中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (2/3): 284-295 DOI: 10.7536/PC150813 Previous Articles   Next Articles

• Review and comments •

Anodizing Process of Titanium and Formation Mechanism of Anodic TiO2 Nanotubes

Wang Jing, Fan Haowen, Zhang He, Chen Qun, Liu Yi, Ma Weihua*   

  1. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21276127).
PDF ( 2291 ) Cited
Export

EndNote

Ris

BibTeX

Anodic TiO2 nanotubes fabricated by anodization have a wide range of applications in a variety of fields because of their unique structure and excellent performance. Also, the formation mechanisms of anodic TiO2 nanotubes have gradually become a hotspot of research in the field of the porous anodic oxides. A series of papers about formation mechanisms of anodic TiO2 nanotubes have been published in many famous journals in recent years. The present article has reviewed the latest progress and significance of the research on formation mechanisms of anodic TiO2 nanotubes in the contrast of two kinds of anodic oxide films. Here, we firstly introduce the anodizing process of Ti, and then analyze the difference and connections of two kinds of anodic oxide films,that are compact anodic oxide film and porous anodic oxide film. Then we introduce the growth process of TiO2 nanotubes, focusing on different kinds of formation mechanisms of TiO2 nanotubes. The results show that there are a lot of limitations for the traditional field-assisted dissolution theory in explaining the growth process and the porous structure of TiO2 nanotubes, but the combination of viscous flow model and growth model of two currents can give a comprehensive explanation to the growth process of TiO2 nanotubes. However, the validity of oxygen evolution resulting from electronic current has yet to be further investigation.

Contents
1 Introduction
2 Electrochemical anodization of Ti
2.1 Compact anodic titanium oxide films
2.2 Porous anodic titanium oxide films or TiO2 nanotubes
3 Formation mechanism and growth process of TiO2 nanotubes
3.1 Field-assisted dissolution theory and growth process of TiO2 nanotubes
3.2 Viscous flow model
3.3 Growth model of two currents and growth process of TiO2 nanotubes
4 Conclusion

CLC Number: 

[1] Liu L, Chen X B. Chem. Rev., 2014, 114:9890.
[2] Xia X H, Zeng Z Y, Li X L, Zhang Y Q, Tu J P, Fan N C, Zhang H, Fan H J. Nanoscale, 2013, 5:6040.
[3] Bai J, Zhou B X. Chem. Rev., 2014, 114:10131.
[4] Gao A, Huang R Q, Huang X B, Zhao L, Zhang X, Wang L, Tang B, Ma S, Chu P K. Biomater., 2014, 35:4223.
[5] Xu C, Song Y, Lu L F, Cheng C W, Liu D F, Fang X H, Chen X Y, Zhu X F, Li D D. Nanoscale Res. Lett., 2013, 8:391.
[6] Cheng C W, Ren W N, Zhang H F. Nano Energy, 2014, 5:132.
[7] Gui Q F, Xu Z, Zhang H F, Cheng C W, Zhu X F, Yin M, Song Y, Lu L F, Chen X Y, Li D D. ACS Appl. Mater. Interfaces, 2014, 6:17053.
[8] Wu H, Li D D, Zhu X, Yang C Y, Liu D, Chen X Y, Song Y, Lu L F. Electrochim. Acta, 2014, 116:129.
[9] Li Z, Ding Y T, Kang W J, Li C, Lin D, Wang X Y, Chen Z W, Wu M H, Pan D Y. Electrochim. Acta, 2015, 161:40.
[10] Wu H, Xu C, Xu J, Lu L F, Fan Z Y, Chen X Y, Song Y, Li D D. Nanotechnology, 2013, 24:455401.
[11] 郑青(Zheng Q), 周保学(Zhou B X), 白晶(Bai J), 蔡伟民(Cai W M), 廖俊生(Liao J S). 化学进展(Prog. Chem.), 2007, 19:117.
[12] 杨旭一(Yang X Y), 黄其煜(Huang Q Y). 化学进展(Prog. Chem.), 2009, 21:116.
[13] 王道爱(Wang D A), 刘盈(Liu Y), 王成伟(Wang C W), 周峰(Zhou F). 化学进展(Prog. Chem.), 2010, 22:1035.
[14] Liu H, Tao L, Shen W Z. Electrochim. Acta, 2011, 56:3905.
[15] Yu D L, Song Y, Zhu X F, Yang R Q, Han A J. Appl. Surf. Sci., 2013, 276:711.
[16] Lee K, Mazare A, Schmuki P. Chem. Rev., 2014, 114:9385.
[17] Sun M W, Yu D L, Lu L F, Ma W H, Song Y, Zhu X F. Appl. Surf. Sci., 2015, 346:172.
[18] Xue Y J, Sun Y, Wang G X, Yan K P, Zhao J Y. Electrochim. Acta, 2015, 155:312.
[19] Su Z X, Zhou W Z. J. Mater. Chem., 2011, 21:8955.
[20] Su Z X, Bühl M, Zhou W Z. J. Am. Chem. Soc., 2009, 131:8697.
[21] Berger S, Kunze J, Schmuki P, LeClere D, Valota A T, Skeldon P, Thompson G E. Electrochim. Acta, 2009, 54:5942.
[22] Cao C B, Li J L, Wang X, Song X P, Sun Z Q. J. Mater. Res., 2011, 26:437.
[23] Guan D S, Hymel P J, Wang Y. Electrochim. Acta, 2012, 83:420.
[24] Hu F, Lin X, Zhu S L, Yang X J, Cui Z D. Appl. Surf. Sci., 2012, 258:3260.
[25] Wang K Y, Liu G H, Hoivik N, Johannessen E, Jakobsen H. Chem. Soc. Rev., 2014, 43:1476.
[26] Jarosz M, Pawlik A, Kapusta-Ko?odziej J, Jasku?a M, Sulka G D. Electrochim. Acta, 2014, 136:412.
[27] Apolinário A, Quitério P, Sousa C T, Ventura J, Sousa J B, Andrade L, Mendes A M, Araújo J P. J. Phys. Chem. Lett., 2015, 6:845.
[28] Apolinário A, Sousa C T, Ventura J, Costa J D, Leitão D C, Moreira J M, Sousa J B, Andrade L, Mendes A M, Araújo J P. J. Mater. Chem. A, 2014, 2:9067.
[29] Chen C Y, Ozasa K, Kitamura F, Katsumata K, Maeda M, Okada K, Matsushita N. Electrochim. Acta, 2015, 153:409.
[30] 朱绪飞(Zhu X F), 韩华(Han H), 宋晔(Song Y), 段文强(Duan W Q).物理化学学报(Acta Phys.-Chim. Sin.), 2012, 28:1291.
[31] 朱绪飞(Zhu X F), 韩华(Han H), 戚卫星(Qi W X), 路超(Lu C), 蒋龙飞(Jiang L F), 段文强(Duan W Q).化学进展(Prog. Chem.), 2012, 24:2073.
[32] Keller F, Hunter M S, Robinson D L. J. Electrochem. Soc., 1953, 100:411.
[33] Masuda H, Fukuda K. Science, 1995, 268:1466.
[34] Nielsch K, Choi J, Schwirn K, Wehrspohn R B, Gösele U. Nano Lett., 2002, 2:677.
[35] Schwirn K, Lee W, Hillebrand R, Steinhart M, Nielsch K, Gösele U. ACS Nano, 2008, 2:302.
[36] 朱绪飞(Zhu X F), 韩华(Han H), 宋晔(Song Y), 马宏图(Ma H T), 戚卫星(Qi W X), 路超(Lu C), 徐辰(Xu C). 物理学报(Acta Physica Sinica), 2012, 61:228202.
[37] Çapraz Ö Ö, Shrotriya P, Skeldon P, Thompson G E, Hebert K R. Electrochim. Acta, 2015, 167:404.
[38] Tsuchiya H, Schmuki P. Electrochem. Commun., 2004, 6:1131.
[39] Tsuchiya H, Macak J M, Sieber I, Taveira L, Ghicov A, Sirotna K, Schmuki P. Electrochem. Commun., 2005, 7:295.
[40] Sieber I, Hildebrand H, Friedrich A, Schmuki P. Electrochem. Commun., 2005, 7:97.
[41] El-Sayed H, Singh S, Greiner M T, Kruse P. Nano Lett., 2006, 6:2995.
[42] Pauric A D, Baig S A, Pantaleo A N, Wang Y, Kruse P J. Electrochem. Soc., 2013, 160:C12.
[43] Tsuchiya H, Schmuki P. Electrochem. Commun., 2005, 7:49.
[44] Yang Y, Albu S P, Kim D, Schmuki P. Angew. Chem. Int. Ed. Engl., 2011, 50:9071.
[45] Diggle J W, Downie T C, Goulding C W. Chem. Rev., 1969, 69:365.
[46] Zhong X M, Yu D L, Zhang S Y, Chen X, Song Y, Li D D, Zhu X F. J. Electrochem. Soc., 2013, 160:E125.
[47] van Overmeere Q, Proost J. Electrochim. Acta, 2011, 56:10507.
[48] Zhu X F, Song Y, Yu D L, Zhang C S, Yao W. Electrochem. Commun., 2013, 29:71.
[49] Houser J E, Hebert K R. Nat. Mater., 2009, 8:415.
[50] Lohrengel M M. Mater. Sci. Eng. R., 1993, 11:243.
[51] Guan D, Wang Y. Nanoscale, 2012, 4:2968.
[52] Deen K M, Farooq A, Raza M A, Haider W. Electrochim. Acta, 2014, 117:329.
[53] Macak J M, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P. Curr. Opin. Solid State Mater. Sci., 2007, 11:3.
[54] Regonini D, Bowen C R, Jaroenworaluck A, Stevens R. J. Mater. Res., 2008, 23:2116.
[55] Mazzarolo A, Curioni M, Vicenzo A, Skeldon P, Thompson G E. Electrochim. Acta, 2012, 75:288.
[56] Gong D, Grimes C G, Varghese O K, Hu W, Singh R S, Chen Z, Dickey E C. J. Mater. Res. 2001, 16:3331.
[57] Jaroenworaluck A, Regonini D, Bowen C R, Stevens R, Allsopp D. J. Mater. Sci., 2007, 42:6729.
[58] Macak J M, Sirotna K, Schmuki P. Electrochim. Acta, 2005, 50:3679.
[59] Ruan C, Paulose M, Varghese O K, Mor G K, Grimes C A. J. Phys. Chem. B, 2005, 109:15754.
[60] Macak J M, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P. Angew. Chem. Int. Ed., 2005, 44:7463.
[61] Prakasam H E, Shankar K, Paulose M, Varghese O K, Grimes C A. J. Phys. Chem. C, 2007, 111:7235.
[62] Macak J M, Albu S P, Schmuki P. Phys. Status Solidi-R, 2007, 1:181.
[63] Shin Y, Lee S. Nano lett., 2008, 8:3171.
[64] Yasuda K, Macak J M, Berger S, Ghicov A, Schmuki P. J. Electrochem. Soc., 2007, 154:C472.
[65] Jha H, Hahn R, Schmuki P. Electrochim. Acta, 2010, 55:8883.
[66] Fahim N F, Sekino T. Chem. Mater., 2009, 21:1967.
[67] Ishibashi K I, Yamaguchi R T, Kimura Y, Niwano M. J. Electrochem. Soc. 2008, 155:K10.
[68] LeClere D J, Velota A, Skeldon P, Thompson G E, Berger S, Kunze J, Schmuki P, Habazaki H, Nagata S. J. Electrochem. Soc. 2008, 155:C487.
[69] Nguyen Q A, Bhargava Y V, Devine T M. Electrochem. Commun., 2008, 10:471.
[70] Richter C, Wu Z, Panaitescu E, Willey R J, Menon L. Adv. Mater., 2007, 19:946.
[71] Richter C, Panaitescu E, Willey R, Menon L. J. Mater. Res., 2007, 22:1624.
[72] Panaitescu E, Richter C, Menon L. J. Electrochem. Soc., 2008, 155:E7.
[73] Hahn R, Lee H, Kim D, Narayanan S, Berger S, Schmuki P. ECS Trans., 2008, 16:369.
[74] Fahim N F, Sekino T, Morks M F, Kusunose T. J. Nanosci. Nanotechnol., 2009, 9:1803.
[75] Skeldon P, Thompson G E, Garcia-Vergara S J, Iglesias-Rubianes L, Blanco-Pinzon C E. Electrochem. Solid. St., 2006, 9(1):B47.
[76] Garcia-Vergara S J, Skeldon P, Thompson G, Habazaki H. Electrochim. Acta, 2006, 52:681.
[77] Zhang S Y, Yu D L, Li D, Song Y, Che J, You S, Zhu X F. Electrochem. Soc., 2014, 161:E135.
[78] Thompson G E. Thin Solid Films, 1997, 297:192.
[79] Xing J H, Li H, Xia Z B, Chen J Q, Zhang Y H, Zhong L. Electrochim. Acta, 2014, 134:242.
[80] Ghicov A, Schmuki P. Chem. Commun., 2009, 20:2791.
[81] Krengvirat W, Sreekantan S, Noor A. Electrochim. Acta, 2013, 89:585.
[82] Regonini D. Doctoral Dissertation of University of Bath, 2008.
[83] Oh J, Thompson C V. Electrochim. Acta, 2011, 56:4044.
[84] Chen B, Hou J, Lu K. Langmuir, 2013, 29:5911.
[85] Crossland A C, Habazaki H, Shimizu K, Skeldon P, Thompson G E, Wood G C, Zhou X, Smith C J E. Corros. Sci., 1999, 41:1945.
[86] Zhou X S, Thompson G E, Habazaki H, Páez M, Shimizu K, Skeldon P. J. Electrochem. Soc., 2000, 147:1747.
[87] Regonini D, Bowen C R, Jaroenworaluck A, Stevens R. Mater. Sci. Eng. R, 2013, 74:377.
[88] Hebert K R, Albu S P, Paramasivam I, Schmuki P. Nat. Mater., 2012, 11:162.
[89] Yang J, Huang H T, Lin Q F, Lu L F, Chen X Y, Yang L Y, Zhu X F, Fan Z Y, Song Y, Li D D. ACS Appl. Mater. Interfaces, 2014, 6(4):2285.
[90] Albella J M, Montero I, Martinez-Duart J M. Electrochim. Acta, 1987, 32:255.
[91] Zhang Y L, Yu D L, Gao M, Li D, Song Y, Jin R, Ma W H, Zhu X F. Electrochim. Acta, 2015, 160:33.
[92] Zhu X F, Liu L, Song Y, Jia H B, Yu H D, Xiao X M, Yang X L. Monatsh. Chem., 2008, 139:999.
[93] Yang X L, Zhu X F, Jia H B, Han T. Monatsh. Chem., 2009, 140:595.
[94] Zhu X F, Song Y, Liu L, Wang C Y, Zheng J, Jia H B, Wang X L. Nanotechnology, 2009, 20:475303.
[95] Liu Z, Liu H, Hashimoto T, Thompson G E, Skeldon P. Mater. Charact., 2014, 98:102.
[96] Overmeere Q V, Proost J. Electrochim. Acta, 2010, 55:4653.
[97] Regonini D, Satka A, Jaroenworaluck A, Allsopp D W, Bowen C R, Stevens R. Electrochim. Acta, 2012, 74:244.
[98] Li D D, Zhao L A, Jiang C H, Lu J G. Nano Lett., 2010, 10:2766.
[99] Ispas A, Bund A, Vrublevsky I. J. Solid State Electrochem., 2010, 14:2121.
[100] Yang R Q, Jiang L F, Zhu X F, Song Y, Yu D L, Han A J. RSC Adv., 2012, 2:12474.
[101] Matykina E, Arrabal R, Skeldon P, Thompson G E, Habazaki H. Thin Solid Films, 2008, 516:2296.
[102] Habazaki H, Uozumi M, Konno H, Shimizu K, Skeldon P, Thompson G E. Corros. Sci., 2003, 45:2063.
[103] Bustelo M, Fernández B, Pisonero J, Pereiro R, Bordel N, Vega V, Prida V M, Sanz-Medel A. Anal. Chem., 2011, 83:329.
[104] Yu D L, Zhu X F, Xu Z, Zhong X M, Gui Q F, Song Y, Zhang S Y, Chen X Y, Li D D. ACS Appl. Mater. Interfaces, 2014, 6:8001.
[105] Garcia-Vergara S J, Habazaki H, Skeldon P, Thompson G E. Electrochim.Acta, 2010, 55:3175.
[106] Li Y, Shimada H, Sakairi M, Shigyo K, Takahashi H, Seo M. J. Electrochem. Soc., 1997, 144:866.
[107] Garcia-Vergara S J, El Khazmi K, Skeldon P, Thompson G E. Corros. Sci., 2006, 48:2937.
[108] Chong B, Yu D L, Gao M Q, Fan H W, Yang C Y, Ma W H, Zhang S Y, Zhu X F. J. Electrochem. Soc., 2015, 162:H244.
[109] Chong B, Yu D L, Jin R, Wang Y, Li D D, Song Y, Gao M Q, Zhu X F. Nanotechnology, 2015, 26:145603.
[110] Hoar T P, Yahalom J. J. Electrochem. Soc., 1963, 110:614.
[1] Yongdong Xu, Zhidan Liu. Formation Mechanism and Resource Recovery Perspectives of Aqueous Phase from Hydrothermal Liquefaction of Biomass [J]. Progress in Chemistry, 2021, 33(11): 2150-2162.
[2] Yujue Wang, Min Hu, Xiao Li, Nan Xu. Chemical Composition, Sources and Formation Mechanisms of Particulate Brown Carbon in the Atmosphere [J]. Progress in Chemistry, 2020, 32(5): 627-641.
[3] Yangrong Yao, Suyuan Xie. Structures and Progress of Carbon Clusters [J]. Progress in Chemistry, 2019, 31(1): 50-62.
[4] Lijuan Jin, Baoliang Chen*. Natural Origins, Concentration Levels, and Formation Mechanisms of Organohalogens in the Environment [J]. Progress in Chemistry, 2017, 29(9): 1093-1114.
[5] Dewen Han, Xintong Wang, Fashuai Ju, Yangjun Wang, Jialiang Feng, Wu Wang. Organosulfates in PM2.5 [J]. Progress in Chemistry, 2017, 29(5): 530-538.
[6] Zhang He, Zhang Chi, Song Ye. Fabrication of Anodic Titania Nanotube Arrays with Tunable Morphologies [J]. Progress in Chemistry, 2016, 28(6): 773-783.
[7] Li Licheng, Fang Dong, Li Guangzhong, Liu Ruina, Liu Suqin, Xu Weilin. Mechanism and Influence Factors of Valve-Metal Oxide Nanotube Arrays Prepared by Anodization Process [J]. Progress in Chemistry, 2016, 28(4): 589-606.
[8] Zhan Hao, Zhang Xiaohong, Yin Xiuli, Wu Chuangzhi. Formation of Nitrogenous Pollutants during Biomass Thermo-Chemical Conversion [J]. Progress in Chemistry, 2016, 28(12): 1880-1890.
[9] Guo Huihui, Miao Nana, Li Tengfei, Hao Jun, Gao Yuan, Zhang Jianjun. Pharmaceutical Coamorphous——A Newly Defined Single-Phase Amorphous Binary System [J]. Progress in Chemistry, 2014, 26(0203): 478-486.
[10] Zhu Xufei, Han Hua, Qi Weixing, Lu Chao, Jiang Longfei, Duan Wenqiang. Theoretical Foundation and Limitation of Two-Step Anodizing Technology [J]. Progress in Chemistry, 2012, 24(11): 2073-2086.
[11] Li Xiangzi, Wei Xianwen. Fabrication, Formation Mechanisms and Potential Applications of Magnetic Metal Nanotubes [J]. Progress in Chemistry, 2012, 24(11): 2143-2157.
[12] Ma Ye, Chen Jianmin, Wang Lin. Characteristics and Formation Mechanisms of Atmospheric Organosulfates [J]. Progress in Chemistry, 2012, 24(11): 2277-2286.
[13] Fang Qile, Chen Baoliang*. Natural Origins, Formation Mechanisms, and Fate of Environmental Perchlorate [J]. Progress in Chemistry, 2012, (10): 2040-2053.
[14] Zhang Zhilei, Wang Zhining, Gao Xueli, Gao Congjie. Progress in Supported Phospholipid Bilayers [J]. Progress in Chemistry, 2012, 24(05): 852-862.
[15] Hu Lei, Sun Yong, Lin Lu. Ionic Liquids-Mediated Formation of 5-Hydroxymethylfurfural [J]. Progress in Chemistry, 2012, 24(04): 483-491.