中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (8): 859-869 DOI: 10.7536/PC170512 Previous Articles   Next Articles

• Review •

Two-Dimensional Perovskites and Their Applications on Optoelectronic Devices

Honglei Wang1, Wenzhen Lv1, Xingxing Tang1, Lingfeng Chen1, Runfeng Chen1*, Wei Huang2*   

  1. 1. Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China;
    2. Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21304049, 21674049, 21001065, 21274065, 21601091), the Natural Science Foundation of Jiangsu Province of China (No. BK20160891), the 1311 Talents Program and the Startup Foundation for Talents of Nanjing University of Posts and Telecommunications(No. NY216028).
PDF ( 4417 ) Cited
Export

EndNote

Ris

BibTeX

Two-dimensional (2D) perovskites have become a research hotspot as one kind of high-performance optoelectronic devices, attracting a great deal of attention in recent years due to their unique structures and interesting optoelectronic properties. Besides the solution-processable, fiexible and wearable characteristics similar to the conventional 2D materials, these new 2D materials can be assembled into uniform and fiexible ultrathin films with highly oriented microstructures. Also, they have a long charge carrier diffusion lengths, low binding energy, high quantum yield, high crystallinity, broad absorption spectra, high light absorption coefficients, low rates of non-radiative charge recombination inherited from three dimensional perovskites. In this review, we focus on the composition characteristics, structural formation rules, photoelectric properties and nonlinear optical properties of two-dimensional perovskites. Specifically, we classify the preparation methods of two-dimensional perovskites into two main types of the solution method and vapor method. Furthermore, we comprehensively summarize the recent advancements of two-dimensional perovskites in the applications of solar cells, photodetectors, light-emitting diodes, field effect transistors and lasers.We also discuss the current challenges and future research directions to achieve optimal performance for practical applications in detail to provide applicable suggestions in designing high-performance two dimensional perovskites for advanced optoelectronic devices in the future.Contents
1 Introduction
2 Structure and properties of two-dimensional perovskites
2.1 Structure of two-dimensional perovskites
2.2 Formation rule of two-dimensional perovskites
2.3 Optoelectronic properties of two-dimensional perovskites
2.4 Band gap and nonlinear optical properties of two-dimensional perovskites
3 Synthesis of two-dimensional perovskites
3.1 Solution methods
3.2 Vapor methods
4 The applications on optoelectronic devices of two-dimensional perovskites
4.1 Solar cells
4.2 Photodetectors
4.3 Light-emitting diodes
4.4 Field effect transistors
5 Conclusion

CLC Number: 

[1] Kazim S, Nazeeruddin M K, Gratzel M, Ahmad S. Angew. Chem. Int. Ed., 2014, 53(11):2812.
[2] De Wolf S, Descoeudres A, Holman Z C, Ballif C. Green, 2012, 2(1):7.
[3] Chueh C C, Li C Z, Jen A K Y. Energy Environ. Sci., 2015, 8(4):1160.
[4] Wehrenfennig C, Liu M, Snaith H J, Johnston M B, Herz L M. Energy Environ. Sci., 2014, 7(7):2269.
[5] McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, H rantner M T, Haghighirad A, Sakai N, Korte L, Rech B, Johnston M B, Herz L M, Snaith H J. Science, 2016, 351(6269):151.
[6] Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L, Mohite A D. Science, 2015, 347(6221):522.
[7] Niu G, Guo X, Wang L. J. Mater. Chem. A, 2015, 3(17):8970.
[8] Giustino F, Snaith H J. ACS Energy Lett., 2016, 1:1233.
[9] Zuo C, Ding L. Angew. Chem. Int. Ed., 2017, 56:6528.
[10] Cai B, Zhang S, Yan Z, Zeng H. ChemNanoMat, 2015, 1(8):542.
[11] Zhu Z, Zou Y, Hu W, Li Y, Gu Y, Cao B, Guo N, Wang L, Song J, Zhang S, Gu H, Zeng H. Adv. Funct. Mater., 2016, 26(11):1793.
[12] Zeng H, Zhi C, Zhang Z, Wei X, Wang X, Guo W, Bando Y, Golberg D. Nano Lett., 2010, 10(12):5049.
[13] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J. Nature Nanotechnol., 2010, 5(10):722.
[14] Zhang X, Lai Z, Tan C, Zhang H. Angew. Chem., 2016, 55(31):8816.
[15] Schusteritsch G, Uhrin M, Pickard C J. Nano Lett., 2016, 16(5):2975.
[16] Rao C N, Gopalakrishnan K, Maitra U. ACS Appl. Mater. Interfaces, 2015, 7(15):7809.
[17] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E. ACS Nano, 2013, 7(4):2898.
[18] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K, Colombo L. Nature Nanotechnol., 2014, 9(10):768.
[19] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Nature Nanotechnol., 2012, 7(11):699.
[20] An X, Liu F, Jung Y J, Kar S. Nano Lett., 2013, 13(3):909.
[21] Padmajan Sasikala S, Poulin P, Aymonier C. Adv. Mater., 2016, 28(14):2663.
[22] Huang X, Qi X, Boey F, Zhang H. Chem. Soc. Rev., 2012, 41(2):666.
[23] Chen S, Shi G. Adv. Mater., 2017, 29(24):1605448.
[24] Huo C, Cai B, Yuan Z, Ma B, Zeng H. Small Methods, 2017, 1(3):1600018.
[25] Wei S, Yang Y, Kang X, Wang L, Huang L, Pan D. Chem. Commun., 2016, 52(45):7265.
[26] van der Stam W, Geuchies J J, Altantzis T, van den Bos K H, Meeldijk J D, Van Aert S, Bals S, Vanmaekelbergh D, de Mello Donega C. J. Am. Chem. Soc., 2017, 139(11):4087.
[27] Liu M, Voznyy O, Sabatini R, Garcia de Arquer F P, Munir R, Balawi A H, Lan X, Fan F, Walters G, Kirmani A R, Hoogland S, Laquai F, Amassian A, Sargent E H. Nature Mater., 2017, 16(2):258.
[28] Akkerman Q A, Motti S G, Srimath Kandada A R, Mosconi E, D'Innocenzo V, Bertoni G, Marras S, Kamino B A, Miranda L, De Angelis F, Petrozza A, Prato M, Manna L. J. Am. Chem. Soc., 2016, 138(3):1010.
[29] Yaffe O, Chernikov A, Norman Z M, Zhong Y, Velauthapillai A, van der Zande A, Owen J S, Heinz T F. Phys. Rev. B, 2015, 92(4):045414.
[30] Ha S T, Liu X, Zhang Q, Giovanni D, Sum T C, Xiong Q. Adv. Opt. Mater., 2014, 2(9):838.
[31] Wang G, Li D, Cheng H C, Li Y, Chen C Y, Yin A, Zhao Z, Lin Z, Wu H, He Q, Ding M, Liu Y, Huang Y, Duan X. Sci. Adv., 2015, 1(9):1.
[32] Kang L, Ramo D M, Lin Z, Bristowe P D, Qin J, Chen C. J. Mater. Chem. C, 2013, 1(44):7363.
[33] Hamaguchi R, Yoshizawa-Fujita M, Miyasaka T, Kunugita H, Ema K, Takeoka Y, Rikukawa M. Chem. Commun., 2017, 53:4366.
[34] Zhou H, Chen Q, Li G, Luo S, Song T b, Duan H S, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345(6196):542.
[35] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J. Energy Environ. Sci., 2014, 7(3):982.
[36] Bekenstein Y, Koscher B A, Eaton S W, Yang P, Alivisatos A P. J. Am. Chem. Soc., 2015, 137(51):16008.
[37] Wang K H, Wu L, Li L, Yao H B, Qian H S, Yu S H. Angew. Chem. Int. Ed., 2016, 55(29):8328.
[38] Chen J, Gan L, Zhuge F, Li H, Song J, Zeng H, Zhai T. Angew. Chem. Int. Ed., 2017, 129(9):2430.
[39] Zhang Q, Su R, Liu X, Xing J, Sum T C, Xiong Q. Adv. Funct. Mater., 2016, 26(34):6238.
[40] Song J, Xu L, Li J, Xue J, Dong Y, Li X, Zeng H. Adv. Mater., 2016, 28(24):4861
[41] Shamsi J, Dang Z, Bianchini P, Canale C, Stasio F D, Brescia R, Prato M, Manna L. J. Am. Chem. Soc., 2016, 138(23):7240.
[42] Tyagi P, Arveson S M, Tisdale W A. J. Phys. Chem. Lett., 2015, 6(10):1911.
[43] Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H, Sargent E H. Nature Nanotechnol., 2016, 11(10):872.
[44] Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P. Science, 2015, 349(6255):1518.
[45] Yang S, Niu W, Wang A L, Fan Z, Chen B, Tan C, Lu Q, Zhang H. Angew. Chem. Int. Ed., 2017, 56:1.
[46] Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G. Nature, 2016, 536(7616):312.
[47] Liu M, Johnston M B, Snaith H J. Nature, 2013, 501(7467):395.
[48] Liu J, Xue Y, Wang Z, Xu Z Q, Zheng C, Weber B, Song J, Wang Y, Lu Y, Zhang Y, Bao Q. ACS Nano, 2016, 10(3):3536.
[49] Gan X, Wang O, Liu K, Du X, Guo L, Liu H. Sol. Energy Mater. Sol. Cells, 2017, 162:93.
[50] Safdari M, Svensson P H, Hoang M T, Oh I, Kloo L, Gardner J M. J. Mater. Chem. A, 2016, 4(40):15638.
[51] Hu Y, Schlipf J, Wussler M, Petrus M L, Jaegermann W, Bein T, Muller-Buschbaum P, Docampo P. ACS Nano, 2016, 10(6):5999.
[52] Liu J, Leng J, Wu K, Zhang J, Jin S. J. Am. Chem. Soc., 2017, 139(4):1432.
[53] Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P. Nature Nanotechnol., 2009, 4(12):839.
[54] Tan Z, Wu Y, Hong H, Yin J, Zhang J, Lin L, Wang M, Sun X, Sun L, Huang Y, Liu K, Liu Z, Peng H. J. Am. Chem. Soc., 2016, 138(51):16612.
[55] Kim J K, Luo H, Schubert E F, Cho J, Sone C, Park Y. Jpn. J. Appl. Phys., 2005, 44(21):649.
[56] Era M, M S, Tsutsui T, Saito S. App. Phys. Lett., 1994, 65(6):676.
[57] Ling Y, Yuan Z, Tian Y, Wang X, Wang J C, Xin Y, Hanson K, Ma B, Gao H. Adv. Mater., 2016, 28(2):305.
[58] Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W. Nature Photon., 2016, 10(11):699.
[59] Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S, Mishchenko A. Nature Nanotechnol., 2013, 8(2):100.
[60] Ghatak S, Pal A N, Ghosh A. ACS Nano, 2011, 5(10):7707.
[61] Li D, Wang G, Cheng H C, Chen C Y, Wu H, Liu Y, Huang Y, Duan X. Nat. Commun., 2016, 7:11330.
[62] Wang A, Yan X, Zhang M, Sun S, Yang M, Shen W, Pan X, Wang P, Deng Z. Chem. Mater., 2016, 28(22):8132.
[63] Kagan C R, Mitzi D B, Dimitrakopoulos C D. Science, 1999, 286(5441):945.
[64] Mitzi D B, Dimitrakopoulos C D, Rosner J, Medeiros D R, Xu Z, Noyan C. Adv. Mater., 2002, 14(23):1772.
[65] Toshinori M, Katsuhiko F, Tetsuo T. Jpn. J. Appl. Phys., 2004, 43(9A):L1199.
[66] Matsushima T, Hwang S, Sandanayaka A S, Qin C, Terakawa S, Fujihara T, Yahiro M, Adachi C. Adv. Mater., 2016, 28(46):10275.
[67] Lei S, Wen F, Li B, Wang Q, Huang Y, Gong Y, He Y, Dong P, Bellah J, George A, Ge L, Lou J, Halas N J, Vajtai R, Ajayan P M. Nano Lett., 2015, 15(1):259.
[68] Li P, Chen Y, Yang T, Wang Z, Lin H, Xu Y, Li L, Mu H, Shivananju B N, Zhang Y, Zhang Q, Pan A, Li S, Tang D, Jia B, Zhang H, Bao Q. ACS Appl. Mater. Interfaces, 2017, 9(14):12759.
[69] Ha S T, Shen C, Zhang J, Xiong Q. Nature Photon., 2016, 10(2):115.
[1] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[2] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[3] Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai. A Review on MXene and Its Applications in Environmental Remediation [J]. Progress in Chemistry, 2022, 34(5): 1229-1244.
[4] Xiaoyin Li, Chuancong Zhou, Yinghua Wang, Feifei Ding, Huawei Zhou, Xianxi Zhang. Sn-Based Light-Absorbing Materials for Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(6): 882-893.
[5] Cheng Chen, Zhiqiang Dong, Haowen Chen, Yang Chen, Zhigang Zhu, Weiheng Shih. Two-Dimensional Photonic Crystals [J]. Progress in Chemistry, 2018, 30(6): 775-784.
[6] Qingyang Xi, Jinsong Liu, Ziquan Li, Kongjun Zhu, Guoan Tai, Ruogu Song. Etching Methods and Application of Molybdenum Disulfide Film [J]. Progress in Chemistry, 2018, 30(6): 847-863.
[7] Wenjie Zhu, Guoan Tai, Xufeng Wang, Qilin Gu, Zenghui Wu, Kongjun Zhu. Fabrication and Strain Sensing Properties of Two-Dimensional Atomic Crystal Materials [J]. Progress in Chemistry, 2017, 29(11): 1285-1296.
[8] Zeng Tian, You Yuncheng, Wang Xufeng, Hu Tingsong, Tai Guoan. Chemical Vapor Deposition and Device Application of Two-Dimensional Molybdenum Disulfide-Based Atomic Crystals [J]. Progress in Chemistry, 2016, 28(4): 459-470.
[9] Xiong Lina, Zhang Xueqin, Sun Ying, Yang Hong. Synthesis, Self-Assembly and Application of All-Conjugated Block Copolymers [J]. Progress in Chemistry, 2015, 27(12): 1774-1783.
[10] Jiang Hong. The Band Gap Problem: the State of the Art of First-Principles Electronic Band Structure Theory [J]. Progress in Chemistry, 2012, 24(06): 910-927.
[11] Liu Zhitian, Hu Zhao, Shen Zhi, Hu Shuangqiang, Wang Zixing, Qi Xin. Optoelectronic Properties of Silole-Containing Polymers [J]. Progress in Chemistry, 2012, 24(0203): 377-384.
[12] Li Tao, Chen Deliang. Synthesis of Hierarchical Semiconductor/Semiconductor Composite Nanostructures [J]. Progress in Chemistry, 2011, 23(12): 2498-2509.
[13] Yang Zhenglong, Bu Yilong, Chen Qiuyun. High Efficiency Low Band Gap Conjugated Polymer Materials for Solar Cells [J]. Progress in Chemistry, 2011, 23(12): 2607-2616.
[14] He Youjun Li Yongfang. Photovoltaic Materials in Polymer Solar Cells [J]. Progress in Chemistry, 2009, 21(11): 2303-2318.
[15] Yan Changling1,2 Lu Yan1,2 ** . Two-Dimensional Imprinting of Protein Molecules [J]. Progress in Chemistry, 2008, 20(06): 969-974.