中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (6): 773-783 DOI: 10.7536/PC151046 Previous Articles   Next Articles

• Review and comments •

Fabrication of Anodic Titania Nanotube Arrays with Tunable Morphologies

Zhang He, Zhang Chi, Song Ye*   

  1. Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51377085,51577093).
PDF ( 790 ) Cited
Export

EndNote

Ris

BibTeX

Anodic titania nanotubes (ATNTs) have recently attracted particular attention due to their ease of preparation, low cost, large surface area, alignment and self-ordering. Especially, ATNTs are of interest for a wide variety of applications, including dye-sensitized solar cells, electrochemical sensors, photocatalysts, supercapacitors, etc. However, compared with analogous porous anodic alumina, the synthesis of ATNTs with regular and controllable microscopic morphologies is still under development. Although a number of excellent reviews on ATNTs have appeared, most of them have generally focused on their formation mechanism, properties, modifications and applications. This review attempts to pay close attention to the controllable fabrication of ATNTs, i.e., length, tube diameter, and self-ordering of nanotubes can be adjusted over large length scales. The preparation techniques of ATNTs in the last decade are summarized and the key factors for synthesis of ATNTs with tunable morphologies are discussed. In this review, we first present the anodization conditions of fabricating conventional ATNTs in ethylene glycol (EG) electrolytes and the typical microscopic morphologies of as-obtained ATNTs. Then, we discuss the growth characteristics and morphological parameters of ATNTs anodized in other electrolyte systems, such as aqueous solution, glycerol, dimethyl sulfoxide. It has been demonstrated that anodization conditions, including the solvent, temperature, anodization voltage, anodization duration and F- concentration, have profound effects on the morphologies of ATNTs. On the basis of these experimental findings, we overview how to adjust tube diameter, tube length, wall thickness and self-organization of ATNTs by changing anodization parameters. Some fabrication methods for nanotubes with a length of over several hundreds micrometers and the structural features of such thick ATNT films are also given. In addition, the strategies to detach as-formed ATNTs from the metallic substrate and to obtain free-standing ATNT membranes are described. Finally, we emphasize some related issues for fabrication of ATNTs with tunable morphologies and indicate the main challenges and potential future directions of the field.

Contents
1 Introduction
2 Anodization conditions of fabricating the conventional ATNTs
3 ATNTs grown in non-ethylene glycol (EG)-based electrolyte systems
4 Adjustment of tube diameter and ordering of ATNTs
4.1 Adjustment of tube diameter
4.2 Achievement of an improved ordering for ATNTs
5 Methods for fabricating ATNTs with ultralong nanotubes
6 Strategies to obtain free-standing ATNT membranes
7 Conclusion

CLC Number: 

[1] Pfaff G, Reynders P. Chem. Rev., 1999, 99: 1963.
[2] Manero J M, Gil F J, Planell J A. J. Mater. Sci., 1996, 7: 131.
[3] Ding J, Huang Z, Zhu J, Kou S, Zhang X, Yang H. Sci. Rep., 2015, 5: 17773.
[4] Zayat M, Garcia-Parejo P, Levy D. Chem. Soc. Rev., 2007, 36: 1270.
[5] Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C G. Nano Lett., 2006, 6: 215.
[6] Shankar K, Bandara J, Paulose M, Wietasch H, Varghese O K, Mor G K, LaTempa T J, Thelakkat M, Grimes C A. Nano Lett., 2008, 8: 1654.
[7] Adachi M, Murata Y, Okada I, Yoshikawa S. J. Electrochem. Soc., 2003, 150: G488.
[8] Hoyer P. Langmuir, 1996, 12: 1411.
[9] Xiong C R, Balkus K. J. Chem. Mater., 2005, 17: 5136.
[10] Wu C W, Ohsuna T, Kuwabara M, Kuroda K. J. Am. Chem. Soc., 2006, 128: 4544.
[11] Wang X, Huang B, Wang Z, Qin X, Zhang X, Dai Y, Whangbo M. Chem.-Eur. J., 2010, 16: 7106.
[12] Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihar K. Adv. Mater., 1999, 11: 1307.
[13] Chen Q, Zhou W Z, Du G H, Peng L M. Adv. Mater., 2002, 14: 1208.
[14] 王道爱(Wang D A), 刘盈(Liu Y), 王成伟(Wang C W), 周峰(Zhou F). 化学进展(Prog. Chem.), 2010, 22: 1035.
[15] 郑青(Zheng Q), 周保学(Zhou B X), 白晶(Bai J), 蔡伟民(Cai W M), 廖俊生(Liao J S). 化学进展(Prog. Chem.), 2007, 19: 117.
[16] 朱绪飞(Zhu X F), 韩华(Han H), 宋晔(Song Y), 段文强(Duan W Q).物理化学学报(Acta Phys. -Chim. Sin.), 2012, 28: 1291.
[17] 朱绪飞(Zhu X F), 韩华(Han H), 戚卫星(Qi W X), 路超(Lu C), 蒋龙飞(Jiang L F), 段文强(Duan W Q).化学进展(Prog. Chem.), 2012, 24: 2073.
[18] 郝彦忠(Hao Y Z), 王利刚(Wang L G). 化学学报(Acta Chim. Sinica), 2008, 66: 757.
[19] Liu N, Schneider C, Freitag D, Hartmann M, Venkatesan U, Müller J, Spiecker E, Schmuki P. Nano Lett., 2014, 14: 3309.
[20] 杨旭一(Yang X Y), 黄其煜(Huang Q Y). 化学进展(Prog. Chem.), 2009, 21: 116.
[21] Zeng T, Ni H, Su X, Chen Y, Jiang Y J. Power Sources., 2015, 283: 443.
[22] Wang D A, Liu Y, Yu B, Zhou F, Liu W M. Chem. Mater., 2009, 21: 1198.
[23] Roy P, Berger S, Schmuki P. Angew. Chem. Int. Ed., 2011, 50: 2904.
[24] Mohamed A E R, Rohani S. Energy Environ. Sci., 2011, 4: 1065.
[25] Lee K, Mazare A, Schmuki P. Chem. Rev., 2014, 114: 9385.
[26] Bai J, Zhou B X, Li L H, Liu Y B, Zheng Q, Shao J H, Zhu X Y, Cai W M, Liao J S, Zou L X. J. Mater. Sci., 2008, 43: 1880.
[27] Macak J M, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P. Curr. Opin. Solid State Mater. Sci., 2007, 11: 3.
[28] Su Z, Zhou W. J. Mater. Chem., 2011, 21: 8955.
[29] Yang H, Tan Z, Liu Y, Ma Z, Zhang L. IEEE Trans. Nanotechnol., 2013, 12: 1037.
[30] Dong J, Han J, Liu Y, Nakajima A, Matsushita S, Wei S, Gao W. ACS Appl. Mater. Interfaces, 2014, 6: 1385.
[31] Paulose M, Shankar K, Yoriya S, Prakasam H E, Varghese O K, Mor G K, Latempa T A, Fitzgerald A, Grimes C G. J. Phys. Chem. B, 2006, 110: 16179.
[32] Pan D, Huang H, Wang X, Wang L, Liao H, Li Z, Wu M. J. Mater. Chem. A, 2014, 2: 11454.
[33] Tsui L K, Zangari G. Electrochim. Acta, 2014, 128: 341.
[34] Wu H, Li D, Zhu X, Yang C, Liu D, Chen X, Song Y, Lu L. Electrochim. Acta, 2014, 116: 129.
[35] Li Z, Ding Y, Kang W, Li C, Li D, Wang X, Chen Z, Wu M, Pan D. Electrochim. Acta, 2015, 161: 40.
[36] Zhai C, Zhu M, Lu Y, Ren F, Wang C, Du Y, Yang P. Phys. Chem. Chem. Phys., 2014, 16: 14800.
[37] Ye M, Zheng D, Lv M, Chen C, Lin C, Lin Z. Adv. Mater., 2013, 25: 3039.
[38] Ngaboyamahina E, Debiemme-Chouvy C, Pailleret A, Sutter E M M. J. Phys. Chem. C, 2014, 118: 26341.
[39] Yu D, Song Y, Zhu X, Yang R, Han A. Appl. Surf. Sci., 2013, 276: 711.
[40] Prakasam H E, Shankar K, Paulose M, Varghese O K, Grimes C A. J. Phys. Chem. C, 2007, 111: 7235.
[41] Song Y, Lv H, Yang C, Xiao H, Chen X, Zhu X, Li D. Phys. Chem. Chem. Phys., 2014, 16: 15796.
[42] Gui Q, Xu Z, Zhang H, Cheng C, Zhu X, Yin M, Song Y, Lu L, Chen X, Li D. ACS Appl. Mater. Interfaces., 2014, 6: 17053.
[43] Song C B, Qiang Y H, Zhao Y L, Gu X Q, Song D M, Zhu L. Appl. Surf. Sci., 2014, 305: 792.
[44] Dong J, Han J, Liu Y, Nakajima A, Matsushita S, Wei S, Gao W. ACS Appl. Mater. Interfaces, 2014, 6: 1385.
[45] Ali G, Kim H J, Kim J J, Cho S O. Nanoscale, 2014, 6: 3632.
[46] Reyes-Gil K R, Stephens Z D, Stavila V, Robinson D B. ACS Appl. Mater. Interfaces, 2015, 7: 2202.
[47] Albu S P, Ghicov A, Aldabergenova S, Drechesel P, LeClere D, Thompson G E, Macak J M, Schmuki P. Adv. Mater., 2008, 20: 4135.
[48] Ni J, Noh K, Frandsen C J, Kong S D, He G, Tang T, Jin S. Mater. Sci. Eng. C, 2013, 33: 259.
[49] Liu N, Mirabolghasemi H, Lee K, Albu S P, Tighineanu A, Altomare M, Schmuki P. Faraday Discuss., 2013, 164: 107.
[50] Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin M Y, Aucouturier M. Surf. Interface Anal., 1999, 27: 629.
[51] Zwilling V, Aucouturier M, Darque-Ceretti E. Electrochim. Acta, 1999, 45: 921.
[52] Gong D, Grimes C A, Varghese O K, Hu W, Singh R S, Chen Z, Dickey E C. J. Mater. Res., 2001, 16: 3331.
[53] Beranek R, Hildebrand H, Schmuki P. Electrochem. Solid-State Lett., 2003, 6: B12.
[54] Tong X, Yang P, Wang Y, Qin Y, Guo X. Nanoscale, 2014, 6: 6692.
[55] Xie S, Gan M, Ma L, Li Z, Yan J, Yin H, Shen X, Xu F, Zheng J, Zhang J, Hu J. Electrochim. Acta, 2014, 120: 408.
[56] Macak J M, Tsuchiya H, Schmuki P. Angew. Chem. Int. Ed., 2005, 44: 2100.
[57] Macak J M, Schmuki P. Electrochim. Acta, 2006, 52: 1258.
[58] Sturgeon M R, Lai P, Hu M Z. J. Mater. Res., 2011, 26: 2612.
[59] Alivov Y, Fan Z Y, Johnstone D. J. Appl. Phys., 2009, 106: 034314.
[60] Xue C, Yonezawa T, Nguyen M T, Lu X. Langmuir, 2015, 31: 1575.
[61] Xue C, Narushima T, Ishida Y, Tokunaga T, Yonezawa T. ACS Appl. Mater. Interfaces, 2014, 6: 19924.
[62] Zhu Y F, Xu L, Hu J, Zhang J, Du R G, Lin C J. Electrochim. Acta, 2014, 121: 361.
[63] Kodate K, Komai Y. Nanotechnology, 2008, 25: 255202.
[64] Berger S, Ghicov A, Nah Y C, Schmuki P. Langmuir, 2009, 25: 4841.
[65] Zhang J, Tang X, Li D. J. Phys. Chem. C, 2011, 115: 21529.
[66] Chang X, Thind S S, Chen A. ACS Catal., 2014, 4: 2616.
[67] Xu X, Fang X, Zhai T, Zeng H, Liu B, Hu X, Bando Y, Golberg D. Small, 2011, 7: 445.
[68] Yoriya S, Paulose M, Varghese O K, Mor G K, Grimes C A. J. Phys. Chem. C, 2007, 111: 13770.
[69] Xing J, Hui L, Xia Z, Chen J, Zhang Y, Li Z. Ind. Eng. Chem. Res., 2014, 53: 10667.
[70] Hahn R, Macak J M, Schmuki P. Electrochem. Commun., 2007, 9: 947.
[71] Richter C, Wu Z, Panaitescu E, Willey R J, Menon L. Adv. Mater., 2007, 19: 946.
[72] Mirabolghasemi H, Liu N, Lee K, Schmuki P. Chem. Commun., 2013, 49: 2067.
[73] So S, Hwang I, Schmuki P. Energy. Environ. Sci., 2015, 8: 849.
[74] Li H, Cheng J W, Shu S, Zhang J, Zheng L, Tsang C K, Cheng H, Liang F, Lee S T, Li Y Y. Small, 2013, 9: 37.
[75] Berger S, Kunze J, Schmuki P, Valota A T, LeClere D J, Skeldon P, Thompson G E. J. Electrochem. Soc., 2010, 157: C18.
[76] Park J, Bauer S, von der Mark K, Schmuki P. Nano Lett., 2007, 7: 1686.
[77] Lan M Y, Liu C P, Huang H H, Chang J K, Lei S W. Nanoscale Res. Lett., 2013, 8: 150.
[78] Kowalski D, Tighineanu A, Schmuki P. J. Mater. Chem., 2011, 21: 17909.
[79] Zhang Y, Yu D, Gao M, Li D, Song Y, Jin R, Ma W, Zhu X. Electrochim. Acta, 2015, 160: 33.
[80] Kim C W, Suh S P, Choi M J, Kang Y S, Kang Y S. J. Mater. Chem. A, 2013, 1: 11820.
[81] Smith Y R, Sarma B, Mohanty S K, Misra M. ACS Appl. Mater. Interfaces, 2012, 4: 5883.
[82] Yin H, Liu H, Shen W Z. Nanotechnology, 2010, 21: 035601.
[83] Liu X, Guo M, Cao J, Lin J, Tsang Y H, Chen X, Huang H. Nanoscale Res. Lett., 2014, 9: 5447.
[84] Liu N, Lee K, Schmuki P. Electrochem. Commun., 2012, 15: 1.
[85] Yu D, Song Y, Zhu X, Yang C, Yang B, Xiao H. Mater. Lett., 2013, 109: 211.
[86] Wang X, Sun L, Zhang S, Wang X. ACS Appl. Mater. Interfaces, 2014, 6: 1361.
[87] Macak J M, Albu S P, Schmuki P. Phys. Stat. Sol. (RRL)., 2007, 1: 181.
[88] Choi J, Wehrspohn R B, Lee J, Gösele U. Eletrochim. Acta, 2004, 49: 2645.
[89] Chen B, Lu K, Tian Z. Langmuir, 2011, 27: 800.
[90] Ono S, Saito M, Asoh H. Electrochim. Acta, 2005, 51: 827.
[91] Song Y, Jiang L, Qi W, Lu C, Zhu X, Jia H. J. Electroanal. Chem., 2012, 673: 24.
[92] Yoo J E, Lee K, Altomare M, Selli E, Schmuki P. Angew. Chem. Int. Ed., 2013, 52: 7514.
[93] Yoo J, Lee K, Tighineanu A, Schmuki P. Electrochem. Commun., 2013, 34: 177.
[94] Chen B, Lu K, Tian Z. J. Mater. Chem., 2011, 21: 8835.
[95] Chen B, Lu K, Geldmeier J A. Chem. Commun., 2011, 47: 10085.
[96] Chen B, Lu K. Langmuir, 2011, 27: 12179.
[97] Kondo T, Nagao S, Yanagishita T, Nguyen N T, Lee K, Schmuki P, Masuda H. Electrochem. Commun., 2015, 50: 73.
[98] Masuda H, Asoh H, Watanabe M, Nishio K, Nakao M, Tamamura T. Adv. Mater., 2001, 13: 189.
[99] Wang J, Lin Z. Chem. Mater., 2008, 20: 1257.
[100] Gui Q, Yu D, Li D, Song Y, Zhu X, Cao L, Zhang S, Ma W, You S. Appl. Surf. Sci., 2014, 314: 505.
[101] He Z, Que W, Sun P, Ren J. ACS Appl. Mater. Interfaces., 2013, 5: 12779.
[102] Paulose M, Prakasam H E, Varghese O K, Peng L, Popat K C, Mor G K, Desai T A, Grimes C A. J. Phys. Chem. C, 2007, 111: 14992.
[103] Shankar K, Mor G K, Prakasam H E, Yoriya S, Paulos M, Varghese O K, Grimes C A. Nanotechnology, 2007, 18: 065707.
[104] Albu S P, Ghicov A, Macak J M, Schmuki P. Phys. Stat. Sol. (RRL)., 2007, 1: R65.
[105] Yu D, Zhu X, Xu Z, Zhong X, Gui Q, Song Y, Zhang S, Chen X, Li D. ACS Appl. Mater. Interfaces, 2014, 6: 8001.
[106] Banerjee S, Misra M, Mohapatra S K, Howard C, Kamilla S K. Nanotechnology, 2010, 21: 145201.
[107] So S, Lee K, Schmuki P. J. Am. Chem. Soc., 2012, 134: 11316.
[108] Liu G, Wang K, Hoivik N, Jakobsen H. Sol. Energy Mater. Sol. Cells, 2012, 98: 24.
[109] Albu S P, Ghicov A, Macak J M, Hahn R, Schmuki P. Nano Lett., 2007, 7: 1286.
[110] Chen Q W, Xu D S, Wu Z Y, Liu Z F. Nanotechnology, 2008, 19: 365708.
[111] Dubey M, Shrestha M, Zhong Y, Galipeau D, He H. Nanotechnology, 2011, 22: 285201.
[112] Lin C J, Yu W Y, Lu Y T, Chien S H. Chem. Commun., 2008, 45: 6031.
[113] Chen Q, Xu D. J. Phys. Chem. C, 2009, 113: 6310.
[114] Kant K, Losic D. Phys. Stat. Sol. (RRL)., 2009, 3: 139.
[115] Jo Y, Jung I, Lee I, Choi J, Tak Y. Electrochem. Commun., 2010, 12: 616.
[116] Kim H S, Yu S H, Cho Y H, Kang S H, Sung Y E. Electrochim. Acta, 2014, 130: 600.
[117] Salari M, Aboutalebi S H, Chidembo A T, Nevirkovets I P, Konstantinov K, Liu H K. Phys. Chem. Chem. Phys., 2012, 14: 4770.
[118] Lu X, Wang G, Zhai T, Yu M, Gan J, Tong Y, Li Y. Nano Lett., 2012, 12: 1690.
[119] Zhu K, Neale N R, Miedaner A, Frank A J. Nano Lett., 2007, 7: 69.
[120] Wang J, Lin Z. J. Phys. Chem. C, 2009, 113: 4026.
[121] Ruan C, Paulose M, Varghese O K, Mor G K, Grimes C A. J. Phys. Chem. B, 2005, 109: 15754.
[122] Albu S P, Schmuki P. Phys. Stat. Sol. (RRL)., 2010, 4: 215.
[123] Zhou H, Zhang Y. J. Phys. Chem. C, 2014, 118: 5626.
[124] Müller V, Schmuki P. Electrochem. Commun., 2014, 42: 21.
[125] Zhang Z, Hedhili M N, Zhu H, Wang P. Phys. Chem. Chem. Phys., 2013, 15: 15637.
[126] Chen X, Ye S, Lu L, Cheng C, Liu D, Fang X, Chen X, Zhu X, Li D. Nanoscale Res. Lett., 2013, 8: 542.
[127] Zhong X, Yu D, Song Y, Li D, Xiao H, Yang C, Lu L, Ma W, Zhu X. Mater. Res. Bull, 2014, 60: 348.
[128] Xie Z B, Blackwood D. J. Electrochim. Acta, 2010, 56: 905.
[1] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[2] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[3] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[4] Dong Li, Yuying Zheng, Haoxiong Nan, Yanxiong Fang, Quanbing Liu, Qiang Zhang. Electrolyte for Solid Lithium-Sulfur Batteries with High Safety and High Specific Energy [J]. Progress in Chemistry, 2020, 32(7): 1003-1014.
[5] Jiamiao Chen, Jingwen Xiong, Shaomin Ji, Yanping Huo, Jingwei Zhao, Liang Liang. All Solid Polymer Electrolytes for Lithium Batteries [J]. Progress in Chemistry, 2020, 32(4): 481-496.
[6] Jinglun Wang, Qin Ran, Chongyu Han, Zilong Tang, Qiduo Chen, Xueying Qin. Organosilicon Functionalized Electrolytes for Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 467-480.
[7] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Development and Application of Electrolytes in Supercapacitors [J]. Progress in Chemistry, 2018, 30(11): 1624-1633.
[8] Li Licheng, Fang Dong, Li Guangzhong, Liu Ruina, Liu Suqin, Xu Weilin. Mechanism and Influence Factors of Valve-Metal Oxide Nanotube Arrays Prepared by Anodization Process [J]. Progress in Chemistry, 2016, 28(4): 589-606.
[9] Shi Jingjing, Guo Xing, Chen Renjie, Wu Feng. Recent Progress in Flexible Battery [J]. Progress in Chemistry, 2016, 28(4): 577-588.
[10] Wang Jing, Fan Haowen, Zhang He, Chen Qun, Liu Yi, Ma Weihua. Anodizing Process of Titanium and Formation Mechanism of Anodic TiO2 Nanotubes [J]. Progress in Chemistry, 2016, 28(2/3): 284-295.
[11] Xiong Lina, Zhang Xueqin, Sun Ying, Yang Hong. Synthesis, Self-Assembly and Application of All-Conjugated Block Copolymers [J]. Progress in Chemistry, 2015, 27(12): 1774-1783.
[12] Wan Wenbo, Pu Weihua, Ai Desheng. Research Progress in Lithium Sulfur Battery [J]. Progress in Chemistry, 2013, 25(11): 1830-1841.
[13] Zhang Dong, Zhang Cunzhong*, Mu Daobin, Wu Borong, Wu Feng . Review on Lithium-Air Batteries [J]. Progress in Chemistry, 2012, 24(12): 2472-2482.
[14] Zhu Xufei, Han Hua, Qi Weixing, Lu Chao, Jiang Longfei, Duan Wenqiang. Theoretical Foundation and Limitation of Two-Step Anodizing Technology [J]. Progress in Chemistry, 2012, 24(11): 2073-2086.
[15] Qin Xueying, Wang Jinglun, Zhang Lingzhi. Organosilicon Based Electrolytes for Lithium-Ion Batteries [J]. Progress in Chemistry, 2012, 24(05): 810-822.