中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (12): 1696-1711 DOI: 10.7536/PC190424 Previous Articles   Next Articles

Theoretical and Experimental Research of Boron Nanostructures

Rui Wang1,2, Guoan Tai1,**(), Zenghui Wu1, Wei Shao1, Chuang Hou1, Jinqian Hao1   

  1. 1. State Key Laboratory of Mechanics and Control of Mechanical Structure, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nano Science, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    2. College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received: Online: Published:
  • Contact: Guoan Tai
  • About author:
  • Supported by:
    National Natural Science Foundation of China(61474063); National Natural Science Foundation of China(61774085); Six Talent Peaks Project in Jiangsu Province(XCL-046); Fundamental Research Funds for the Central Universities(NE2017101); Priority Academic Program Development of Jiangsu Higher Education Institutions
Richhtml ( 29 ) PDF ( 581 ) Cited
Export

EndNote

Ris

BibTeX

Boron, the only non-metallic element in the third main group, has special electron-deficient properties, which results in a complex bonding mechanism. It has both the normal two-center-two-electron bonds and the multi-center-two-electron bonds for keeping balance of the electron distribution of the system, which makes it have a wide variety of allotropes. In contrast to the bulk counterparts, low-dimensional boron nanostructures have unique structures and special properties, so they have attracted extensive interests in recent years. In this paper, we systematically introduce the theoretical and experimental progress on zero-dimensional boron clusters, one-dimensional boron nanotubes/nanowires and two-dimensional boron nanostructures. The structure, properties and potential applications of the boron nanostructures have been summarized and discussed. Although, there are still great challenges in the controllable preparation and stability of the nanostructures, they will be expected to have exceptionally inherent properties to make them play an important role in the future nano-devices and electrochemical catalysis.

Fig. 1 Summary of the minimum-energy structures, point group symmetries and electronic state of Bn-clusters(n=3~30 and 35~38)[13]. Copyright 2017, Springer Nature
Fig. 2 Schematic diagram of quasiplanar, convex structures and boron nanotubes, following the “Aufbau principle” for forming the boron clusters[9]. Copyright 1997, American Physical Society
Fig. 3 Relationship between B36 and borphene[8]. Copyright 2014, Springer Nature
Fig. 4 Atomic models of boron nanostructures:(a) the structure of boron sheet;(b) the structure of boron nanotubes[33]. Copyright 2008, American Physical Society
Fig. 5 TEM images of boron nanotubes:(a) bright field HRTEM image of boron nanotubes;(b) dark field HRTEM image [45]. Copyright 2004, American Chemical Society.(c) low-resolution TEM image of boron nanotubes. The inset is the corresponding SAED pattern;(d) cross-section HRTEM image of a single boron nanotube [46]. Copyright 2010, Royal Society of Chemistry
Fig. 6 SEM images of boron nanowires:(a) low-magnification SEM images of large-area BNW patterns;(b) side-view of uniform BNW patterns on the Si substrate;(c,d) side-view of BNWs at the edge and at the inner portion of the pattern;(e,f) SEM images at the tip and the end of BNWs. The white circles refer to the catalysts’ site[58]. Copyright 2013, John Wiley and Sons
Fig. 7 Experimental results of boron nanowires:(a) a typical SEM image of boron nanowires on Si(111) substrate;(b) TEM image of single boron nanowire. The inset is the corresponding SAED pattern that can be indexed to β-rhombohedral boron;(c~f) SEM images showing mechanical bending process[60]. Copyright 2008, AIP Publishing
Fig. 8 SEM and TEM images of boron nanostructures:(a) Overall view of the puffy ball;(b) Scrolled nanostructures. The inset shows the cross-section of one “nano-scroll” of thickness 17±2 nm;(c) “Grass-like” nanoribbons. The inset shows that the nanoribbons are easily twisted and some have “zigzag” edges;(d) “Palm-leaf like” nanostructures. Nanoribbons have split ends, forming smaller nanostructures;(e) TEM micrograph of several twisted nanoribbons at lower magnification;(f,g) corresponding SAED pattern[64]. Copyright 2004, American Chemical Society
Fig. 9 Theoretical predications of α-sheet:(a) The structure of α-sheet;(b) LDA Eb vs hexagon hole density η for sheets with evenly distributed hexagons[32]. Copyright 2007, American Physical Society
Fig. 10 Configurational energy spectra of 2D B on Au, Ag, Cu, and Ni substrates. The inset in each column illustrates the three most stable structures. Energies versus the ground states and the corresponding v are provided below each inset[80]. Copyright 2015, John Wiley and Sons
Fig. 11 Experimental results of 2D γ-B28:(a) Schematic representation of the two-zone furnace for synthesizing atomically thin 2D γ-B28 film via CVD;(b,c) Schematic diagram of the 2D γ-B28 structure;(d) Optical image of the film on Cu substrate;(e) UV-vis absorption spectrum of monolayer γ-B28 film;(f) Photoluminescence spectra of a monolayer γ-B28 film and bulk β-rhombohedral boron. The blue line is the corresponding Gaussian fit[87]. Copyright 2015, John Wiley and Sons
Fig. 12 Theoretical predications of γ-B28 monolayer:(a) The structural model of monolayer γ-B28 with B and H surface passivation; the additional B atoms are highlighted in yellow color and hydrogen atoms in white color;(b) the electronic band structure of B and H surface passivated the monolayer film;(c) the bandgap variation with the film thickness[88]. Copyright 2016, Royal Society of Chemistry
Fig. 13 Experimental results of borophenes on Ag(111) substrate:(a) The schematic diagram of MBE growth of borophene;(b) AES spectra of clean Ag(111) before and after boron deposition;(c~h) large-scale STM topography(left) and closed-loop dI/dV(right) images of borophene sheets[89]. Copyright 2015, The American Association for the Advancement of Science
Fig. 14 Experimental realization of boron monolayer on Ag(111) substrates:(a) STM topographic image of boron structures on Ag(111) with a substrate temperature of ~570 K during the growth;(b) Three-dimensional image of(a);(c) high-resolution STM image of S1 phases;(d) STM image of boron structures under a substrate temperature of 650 K.The two different phases are labelled ‘S1’ and ‘S2’. Most boron islands are transformed into the S2 phase, but the S1 phase still remains in small parts of the islands;(e) STM image obtained on the area marked by the black rectangle in(d);(f) high-resolution STM image of the S2 phase[91]. Copyright 2016, Springer Nature
Fig. 15 Experimental results of borphene on the Cu(111) surface:(a) The sequence of bright-field LEEM images at different time intervals at T=770 K;(b) Topographic AFM image at around a 0.1 ML coverage.(c) The line profile corresponding to the black line in(b) shows a 2.8 ? atomic step of the Cu substrate;(d) The line profile corresponding to the blue line in(b) shows that the thickness of the borophene sheet in ambient conditions is around 3.0 ?;(e) Ex-situ XPS spectra of a B/Cu(111) sample[93]. Copyright 2018, Springer Nature
[1]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A . Science, 2004,306:666. https://www.ncbi.nlm.nih.gov/pubmed/15499015

doi: 10.1126/science.1102896 pmid: 15499015
[2]
Iijima S . Nature, 1991,354:56. https://doi.org/10.1038/354056a0

doi: 10.1038/354056a0
[3]
Davy E . Philos. Trans. R. Soc. London, 1809,99:39.
[4]
Gay-Lussac J L, Thénard L J . Ann. Chim. Phys., 1808,68:169.
[5]
Weintraub E . Trans. Amer. Electrochem. Soc., 1910,16:165.
[6]
Wade K . J. Chem. Soc. D, 1971,792.
[7]
Sergeeva A P, Popov I A, Piazza Z A, Li W L, Romanescu C, Wang L S, Boldyrev A I . Acc. Chem. Res., 2014,47:1349. https://www.ncbi.nlm.nih.gov/pubmed/24661097

doi: 10.1021/ar400310g pmid: 24661097
[8]
Piazza Z A, Hu H S, Li W L, Zhao Y F, Li J, Wang L S . Nat. Commun., 2014,5:3113. https://www.ncbi.nlm.nih.gov/pubmed/24445427

doi: 10.1038/ncomms4113 pmid: 24445427
[9]
Boustani I . Phys. Rev. B, 1997,55:16426.
[10]
Zhai H J, Kiran B, Li J, Wang L S . Nat. Mater., 2003,2:827. https://www.ncbi.nlm.nih.gov/pubmed/14608377

doi: 10.1038/nmat1012 pmid: 14608377
[11]
Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S . J. Phys. Chem. A, 2004,108:3509.
[12]
Romanescu C, Sergeeva A P, Li W L, Boldyrev A I, Wang L S . J. Am. Chem. Soc., 2011,133:8646. https://www.ncbi.nlm.nih.gov/pubmed/21520972

doi: 10.1021/ja2012438 pmid: 21520972
[13]
Li W L, Chen X, Jian T, Chen T T, Li J, Wang L S . Nat. Rev. Chem., 2017,1:0071.
[14]
Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S . Proc. Natl. Acad. Sci. U. S. A., 2005,102:961. https://www.ncbi.nlm.nih.gov/pubmed/15644450

doi: 10.1073/pnas.0408132102 pmid: 15644450
[15]
Zhang Z, Penev E S, Yakobson B I . Chem. Soc. Rev., 2017,46:6746. https://www.ncbi.nlm.nih.gov/pubmed/29085946

doi: 10.1039/c7cs00261k pmid: 29085946
[16]
Li W L, Chen Q, Tian W J, Bai H, Zhao Y F, Hu H S, Li J, Zhai H J, Li S D, Wang L S . J. Am. Chem. Soc., 2014,136:12257. https://www.ncbi.nlm.nih.gov/pubmed/25141029

doi: 10.1021/ja507235s pmid: 25141029
[17]
Kato H, Yamashita K, Morokuma K . Chem. Phys. Lett., 1992,190:361.
[18]
Boustani I . J. Quantum Chem., 1994,52:1081.
[19]
Ray A K, Howard I A, Kanal K M . Phys. Rev. B, 1992,45:14247. https://www.ncbi.nlm.nih.gov/pubmed/10001550

doi: 10.1103/physrevb.45.14247 pmid: 10001550
[20]
Oger E, Crawford N R M, Kelting R, Weis P, Kappes M M, Ahlrichs R . Angew. Chem. Int. Edit., 2007,46:8503. https://www.ncbi.nlm.nih.gov/pubmed/17907255

doi: 10.1002/anie.200701915 pmid: 17907255
[21]
Lv J, Wang Y, Zhu L, Ma Y . Nanoscale, 2014,6:11692. https://www.ncbi.nlm.nih.gov/pubmed/24993287

doi: 10.1039/c4nr01846j pmid: 24993287
[22]
Zhai H J, Zhao Y F, Li W L, Chen Q, Bai H, Hu H S, Piazza Z A, Tian W J, Lu H G, Wu Y B, Mu Y W, Wei G F, Liu Z P, Li J, Li S D, Wang L S . Nat. Chem., 2014,6:727. https://www.ncbi.nlm.nih.gov/pubmed/25054944

doi: 10.1038/nchem.1999 pmid: 25054944
[23]
Baruah T, Pederson M R, Zope R R, . Phys. Rev. B, 2008,78:045408.
[24]
Gonzalez S N, Sadrzadeh A, Yakobson B I . Phys. Rev. Lett., 2007,98:166804. https://www.ncbi.nlm.nih.gov/pubmed/17501448

doi: 10.1103/PhysRevLett.98.166804 pmid: 17501448
[25]
De S, Willand A, Amsler M, Pochet P, Genovese L, Goedecker S . Phys. Rev. Lett., 2011,106:225502. https://www.ncbi.nlm.nih.gov/pubmed/21702613

doi: 10.1103/PhysRevLett.106.225502 pmid: 21702613
[26]
Prasad D L V K Jemmis E D . Phys. Rev. Lett., 2008,100:165504. https://www.ncbi.nlm.nih.gov/pubmed/18518216

doi: 10.1103/PhysRevLett.100.165504 pmid: 18518216
[27]
Li F, Jin P, Jiang D E, Wang L, Zhang S B, Zhao J, Chen Z . J. Chem. Phys., 2012,136:074302. https://www.ncbi.nlm.nih.gov/pubmed/22360238

doi: 10.1063/1.3682776 pmid: 22360238
[28]
Hanley L, Whitten J L, Anderson S L . J. Phys. Chem., 1988,92:5803.
[29]
Hanley L, Anderson S L . J. Chem. Phys., 1988,89:2848.
[30]
Hanley L, Anderson S L . J. Phys. Chem., 1987,91:5161.
[31]
Ruatta S A, Hanley L, Anderson S L . J. Chem. Phys., 1989,91:226.
[32]
Tang H, Ismail-Beigi S . Phys. Rev. Lett., 2007,99:115501. https://www.ncbi.nlm.nih.gov/pubmed/17930448

doi: 10.1103/PhysRevLett.99.115501 pmid: 17930448
[33]
Yang X, Ding Y, Ni J . Phys. Rev. B, 2008,77:041402.
[34]
Piazza Z A, Li W L, Romanescu C, Sergeeva A P, Wang L S, Boldyrev A I . J. Chem. Phys., 2012,136:104310. https://www.ncbi.nlm.nih.gov/pubmed/22423841

doi: 10.1063/1.3692967 pmid: 22423841
[35]
Zhao Y, Chen X, Li J . Nano Res., 2017,10:3407.
[36]
Boustani I, Quandt A . Europhys. Lett., 1997,39:527.
[37]
Boustani I, Quandt A, Hernández E, Rubio A . J. Chem. Phys., 1999,110:3176. http://aip.scitation.org/doi/10.1063/1.477976

doi: 10.1063/1.477976
[38]
Gindulyt$\dot{e}$ A, Lipscomb W N, Massa L . Inorg. Chem., 1998,37:6544. https://www.ncbi.nlm.nih.gov/pubmed/11670779

doi: 10.1021/ic980559o pmid: 11670779
[39]
Kunstmann J, Quandt A . Phys. Rev. B, 2006,74:035413.
[40]
Kunstmann J, Quandt A . Chem. Phys. Lett., 2005,402:21.
[41]
Quandt A, Liu A Y, Boustani I . Phys. Rev. B, 2001,64:125422.
[42]
Lau K C, Pandey R, Pati R, Karna S P . Appl. Phys. Lett., 2006,88:212111.
[43]
Bezugly V, Kunstmann J, Grundkötter-Stock B, Frauenheim T, Niehaus T, Cuniberti G . ACS Nano, 2011,5:4997. https://www.ncbi.nlm.nih.gov/pubmed/21528877

doi: 10.1021/nn201099a pmid: 21528877
[44]
Tang H, Ismail-Beigi S . Phys. Rev. B, 2010,82:115412.
[45]
Ciuparu D, Klie R F, Zhu Y, Pfefferle L . J. Phys. Chem. B, 2004,108:3967.
[46]
Liu F, Shen C, Su Z, Ding X, Deng S, Chen J, Xu N S, Gao H J . J. Mater. Chem., 2010,20:2197.
[47]
Yang Q, Sha J, Xu J, Ji Y J, Ma X Y, Niu J J, Hua H Q, Yang D R . Chem. Phys. Lett., 2003,379:87.
[48]
Cao L M, Zhang Z, Sun L L, Gao C X, He M, Wang Y Q, Li Y C, Zhang X Y, Li G, Zhang J, Wang W K . Adv. Mater., 2001,13:1701.
[49]
Cao L M, Hahn K, Wang Y Q, Scheu C, Zhang Z, Gao C X, Li Y C, Zhang X Y, Sun L L, Wang W K, Rühle M . Adv. Mater., 2002,14:1294.
[50]
Gao Y, Xu Z, Liu R . Mater. Sci. Eng. A, 2006,434:53.
[51]
Wang Y Q, Duan X F . Appl. Phys. Lett., 2003,82:272.
[52]
Meng X M, Hu J Q, Jiang Y, Lee C S, Lee S T . Chem. Phys. Lett., 2003,370:825.
[53]
Zhang Y, Ago H, Yumura M, Komatsu T, Ohshima S, Uchida K, Iijima S . Chem. Commun., 2002,2806.
[54]
Wang Z, Shimizu Y, Sasaki T, Kawaguchi K, Kimura K, Koshizaki N . Chem. Phys. Lett., 2003,368:663.
[55]
Tian J, Xu Z, Shen C, Liu F, Xu N, Gao H J . Nanoscale, 2010,2:1375. https://www.ncbi.nlm.nih.gov/pubmed/20820721

doi: 10.1039/c0nr00051e pmid: 20820721
[56]
Wu Y, Messer B, Yang P . Adv. Mater., 2001,13:1487.
[57]
Otten C J, Lourie O R, Yu M F, Cowley J M, Dyer M J, Ruoff R S, Buhro W E . J. Am. Chem. Soc., 2002,124:4564. https://www.ncbi.nlm.nih.gov/pubmed/11971695

doi: 10.1021/ja017817s pmid: 11971695
[58]
Liu F, Gan H, Tang D M, Cao Y, Mo X, Chen J, Deng S, Xu N, Golberg D, Bando Y . Small, 2014,10:685. https://www.ncbi.nlm.nih.gov/pubmed/24030778

doi: 10.1002/smll.201301948 pmid: 24030778
[59]
Liu F, Tian J, Bao L, Yang T, Shen C, Lai X, Xiao Z, Xie W, Deng S, Chen J, She J, Xu N, Gao H . Adv. Mater., 2008,20:2609.
[60]
Tian J, Cai J, Hui C, Zhang C, Bao L, Gao M, Shen C, Gao H . Appl. Phys. Lett., 2008,93:122105.
[61]
Zhang Y X, Liu F, Shen C M, Li J, Deng S Z, Xu N S, Gao H J . Chinese Physics B, 2016,25:088102. https://iopscience.iop.org/article/10.1088/1674-1056/25/8/088102

doi: 10.1088/1674-1056/25/8/088102
[62]
Tian J, Cai J, Hui C, Li C, Tian Y, Shen C, Gao H . AIP Conf. Proc., 2009,1173:317.
[63]
Saxena S, Tyson T A . Phys. Rev. Lett., 2010,104:245502. https://www.ncbi.nlm.nih.gov/pubmed/20867310

doi: 10.1103/PhysRevLett.104.245502 pmid: 20867310
[64]
Xu T T, Zheng J G, Wu N Q, Nicholls A W, Roth J R, Dikin D A, Ruoff R S . Nano Lett., 2004,4:963. https://pubs.acs.org/doi/10.1021/nl0498785

doi: 10.1021/nl0498785
[65]
Zhong Q, Kong L, Gou J, Li W, Sheng S, Yang S, Cheng P, Li H, Wu K, Chen L . Phys. Rev. Mater., 2017,1:021001. https://www.ncbi.nlm.nih.gov/pubmed/31574693

doi: 10.1103/PhysRevE.100.021001 pmid: 31574693
[66]
Wang X J, Tian J F, Yang T Z, Bao L H, Hui C, Liu F, Shen C M, Xu N S, Gao H J . Adv. Mater., 2007,19:4480.
[67]
Li C, Tian Y, Hui C, Tian J, Bao L, Shen C, Gao H J . Nanotechnology, 2010,21:325705. https://www.ncbi.nlm.nih.gov/pubmed/20639582

doi: 10.1088/0957-4484/21/32/325705 pmid: 20639582
[68]
Yang Q, Sha J, Wang L, Yuan Z, Yang D . Eur. Phys. J. B, 2007,56:35.
[69]
Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y . Nat. Nanotechnol., 2014,9:372. https://www.ncbi.nlm.nih.gov/pubmed/24584274

doi: 10.1038/nnano.2014.35 pmid: 24584274
[70]
Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K . Nano Lett., 2012,12:3507. https://www.ncbi.nlm.nih.gov/pubmed/22658061

doi: 10.1021/nl301047g pmid: 22658061
[71]
Vogt P, de Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G . Phys. Rev. Lett., 2012,108:155501. https://www.ncbi.nlm.nih.gov/pubmed/22587265

doi: 10.1103/PhysRevLett.108.155501 pmid: 22587265
[72]
Dávila M E, Xian L, Cahangirov S, Rubio A, Le Lay G . New J. Phys., 2014,16:095002. https://iopscience.iop.org/article/10.1088/1367-2630/16/9/095002

doi: 10.1088/1367-2630/16/9/095002
[73]
Zhang Z, Yang Y, Penev E S, Yakobson B I . Adv. Funct. Mater., 2017,27:1605059. http://doi.wiley.com/10.1002/adfm.201605059

doi: 10.1002/adfm.201605059
[74]
Adamska L, Sadasivam S, Foley J J, Darancet P, Sharifzadeh S . J. Phys. Chem. C, 2018,122:4037. https://pubs.acs.org/doi/10.1021/acs.jpcc.7b10197

doi: 10.1021/acs.jpcc.7b10197
[75]
Penev E S, Kutana A, Yakobson B I . Nano Lett., 2016,16:2522. https://www.ncbi.nlm.nih.gov/pubmed/27003635

doi: 10.1021/acs.nanolett.6b00070 pmid: 27003635
[76]
Zhao Y, Zeng S, Ni J . Phys. Rev. B, 2016,93:014502.
[77]
Penev E S, Bhowmick S, Sadrzadeh A, Yakobson B I . Nano Lett., 2012,12:2441. https://www.ncbi.nlm.nih.gov/pubmed/22494396

doi: 10.1021/nl3004754 pmid: 22494396
[78]
Zhang L Z, Yan Q B, Du S X, Su G, Gao H J . J. Phys. Chem. C, 2012,116:18202.
[79]
Liu Y, Penev E S, Yakobson B I . Angew. Chem. Int. Edit., 2013,52:3156. https://www.ncbi.nlm.nih.gov/pubmed/23355180

doi: 10.1002/anie.201207972 pmid: 23355180
[80]
Zhang Z, Yang Y, Gao G, Yakobson B I . Angew. Chem. Int. Edit., 2015,54:13022.
[81]
Sun X, Liu X, Yin J, Yu J, Li Y, Hang Y, Zhou X, Yu M, Li J, Tai G, Guo W . Adv. Funct. Mater., 2017,27:1603300.
[82]
Kah C B, Yu M, Tandy P, Jayanthi C S, Wu S Y . Nanotechnology, 2015,26:405701. https://www.ncbi.nlm.nih.gov/pubmed/26374239

doi: 10.1088/0957-4484/26/40/405701 pmid: 26374239
[83]
Zhou X F, Dong X, Oganov A R, Zhu Q, Tian Y, Wang H T . Phys. Rev. Lett., 2014,112:085502.
[84]
Feng B, Sugino O, Liu R Y, Zhang J, Yukawa R, Kawamura M, Iimori T, Kim H, Hasegawa Y, Li H, Chen L, Wu K, Kumigashira H, Komori F, Chiang T C, Meng S, Matsuda I . Phys. Rev. Lett., 2017,118:096401. https://www.ncbi.nlm.nih.gov/pubmed/28306312

doi: 10.1103/PhysRevLett.118.096401 pmid: 28306312
[85]
Ezawa M . Phys. Rev. B, 2017,96:035425.
[86]
Zhou X F, Oganov A R, Wang Z, Popov I A, Boldyrev A I, Wang H T . Phys. Rev. B, 2016,93:085406.
[87]
Tai G, Hu T, Zhou Y, Wang X, Kong J, Zeng T, You Y, Wang Q . Angew. Chem. Int. Edit., 2015,54:15473.
[88]
Kou L, Ma Y, Zhou L, Sun Z, Gu Y, Du A, Smith S, Chen C . Nanoscale, 2016,8:20111. https://www.ncbi.nlm.nih.gov/pubmed/27897298

doi: 10.1039/c6nr07271b pmid: 27897298
[89]
Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P . Science, 2015,350:1513. https://www.ncbi.nlm.nih.gov/pubmed/26680195

doi: 10.1126/science.aad1080 pmid: 26680195
[90]
Zhang Z, Mannix A J, Hu Z, Kiraly B, Guisinger N P, Hersam M C, Yakobson B I . Nano Lett., 2016,16:6622. https://www.ncbi.nlm.nih.gov/pubmed/27657852

doi: 10.1021/acs.nanolett.6b03349 pmid: 27657852
[91]
Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K . Nat. Chem., 2016,8:563. https://www.ncbi.nlm.nih.gov/pubmed/27219700

doi: 10.1038/nchem.2491 pmid: 27219700
[92]
Zhong Q, Zhang J, Cheng P, Feng B, Li W, Sheng S, Li H, Meng S, Chen L, Wu K . J. Phys. Condens. Matter, 2017,29:095002. https://www.ncbi.nlm.nih.gov/pubmed/28129209

doi: 10.1088/1361-648X/aa5165 pmid: 28129209
[93]
Wu R, Drozdov I K, Eltinge S, Zahl P, Ismail-Beigi S, Božović I, Gozar A . Nat. Nanotechnol., 2019,14:44. https://www.ncbi.nlm.nih.gov/pubmed/30510278

doi: 10.1038/s41565-018-0317-6 pmid: 30510278
[94]
Wang J, Zhao H Y, Liu Y . ChemPhysChem, 2014,15:3453. https://www.ncbi.nlm.nih.gov/pubmed/25139442

doi: 10.1002/cphc.201402418 pmid: 25139442
[95]
Jiang H R, Lu Z, Wu M C, Ciucci F, Zhao T S . Nano Energy, 2016,23:97.
[96]
Wang X, Tai G, Wu Z, Hu T, Wang R . J. Mater. Chem. A, 2017,5:23471. http://xlink.rsc.org/?DOI=C7TA08597D

doi: 10.1039/C7TA08597D
[1] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[2] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[3] Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai. A Review on MXene and Its Applications in Environmental Remediation [J]. Progress in Chemistry, 2022, 34(5): 1229-1244.
[4] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[5] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[6] Cheng Chen, Zhiqiang Dong, Haowen Chen, Yang Chen, Zhigang Zhu, Weiheng Shih. Two-Dimensional Photonic Crystals [J]. Progress in Chemistry, 2018, 30(6): 775-784.
[7] Qi-Feng Zhou, Bo Jiang*, Hai-Bo Yang*. Design and Synthesis of Conjugated Aromatic Macrocyclic Rings That Can Serve as Carbon Nanotube Segments [J]. Progress in Chemistry, 2018, 30(5): 628-638.
[8] Huadong Zhang, Gongke Li*, Yufei Hu*. Applications of Halloysite Nanotubes in Separation and Enrichment [J]. Progress in Chemistry, 2018, 30(2/3): 198-205.
[9] Honglei Wang, Wenzhen Lv, Xingxing Tang, Lingfeng Chen, Runfeng Chen, Wei Huang. Two-Dimensional Perovskites and Their Applications on Optoelectronic Devices [J]. Progress in Chemistry, 2017, 29(8): 859-869.
[10] Ning Qi, Bing Zhao*, Ning Qi. Electronic Textiles Based on Silver Nanowire Conductive Network [J]. Progress in Chemistry, 2017, 29(8): 892-901.
[11] Longjuan Kong, Hui Li*. Substrate Induced Atomic and Electronic Structures of Borophene, Silicene, and Germanene [J]. Progress in Chemistry, 2017, 29(4): 337-347.
[12] Wenjie Zhu, Guoan Tai, Xufeng Wang, Qilin Gu, Zenghui Wu, Kongjun Zhu. Fabrication and Strain Sensing Properties of Two-Dimensional Atomic Crystal Materials [J]. Progress in Chemistry, 2017, 29(11): 1285-1296.
[13] Zhang He, Zhang Chi, Song Ye. Fabrication of Anodic Titania Nanotube Arrays with Tunable Morphologies [J]. Progress in Chemistry, 2016, 28(6): 773-783.
[14] Wang Jing, Fan Haowen, Zhang He, Chen Qun, Liu Yi, Ma Weihua. Anodizing Process of Titanium and Formation Mechanism of Anodic TiO2 Nanotubes [J]. Progress in Chemistry, 2016, 28(2/3): 284-295.
[15] Gong Dejun, Gao Guanbin, Zhang Mingxi, Sun Taolei. Chiral Gold Nanoclusters: Synthesis, Properties and Applications [J]. Progress in Chemistry, 2016, 28(2/3): 296-307.