme. 11 Synthesis of glycosylated iminosugars with fluorinated iminosugars as glycosyl donors[70]
Scheme. 12 Synthesis of glycosylated swainsonine derivatives[133]
Scheme. 13 Synthesis of glycosylated DNJ derivatives[137]
Scheme. 14 Synthesis of glycosylated casuarine derivatives[127, 138]
Scheme. 15 Synthesis of glycosylated castanospermine derivatives[134]
Scheme. 16 Synthesis of glycosylated isofagomine derivatives[95]
Fig. 3 Glycosylated polyhydroxylated pyrrolidines derivatives[125, 140]
Scheme. 17 Synthesis of glycosylated iminosugar mimetics of sialyl Lewis X[119]
Scheme. 18 Synthesis of diglycosylated DNJ derivatives[87]
Scheme. 19 Synthesis of glycosylated azepane derivatives[112]
Scheme. 20 Synthesis of glycosylated iminosugars with iminosugar thioglycosides as glycosyl donors[144]
Scheme. 21 Synthesis of glycosylated australine derivatives[132]
Scheme. 22 Synthesis of glycosylated iminosugar derivatives with stereoelectronical 1,2-shift as key step[121]
Scheme. 23 Synthesis of galactosylated DNJ from lactose[146]
Scheme. 24 Synthesis of glycosylated DMJ from maltulose[73]
Scheme. 25 Synthesis of glycosylated DNJ derivatives from maltose and cellose[147]
Scheme. 26 Synthesis of glucosylated DNJ derivatives from chitobiose[75]
Scheme. 27 Synthesis of mannosylated noeuromycin derivatives[77]
Scheme. 28 Synthesis of N-glycosylated DAB derivatives[115]
Scheme. 29 Synthesis of N-glycosylated isofagomine derivatives[110]
Scheme. 30 Synthesis of N-glycosylated DNJ and azepane[106, 107]
Scheme. 31 Synthesis of diglycosylated DNJ derivatives[91]
[1]
Butters T D, Dwek R A, Platt F M . Chem. Rev., 2000,100:4683. https://www.ncbi.nlm.nih.gov/pubmed/11749362

doi: 10.1021/cr990292q pmid: 11749362
[2]
Inoue S, Tsuruoka T, Niida T . J. Antibiot., 1966,19:288. https://www.ncbi.nlm.nih.gov/pubmed/6013242

pmid: 6013242
[3]
Davis B G . Tetrahedron: Asymmetry, 2009,20:652. https://linkinghub.elsevier.com/retrieve/pii/S0957416609002262

doi: 10.1016/j.tetasy.2009.03.013
[4]
Asano N . Cell. Mol. Life Sci., 2009,66:1479. https://www.ncbi.nlm.nih.gov/pubmed/19132292

doi: 10.1007/s00018-008-8522-3 pmid: 19132292
[5]
Nash R J, Kato A, Yu C Y, Fleet G W J . Future Med. Chem., 2011,3:1513. https://www.ncbi.nlm.nih.gov/pubmed/21882944

doi: 10.4155/fmc.11.117 pmid: 21882944
[6]
Horne G, Wilson F X, Tinsley J, Williams D H, Storer R . Drug Discov. Today, 2011,16:107. https://www.ncbi.nlm.nih.gov/pubmed/20817006

doi: 10.1016/j.drudis.2010.08.017 pmid: 20817006
[7]
Asano N . Curr. Top. Med. Chem., 2003,3:471. https://www.ncbi.nlm.nih.gov/pubmed/12570862

doi: 10.2174/1568026033452438 pmid: 12570862
[8]
Imada A, Kintaka K, Nakao M, Shinagawa S . J. Antibiot., 1982,35:1400. https://www.ncbi.nlm.nih.gov/pubmed/6757229

doi: 10.7164/antibiotics.35.1400 pmid: 6757229
[9]
Dembitsky V M . Lipids, 2005,40:1081. https://www.ncbi.nlm.nih.gov/pubmed/16459921

doi: 10.1007/s11745-005-1473-2 pmid: 16459921
[10]
Asano N, Yamashita T, Yasuda K, Ikeda K, Kizu H, Kameda Y, Kato A, Nash R J, Lee H S, Ryu K S . J. Agric. Food Chem., 2001,49:4208. https://www.ncbi.nlm.nih.gov/pubmed/11559112

doi: 10.1021/jf010567e pmid: 11559112
[11]
Asano N, Oseki K, Tomioka E, Kizu H, Matsui K . Carbohydr. Res, 1994,259:243. https://www.ncbi.nlm.nih.gov/pubmed/8050098

doi: 10.1016/0008-6215(94)84060-1 pmid: 8050098
[12]
Ikeda K, Takahashi M, Nishida M, Miyauchi M, Kizu H, Kameda Y, Arisawa M, Watson A A, Nash R J, Fleet G W J, Asano N . Carbohydr. Res., 2000,323:73. https://www.ncbi.nlm.nih.gov/pubmed/10782288

doi: 10.1016/s0008-6215(99)00246-3 pmid: 10782288
[13]
Suzuki K, Nakahara T, Kanie O . Curr. Top. Med. Chem., 2009,9:34. https://www.ncbi.nlm.nih.gov/pubmed/19199995

doi: 10.2174/156802609787354315 pmid: 19199995
[14]
Kato A, Adachi I, Miyauchi M, Ikeda K, Komae T, Kizu H, Kameda Y, Watson A A, Nash R J, Wormald M R, Fleet G W J, Asano N . Carbohydr. Res., 1999,316:95. https://www.ncbi.nlm.nih.gov/pubmed/10515698

doi: 10.1016/s0008-6215(99)00043-9 pmid: 10515698
[15]
Shibano M, Nakamura S, Motoya N, Kusano G . Chem. Pharm. Bull., 1999,47:472. http://joi.jlc.jst.go.jp/JST.Journalarchive/cpb1958/47.472?from=CrossRef

doi: 10.1248/cpb.47.472
[16]
Barrett A G M, Pilipauskas D . J. Org. Chem., 1991,56:2787. https://pubs.acs.org/doi/abs/10.1021/jo00008a040

doi: 10.1021/jo00008a040
[17]
Bonaccini C, Chioccioli M, Parmeggiani C, Cardona F, Lo Re D, Soldaini G, Vogel P, Bello C, Goti A, Gratteri P . Eur. J. Org. Chem., 2010,5574.
[18]
Kato A, Kano E, Adachi I, Molyneux R J, Watson A A, Nash R J, Fleet G W J, Wormald M R, Kizu H, Ikeda K, Asano N . Tetrahedron: Asymmetry, 2003,14:325. https://linkinghub.elsevier.com/retrieve/pii/S0957416602007991

doi: 10.1016/S0957-4166(02)00799-1
[19]
Liu P S, Rhinehart B L, Daniel J K . US5017563, 1991.
[20]
Asano N, Kato A, Kizu H, Matsui K, Griffiths R C, Jones M G, Watson A A, Nash R J . Carbohydr. Res., 1997,304:173. https://www.ncbi.nlm.nih.gov/pubmed/9449768

doi: 10.1016/s0008-6215(97)00227-9 pmid: 9449768
[21]
Asano N, Tomioka E, Kizu H, Matsui K . Carbohydr. Res, 1994,253:235. https://www.ncbi.nlm.nih.gov/pubmed/8156550

doi: 10.1016/0008-6215(94)80068-5 pmid: 8156550
[22]
Asano N, Oseki K, Kaneko E, Matsui K . Carbohydr. Res, 1994,258:255. https://www.ncbi.nlm.nih.gov/pubmed/8039179

doi: 10.1016/0008-6215(94)84091-1 pmid: 8039179
[23]
Yamashita T, Yasuda K, Kizu H, Kameda Y, Watson A A, Nash R J, Fleet G W J, Asano N . J. Nat. Prod., 2002,65:1875. https://www.ncbi.nlm.nih.gov/pubmed/12502331

doi: 10.1021/np020296h pmid: 12502331
[24]
Arai M, Sumida M, Nakatani S, Murao S . Agric. Biol. Chem., 1983,47:183.
[25]
Asano N, Yamauchi T, Kagamifuchi K, Shimizu N, Takahashi S, Takatsuka H, Ikeda K, Kizu H, Chuakul W, A. K, Okamoto T . J. Nat. Prod., 2005,68:1238. https://www.ncbi.nlm.nih.gov/pubmed/16124768

doi: 10.1021/np050157a pmid: 16124768
[26]
Yan R Y, Wang H Q, Liu C, Kang J, Chen R Y . Bioorg. Med. Chem., 2013,21:6796. https://www.ncbi.nlm.nih.gov/pubmed/23993676

doi: 10.1016/j.bmc.2013.07.048 pmid: 23993676
[27]
Asano N, Nishida M, Kizu H, Matsui K, Watson A A, Nash R J . J. Nat. Prod., 1997,60:98. https://pubs.acs.org/doi/10.1021/np960577n

doi: 10.1021/np960577n
[28]
Asano N, Kato A, Miyauchi M, Kizu H, Kameda Y, Watson A A, Nash R J, Fleet G W J . J. Nat. Prod., 1998,61:625. https://www.ncbi.nlm.nih.gov/pubmed/9599261

doi: 10.1021/np9705726 pmid: 9599261
[29]
Kato A, Asano N, Kizu H, Matsui K, Watson A A, Nash R J . J. Nat. Prod., 1997,60:312. https://www.ncbi.nlm.nih.gov/pubmed/9157194

doi: 10.1021/np960646y pmid: 9157194
[30]
Nojima H, Kimura I, Chen F J, Sugihara Y, Haruno M, Kato A, Asano N . J. Nat. Prod., 1998,61:397. https://www.ncbi.nlm.nih.gov/pubmed/9544568

doi: 10.1021/np970277l pmid: 9544568
[31]
Evans S V, Hayman A R, Fellows L E, Shing T K M, E.Derome A, Fleet G W J . Tetrahedron Lett., 1985,26:1465. https://linkinghub.elsevier.com/retrieve/pii/S0040403900990725

doi: 10.1016/S0040-4039(00)99072-5
[32]
Yayli N, Baltaci C . Turkish Journal of Chemistry, 1997,21:139.
[33]
Wang L L, Hao L J, Zhou Z B, Zhu X L, Shi Z H, Miyamoto T, Pan K . Phytochemistry, 2018,154:63. https://www.ncbi.nlm.nih.gov/pubmed/30006089

doi: 10.1016/j.phytochem.2018.06.016 pmid: 30006089
[34]
Yasuda K, Kizu H, Yamashita T, Kameda Y, Kato A, Nash R J, Fleet G W J, Molyneux R J, Asano N . J. Nat. Prod., 2002,65:198. https://www.ncbi.nlm.nih.gov/pubmed/11858756

doi: 10.1021/np010360f pmid: 11858756
[35]
Kato A, Kato N, Miyauchi S, Minoshima Y, Adachi I, Ikeda K, Asano N, Watson A A, Nash R J . Phytochemistry, 2008,69:1261. https://www.ncbi.nlm.nih.gov/pubmed/18191969

doi: 10.1016/j.phytochem.2007.11.018 pmid: 18191969
[36]
Watson A A, Nash R J, Wormald M R, Harvey D J, Dealler S, Lees E, Asano N, Kizu H, Kato A, Griffiths R C, Cairns A J, Fleet G W J . Phytochemistry, 1997,46:255. https://linkinghub.elsevier.com/retrieve/pii/S0031942297002823

doi: 10.1016/S0031-9422(97)00282-3
[37]
Shibano M, Kitagawa S, Nakamura S, Akazawa N, Kusano G . Chem. Pharm. Bull., 1997,45:700. https://www.ncbi.nlm.nih.gov/pubmed/9145506

doi: 10.1248/cpb.45.700 pmid: 9145506
[38]
Shibano M, Tsukamoto D, Fujimoto R, Masui Y, Sugimoto H, Kusano G . Chem. Pharm. Bull., 2000,48:1281. https://www.ncbi.nlm.nih.gov/pubmed/10993225

doi: 10.1248/cpb.48.1281 pmid: 10993225
[39]
Tsukamoto D, Shibano M, Kusano G . Chem. Pharm. Bull., 2001,49:1487. https://www.ncbi.nlm.nih.gov/pubmed/11724246

doi: 10.1248/cpb.49.1487 pmid: 11724246
[40]
Kato A, Hollinshead J, Yamashita Y, Nakagawa S, Koike Y, Adachi I, Yu C Y, Fleet G W J, Nash R J . Phytochem. Lett., 2010,3:230. 0de9d7b3-8208-4aab-acf8-eaa40692cc73http://www.sciencedirect.com/science/article/pii/S1874390010000789

doi: 10.1016/j.phytol.2010.08.006
[41]
Thammana S, Suzuki H, Lobkovsky E, Clardy J, Shimizu Y . J. Nat. Prod., 2006,69:365. https://www.ncbi.nlm.nih.gov/pubmed/16562836

doi: 10.1021/np050401y pmid: 16562836
[42]
Simm Alan M, Loveridge E J, Crosby J, Avison Matthew B, Walsh Timothy R, Bennett Peter M . Biochem. J., 2005,387:585. https://www.ncbi.nlm.nih.gov/pubmed/15569001

doi: 10.1042/BJ20041542 pmid: 15569001
[43]
Shinagawa S, Maki M, Kintaka K, Imada A, Asai M . J. Antibiot., 1985,38:17. https://www.ncbi.nlm.nih.gov/pubmed/3918981

doi: 10.7164/antibiotics.38.17 pmid: 3918981
[44]
Williams A H, Wheeler R, Thiriau C, Haouz A, Taha M K, Boneca I G . Antibiotics, 2017, 6: doi: 10.3390/antibiotics6010008.
[45]
Cooper R, Unger S . J. Org. Chem., 1986,51:3942. https://pubs.acs.org/doi/abs/10.1021/jo00371a005

doi: 10.1021/jo00371a005
[46]
Sykes R B, Wells J S, Cooper R . US4752469 A, 1988.
[47]
Cooper R, Wells J S, Sykes R B . J. Antibiot., 1985,38:449. https://www.ncbi.nlm.nih.gov/pubmed/3839229

pmid: 3839229
[48]
Wormald M R, Nash R J, Watson A A, Bhadoria B K, Langford R, Sims M, Fleet G W J . Carbohydr. Lett., 1996,2:169.
[49]
Kiyoteru T, Shinichi T, Junichi K, Shunichi Y, Kazuo I, Kinzo W, Samisoni J I, Vakamoze T, Albersberg B . JP2005/132837, 2005.
[50]
Wilson F X, Nash R J, Horne G, Storer R, Tinsley J M, Roach A G . WO2010/15816, 2010.
[51]
Griffiths R C, Watson A A, Kizu H, Asano N, Sharp H J, Jones M G, Wormald M R, Fleet G W J, Nash R J . Tetrahedron Lett., 1996,37:3207. https://linkinghub.elsevier.com/retrieve/pii/0040403996004960

doi: 10.1016/0040-4039(96)00496-0
[52]
Hiraizumi S, Spohr U, Spiro R G . J. Biol. Chem., 1993,268:9927. https://www.ncbi.nlm.nih.gov/pubmed/8486671

pmid: 8486671
[53]
Spohr U, Bach M, Spiro R G . Can. J. Chem.-Revue Canadienne De Chimie, 1993,71:1919. http://www.nrcresearchpress.com/doi/10.1139/v93-239

doi: 10.1139/v93-239
[54]
Spohr U, Bach M, Spiro R G . Can. J. Chem.-Revue Canadienne De Chimie, 1993,71:1928. http://www.nrcresearchpress.com/doi/10.1139/v93-240

doi: 10.1139/v93-240
[55]
Kawaguchi T, Sugimoto K, Hayashi H, Arai M . Biosci. Biotech. Biochem., 1996,60:344. http://www.tandfonline.com/doi/full/10.1271/bbb.60.344

doi: 10.1271/bbb.60.344
[56]
Ezure Y . Agric. Biol. Chem., 1985,49:2159.
[57]
Ezure Y, Maruo S, Ojima N, Konno K, Yamashita H, Miyazaki K, Seto T, Yamada N, Sugiyama M . Agric. Biol. Chem., 1989,53:61.
[58]
Kojima M, Seto T, Kyotani Y, Ogawa H, Kitazawa S, Mori K, Maruo S, Ohgi T, Ezure Y . Biosci. Biotech. Biochem., 1996,60:694. http://www.tandfonline.com/doi/full/10.1271/bbb.60.694

doi: 10.1271/bbb.60.694
[59]
Wong C H, Krach T, Gautheron-Le Narvor C, Ichikawa Y, Look G C, Gaeta F, Thompson D, Nicolaou K C . Tetrahedron Lett., 1991,32:4867. https://linkinghub.elsevier.com/retrieve/pii/S0040403900934828

doi: 10.1016/S0040-4039(00)93482-8
[60]
Wong C H, Ichikawa Y, Krach T, Gautheron-Le Narvor C, Dumas D P, Look G C . J. Am. Chem. Soc., 1991,113:8137. https://pubs.acs.org/doi/abs/10.1021/ja00021a045

doi: 10.1021/ja00021a045
[61]
Gautheron-Le Narvor C, Wong C H . J. Chem. Soc., Chem. Commun., 1991,1130.
[62]
Macdonald J M, Stick R V, Tilbrook D M G, Withers S G . Aust. J. Chem., 2002,55:747. http://www.publish.csiro.au/?paper=CH02165

doi: 10.1071/CH02165
[63]
Varrot A, Tarling C A, Macdonald J M, Stick R V, Zechel D L, Withers S G, Davies G J . J. Am. Chem. Soc., 2003,125:7496. https://www.ncbi.nlm.nih.gov/pubmed/12812472

doi: 10.1021/ja034917k pmid: 12812472
[64]
Ariza A, Davies G, Offen W A, Roberts S M, Wilson K S, Ekloef J M, Spadiut O, Brumer H, Spadiut O, Besenmatter W, Brumer H, Friis E P, Skjot M . J. Biol. Chem., 2011,286:33890. https://www.ncbi.nlm.nih.gov/pubmed/21795708

doi: 10.1074/jbc.M111.262345 pmid: 21795708
[65]
Goddard-Borger E D, Fiege B, Kwan E M, Withers S G . ChemBioChem, 2011,12:1703. https://www.ncbi.nlm.nih.gov/pubmed/21710681

doi: 10.1002/cbic.201100229 pmid: 21710681
[66]
Williams S J, Hoos R, Withers S G . J. Am. Chem. Soc., 2000,122:2223. https://pubs.acs.org/doi/10.1021/ja993805j

doi: 10.1021/ja993805j
[67]
Uchida R, Nasu A, Tokutake S, Kasai K, Tobe K, Yamaji N . Chem. Pharm. Bull., 1999,47:187. https://www.ncbi.nlm.nih.gov/pubmed/10071853

doi: 10.1248/cpb.47.187 pmid: 10071853
[68]
Dax K, Ebner M, Peinsipp R, Stütz A E . Tetrahedron Lett., 1997,38:225. https://linkinghub.elsevier.com/retrieve/pii/S0040403996022812

doi: 10.1016/S0040-4039(96)02281-2
[69]
Paek N S, Kang D J, Lee H S, Lee J J, Choi Y J, Kim T H, Kim K W . Biosci. Biotech. Biochem., 1998,62:588. http://joi.jlc.jst.go.jp/JST.JSTAGE/bbb/62.588?from=CrossRef

doi: 10.1271/bbb.62.588
[70]
Sanchez-Fernandez E M, Risquez-Cuadro R, Ortiz Mellet C, Garcia Fernandez J M, Nieto P M, Angulo J . Chem. Eur. J., 2012,18:8527. https://www.ncbi.nlm.nih.gov/pubmed/22674827

doi: 10.1002/chem.201200279 pmid: 22674827
[71]
Spohr U, Bach M . Can. J. Chem.-Revue Canadienne De Chimie, 1993,71:1943. http://www.nrcresearchpress.com/doi/10.1139/v93-241

doi: 10.1139/v93-241
[72]
Ardron H, Butters T D, Platt F M, Wormald M R, Dwek R A, Fleet G W J, Jacob G S . Tetrahedron: Asymmetry, 1993,4:2011. https://linkinghub.elsevier.com/retrieve/pii/S0957416600822508

doi: 10.1016/S0957-4166(00)82250-8
[73]
Spreitz J, Stutz A E . Carbohydr. Res., 2004,339:1823. https://www.ncbi.nlm.nih.gov/pubmed/15220094

doi: 10.1016/j.carres.2004.04.015 pmid: 15220094
[74]
Fernandes P Z, Petricevic M, Sobala L, Davies G J, Williams S J . Chem. Eur. J., 2018,24:7464. https://www.ncbi.nlm.nih.gov/pubmed/29508463

doi: 10.1002/chem.201800435 pmid: 29508463
[75]
Takahashi S, Terayama H, Kuzuhara H . Tetrahedron, 1996,52:13315. https://linkinghub.elsevier.com/retrieve/pii/0040402096007910

doi: 10.1016/0040-4020(96)00791-0
[76]
Meloncelli P J, Gloster T M, Money V A, Tarling C A, Davies G J, Withers S G, Stick R V . Aust. J. Chem., 2007,60:549. http://www.publish.csiro.au/?paper=CH07188

doi: 10.1071/CH07188
[77]
Petricevic M, Sobala L F, Fernandes P Z, Raich L, Thompson A J, Bernardo-Seisdedos G, Millet O, Zhu S, Sollogoub M, Jimenez-Barbero J, Rovira C, Davies G J, Williams S J . J. Am. Chem. Soc., 2017,139:1089. https://www.ncbi.nlm.nih.gov/pubmed/27992199

doi: 10.1021/jacs.6b10075 pmid: 27992199
[78]
Sugiyama M, Ezure Y, Yoshikuni Y, Ozaki T, Ojima N, Kojima N . GB2181729-A, 1987.
[79]
Boucheron C, Toumieux S, Compain P, Martin O R, Ikeda K, Asano N . Carbohydr. Res, 2007,342:1960. https://www.ncbi.nlm.nih.gov/pubmed/17407774

doi: 10.1016/j.carres.2007.03.015 pmid: 17407774
[80]
Catelani G, D’Andrea F, Griselli A, Guazzelli L, Němcová P, Bezouška K, Křenek K, Křen V . Bioorg. Med. Chem. Lett., 2010,20:4645. https://www.ncbi.nlm.nih.gov/pubmed/20580553

doi: 10.1016/j.bmcl.2010.05.109 pmid: 20580553
[81]
Guazzelli L, Catelani G, D’Andrea F, Gragnani T, Griselli A . Eur. J. Org. Chem., 2014,6527.
[82]
Vonhoff S, Piens K, Pipelier M, Braet C, Claeyssens M, Vasella A . Helvetica Chimica Acta, 1999,82:963. http://doi.wiley.com/10.1002/%28ISSN%291522-2675

doi: 10.1002/(ISSN)1522-2675
[83]
Vasella A, Vonhoff S . Synthetic Commun, 1999,29:551. http://www.tandfonline.com/doi/abs/10.1080/00397919908085802

doi: 10.1080/00397919908085802
[84]
Mohal N, Bernet B, Vasella A . Helvetica Chimica Acta, 2005,88:3232. http://doi.wiley.com/10.1002/%28ISSN%291522-2675

doi: 10.1002/(ISSN)1522-2675
[85]
Kiso M, Ando K, Inagaki H, Ishida H, Hasegawa A . Carbohydr. Res, 1995,272:159. https://www.ncbi.nlm.nih.gov/pubmed/7497475

doi: 10.1016/0008-6215(95)00068-5 pmid: 7497475
[86]
Furui H, Ando-Furui K, Inagaki H, Ando T, Ishida H, Kiso M . J. Carbohyd. Chem., 2001,20:789. https://doi.org/10.1081/CAR-100108657

doi: 10.1081/CAR-100108657
[87]
Furui H, Kiso M, Hasegawa A . Carbohydr. Res, 1992,229:C1. https://www.ncbi.nlm.nih.gov/pubmed/1381282

doi: 10.1016/s0008-6215(00)90493-2 pmid: 1381282
[88]
Moss S F, Vallance S L . J. Chem. Soc., Perkin Trans. 1, 1992,1959.
[89]
Sugiyama M, Ezure Y, Yoshikuni Y, Fujita Y . US4855415, 1989.
[90]
Ogawa H, Harada Y, Kyotani Y, Ueda T, Kitazawa S, Kandori K, Seto T, Ishiyama K, Kojima M, Ohgi T, Ezure Y, Kise M . J. Carbohyd. Chem., 1998,17:729. http://www.tandfonline.com/doi/abs/10.1080/07328309808002348

doi: 10.1080/07328309808002348
[91]
Ducep J B, Danzin C . WO9118915A, 1991.
[92]
Front S, Court N, Bourigault M L, Rose S, Ryffel B, Erard F, Quesniaux V F J, Martin O R . ChemMedChem, 2011,6:2081. https://www.ncbi.nlm.nih.gov/pubmed/21901834

doi: 10.1002/cmdc.201100291 pmid: 21901834
[93]
Front S, Bourigault M L, Rose S, Noria S, Quesniaux V F J, Martin O R . Bioconjugate Chemistry, 2012,24:72. https://www.ncbi.nlm.nih.gov/pubmed/23190446

doi: 10.1021/bc3004974 pmid: 23190446
[94]
Suhara Y, Achiwa K . Chem. Pharm. Bull., 1995,43:414. https://www.ncbi.nlm.nih.gov/pubmed/7774024

doi: 10.1248/cpb.43.414 pmid: 7774024
[95]
Macdonald J M, Hrmova M, Fincher G B, Stick R V . Aust. J. Chem., 2004,57:187. http://www.publish.csiro.au/?paper=CH03227

doi: 10.1071/CH03227
[96]
Thompson A J, Williams R J, Hakki Z, Alonzi D S, Wennekes T, Gloster T M, Songsrirote K, Thomas-Oates J E, Wrodnigg T M, Spreitz J, Stütz A E, Butters T D, Williams S J, Davies G J . Proc. Natl. Acad. Sci. U.S.A., 2012,109:781. https://www.ncbi.nlm.nih.gov/pubmed/22219371

doi: 10.1073/pnas.1111482109 pmid: 22219371
[97]
Hakki Z, Thompson A J, Bellmaine S, Speciale G, Davies G J, Williams S J . Chem. Eur. J., 2015,21:1966. https://www.ncbi.nlm.nih.gov/pubmed/25487964

doi: 10.1002/chem.201405539 pmid: 25487964
[98]
Takahashi S, Kuzuhara H, Nakajima M . Tetrahedron, 2001,57:6915. https://linkinghub.elsevier.com/retrieve/pii/S0040402001006421

doi: 10.1016/S0040-4020(01)00642-1
[99]
Csíki Z, Fügedi P . Tetrahedron, 2010,66:7821. 08ed00b5-84c7-40f5-a21e-522a729b76c1http://www.sciencedirect.com/science/article/pii/S0040402010011154

doi: 10.1016/j.tet.2010.07.055
[100]
Csíki Z, Fügedi P . Tetrahedron Lett, 2010,51:391. 2b4eaf9a-2e80-46a4-b6a4-5ce7acd5c077http://www.sciencedirect.com/science/article/pii/S0040403909021625

doi: 10.1016/j.tetlet.2009.11.042
[101]
Werner L, Kniežo L, Dvořáková H . Tetrahedron Lett, 2007,48:609. https://linkinghub.elsevier.com/retrieve/pii/S0040403906023434

doi: 10.1016/j.tetlet.2006.11.116
[102]
Wicki J, Williams S J, Withers S G . J. Am. Chem. Soc., 2007,129:4530. https://www.ncbi.nlm.nih.gov/pubmed/17385869

doi: 10.1021/ja0707254 pmid: 17385869
[103]
Maurice P, Pierre A . US2007/270354, 2007.
[104]
Valérie Q F, Olivier M, Sophie F . US2011/224162, 2011.
[105]
Wang X, Krasnova L, Wu K B, Wu W S, Cheng T J, Wong C H . Bioorg. Med. Chem. Lett., 2018,28:2708. https://www.ncbi.nlm.nih.gov/pubmed/29602680

doi: 10.1016/j.bmcl.2018.03.035 pmid: 29602680
[106]
McCort I, Saniere M, Le Merrer Y . Tetrahedron, 2003,59:2693. https://linkinghub.elsevier.com/retrieve/pii/S0040402003002576

doi: 10.1016/S0040-4020(03)00257-6
[107]
Le Merrer Y, Saniere M, McCort I, Dupuy C, Depezay J C . Tetrahedron Lett., 2001,42:2661. https://linkinghub.elsevier.com/retrieve/pii/S0040403901002428

doi: 10.1016/S0040-4039(01)00242-8
[108]
Robinson K M, Begovic M E, Rhinehart B L, Heineke E W, Ducep J B, Kastner P R, Marshall F N, Danzin C . 1991,40:825.
[109]
Zamoner L O B, Aragao-Leoneti V, Mantoani S P, Rugen M D, Nepogodiev S A, Field R A, Carvalho I . Carbohydr. Res., 2016,429:29. https://www.ncbi.nlm.nih.gov/pubmed/27160849

doi: 10.1016/j.carres.2016.04.020 pmid: 27160849
[110]
Dong W, Jespersen T, Bols M, Skrydstrup T, Sierks M R . Biochemistry, 1996,35:2788. https://www.ncbi.nlm.nih.gov/pubmed/8611585

doi: 10.1021/bi9522514 pmid: 8611585
[111]
Jefferies I, Bowen B R . Bioorg. Med. Chem. Lett., 1997,7:1171. https://www.ncbi.nlm.nih.gov/pubmed/29534928

doi: 10.1016/j.bmcl.2018.03.006 pmid: 29534928
[112]
Barluenga S, Simonsen K B, Littlefield E S, Ayida B K, Vourloumis D, Winters G C, Takahashi M, Shandrick S, Zhao Q, Han Q, Hermann T . Bioorg. Med. Chem. Lett., 2004,14:713. https://www.ncbi.nlm.nih.gov/pubmed/14741274

doi: 10.1016/j.bmcl.2003.11.028 pmid: 14741274
[113]
Allen K A, Brown R L, Norris G, Tyler P C, Watt D K, Zubkova O V . Carbohydr. Res., 2010,345:1831. https://www.ncbi.nlm.nih.gov/pubmed/20630499

doi: 10.1016/j.carres.2010.05.032 pmid: 20630499
[114]
D’Adamio G, Forcella M, Fusi P, Parenti P, Matassini C, Ferhati X, Vanni C, Cardona F . Molecules, 2018,23:436. http://www.mdpi.com/1420-3049/23/2/436

doi: 10.3390/molecules23020436
[115]
Pinto B M, Johnston B D, Ghavami A, Szcepina M G, Liu H, Sadalapure K, Jensen H H, Kumar N S, Nasi R . US2006/247222, 2006.
[116]
Huang H, Wong C H . J. Org. Chem., 1995,60:3100. https://pubs.acs.org/doi/abs/10.1021/jo00115a027

doi: 10.1021/jo00115a027
[117]
Uchiyama T, Vassilev V P, Kajimoto T, Wong W, Lin C C, Huang H, Wong C H . J. Am. Chem. Soc., 1995,117:5395. https://pubs.acs.org/doi/abs/10.1021/ja00124a037

doi: 10.1021/ja00124a037
[118]
Dechaux E, Savy P, Bouyain S, Monneret C, Florent J C . J. Carbohyd. Chem., 2000,19:485. http://www.tandfonline.com/doi/abs/10.1080/07328300008544095

doi: 10.1080/07328300008544095
[119]
Hanessian S, Huynh H K, Reddy G V, McNaughton-Smith G, Ernst B, Kolb H C, Magnani J, Sweeley C . Bioorg. Med. Chem. Lett., 1998,8:2803. https://www.ncbi.nlm.nih.gov/pubmed/9873626

doi: 10.1016/s0960-894x(98)00500-9 pmid: 9873626
[120]
Mikkelsen G, Christensen T V, Bols M, Lundt I, Sierks M R . Tetrahedron Lett., 1995,36:6541. https://linkinghub.elsevier.com/retrieve/pii/004040399501281L

doi: 10.1016/0040-4039(95)01281-L
[121]
Griffith D A, Danishefsky S J . J. Am. Chem. Soc., 1996,118:9526. https://pubs.acs.org/doi/10.1021/ja960526c

doi: 10.1021/ja960526c
[122]
Veleti S K, Lindenberger J J, Thanna S, Ronning D R, Sucheck S J . J. Org. Chem., 2014,79:9444. https://www.ncbi.nlm.nih.gov/pubmed/25137149

doi: 10.1021/jo501481r pmid: 25137149
[123]
Veleti S K, Petit C, Ronning D R, Sucheck S J . Org. Biomol. Chem., 2017,15:3884. https://www.ncbi.nlm.nih.gov/pubmed/28422240

doi: 10.1039/c7ob00388a pmid: 28422240
[124]
Honda T, Kaneno-Urasaki Y, Ito T, Kimura T, Matsushima N, Okabe H, Yamasaki A, Izumi T . Drug MeTab. Dispos., 2014,42:326. https://www.ncbi.nlm.nih.gov/pubmed/24319124

doi: 10.1124/dmd.113.054452 pmid: 24319124
[125]
Ueda T, Hayashi M, Ikeuchi Y, Nakajima T, Numagami E, Kobayashi S . Org. Process Res. Dev., 2014,18:1728. 5bc3cf23-94fe-497f-b950-1de354b1753bhttps://pubs.acs.org/doi/10.1021/op500306p

doi: 10.1021/op500306p
[126]
Dondoni A, Giovannini P P, Perrone D . J. Org. Chem., 2002,67:7203. https://www.ncbi.nlm.nih.gov/pubmed/12375946

doi: 10.1021/jo020252d pmid: 12375946
[127]
Cardona F, Goti A, Parmeggiani C, Parenti P, Forcella M, Fusi P, Cipolla L, Roberts S M, Davies G J, Gloster T M . Chem. Commun., 2010,46:2629. https://www.ncbi.nlm.nih.gov/pubmed/20461849

doi: 10.1039/b926600c pmid: 20461849
[128]
Nash R J, Waston A A, Evinson E L, Parry H S P . WO2005/70418, 2005.
[129]
Nash R J, Slingsby J, H., Carroll M W . WO2006/77427, 2006.
[130]
Nash R J, Waston A A, Evinson E L . WO2005/70415, 2005.
[131]
Nash R J, Fleet G W J, Van Ameijde J, Horne G . WO2006/8493, 2006.
[132]
Furneaux R H, Gainsford G J, Mason J M, Tyler P C . Tetrahedron, 1994,50:2131. https://linkinghub.elsevier.com/retrieve/pii/S0040402001850754

doi: 10.1016/S0040-4020(01)85075-4
[133]
Quach T, Tsegay S, Thompson A J, Kukushkin N V, Alonzi D S, Butters T D, Davies G J, Williams S J . Tetrahedron: Asymmetry, 2012,23:992. https://linkinghub.elsevier.com/retrieve/pii/S0957416612003217

doi: 10.1016/j.tetasy.2012.06.011
[134]
Liu P S, King C H R . Synthetic Commun., 1992,22:2111. http://www.tandfonline.com/doi/abs/10.1080/00397919208021345

doi: 10.1080/00397919208021345
[135]
Fuhrmann U, Bause E, Ploegh H . Biochim. Biophys. Acta, 1985,825:95. https://www.ncbi.nlm.nih.gov/pubmed/3159432

doi: 10.1016/0167-4781(85)90095-8 pmid: 3159432
[136]
Lubas W A, Spiro R G . J. Biol. Chem., 1988,263:3990. https://www.ncbi.nlm.nih.gov/pubmed/3346233

pmid: 3346233
[137]
Blattner R, Furneaux R H, Pakulski Z . Carbohydr. Res, 2006,341:2115. https://www.ncbi.nlm.nih.gov/pubmed/16750183

doi: 10.1016/j.carres.2006.05.004 pmid: 16750183
[138]
Cardona F, Parmeggiani C, Faggi E, Goti A, Bonaccini C, Gratteri P, Sim L, Rose D R, Gloster T M, Roberts S, Davies G J . Chem. Eur. J., 2009,15:1627. https://www.ncbi.nlm.nih.gov/pubmed/19123216

doi: 10.1002/chem.200801578 pmid: 19123216
[139]
Rhinehart B L, Robinson K M, King C H R, Liu P S . Biochem. Pharmacol., 1990,39:1537. https://www.ncbi.nlm.nih.gov/pubmed/2337410

doi: 10.1016/0006-2952(90)90518-p pmid: 2337410
[140]
Honda T, Okuno A, Izumi M, Li X . EP 1589023, 2005. https://www.ncbi.nlm.nih.gov/pubmed/26478760

doi: 10.5539/ep.v3n4p79 pmid: 26478760
[141]
Izumi M, Okuno A, Matsumura K . EP1792620, 2007.
[142]
Fuentes J, Illangua J M, Sayago F J, Angulo M, Gasch C, Pradera M Á . Tetrahedron: Asymmetry, 2004,15:3783. https://linkinghub.elsevier.com/retrieve/pii/S0957416604007694

doi: 10.1016/j.tetasy.2004.10.012
[143]
Fuentes J, Al Bujuq N R, Angulo M, Gasch C . Tetrahedron Lett., 2008,49:910. a14d39d9-b47a-4447-a9a0-f4a9bcb2ffa9http://www.sciencedirect.com/science/article/pii/S0040403907023817

doi: 10.1016/j.tetlet.2007.11.160
[144]
Al Bujuq N, Angulo M . Current Organic Synthesis, 2018,15:853. http://www.eurekaselect.com/162641/article

doi: 10.2174/1570179415666180601083944
[145]
Nicolaou K C, Ladduwahetty T, Randall J L, Chucholowski A . J. Am. Chem. Soc., 1986,108:2466. https://www.ncbi.nlm.nih.gov/pubmed/22175613

doi: 10.1021/ja00269a066 pmid: 22175613
[146]
D’Andrea F, Catelani G, Mariani M, Vecchi B . Tetrahedron Lett., 2001,42:1139.
[147]
Steiner A J, Stütz A E . Carbohydr. Res., 2004,339:2615. https://www.ncbi.nlm.nih.gov/pubmed/15476724

doi: 10.1016/j.carres.2004.07.022 pmid: 15476724
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[7] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[8] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[9] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[10] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[13] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[14] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[15] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.