中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (4): 337-347 DOI: 10.7536/PC170119 Previous Articles   Next Articles

• Review •

Substrate Induced Atomic and Electronic Structures of Borophene, Silicene, and Germanene

Longjuan Kong, Hui Li*   

  1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 11334011).
PDF ( 615 ) Cited
Export

EndNote

Ris

BibTeX

Graphene has brought a storm of discoveries of 2-dimentional (2D) materials with exotic physical properties. To date, some new elemental 2D materials with extraordinary physical properties and applications, such as silicene, germanene, and borophene, have been experimentally grown on metal substrates. However, both atomic and electronic structures of substrate supported 2D materials are drastically different from their freestanding counterparts, due to the substrate-material interactions. Therefore, first-principles calculation is employed to probe such kind of interaction, as well as the substrate induced properties of 2D materials. The goal of this review is to provide a concise review of the works from the authors and collaborators about the recent theoretical advances in properties of silicene, germanene, and borophene on metal substrates. We also give a prospect in this field.

Contents
1 Introduction
2 The main physical properties of borophene on Ag(111)
2.1 The structure of borophene
2.2 The electronic properties of borophene
3 The main physical properties of silicene
3.1 The structure of monolayered silicene on Ag(111)
3.2 The atomic and electronic properties of multilayered silicene
3.3 The topological properties of reconstructed pure √3surface
3.4 The functionalized silicene
4 The main physical properties of germanene on Sb(111)
5 Conclusion

CLC Number: 

[1] Geim A K, Novoselov K S. Nat. Mater., 2007, 6: 183.
[2] Zhang Y, Tan Y W, Stormer H L, Kim P. Nature, 2005, 438: 201.
[3] Son Y W, Cohen M L, Louie S G. Nature, 2006, 444: 347.
[4] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K. Nano Letters, 2012, 12: 3507.
[5] Mak K F, Lee C, Hone J, Shan J, Heinz T F. Phys. Rev. Lett., 2010, 105: 136805.
[6] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y. Nat. Nano, 2014, 9: 372.
[7] Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K. Nat. Chem., 2016, 8: 563.
[8] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y, Wu K. Physical Review Letters, 2012, 109: 056804.
[9] Chen L, Li H, Feng B, Ding Z, Qiu J, Cheng P, Wu K, Meng S. Physical Review Letters, 2013, 110: 085504.
[10] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y, Wu K. Physical Review Letters, 2013, 110: 229702.
[11] Chen L, Feng B, Wu K. Applied Physics Letters, 2013, 102: 081602.
[12] Feng B, Li H, Liu C C, Shao T N, Cheng P, Yao Y, Meng S, Chen L, Wu K. ACS Nano, 2013, 7: 9049.
[13] Liu Y, Penev E S, Yakobson B I. Angew. Chem. Int. Ed. Engl., 2013, 52: 3156.
[14] Fu H, Chen L, Chen J, Qiu J, Ding Z, Zhang J, Wu K, Li H, Meng S. Nanoscale, 2015, 7: 15880.
[15] Wang X J, Tian J F, Yang T Z, Bao L H, Hui C, Liu F, Shen C M, Xu N S, Gao H J. Advanced Materials, 2007, 19: 4480.
[16] Liu F, Shen C, Su Z, Ding X, Deng S, Chen J, Xu N, Gao H. Journal of Materials Chemistry, 2010, 20: 2197.
[17] Wu X, Dai J, Zhao Y, Zhuo Z, Yang J, Zeng X C. ACS Nano, 2012, 6: 7443.
[18] Özdo?an C, Mukhopadhyay S, Hayami W, Güvenç Z B, Pandey R, Boustani I. The Journal of Physical Chemistry C, 2010, 114: 4362.
[19] Zhai H J, Zhao Y F, Li W L, Chen Q, Bai H, Hu H S, Piazza Z A, Tian W J, Lu H G, Wu Y B, Mu Y W, Wei G F, Liu Z P, Li J, Li S D, Wang L S. Nat. Chem., 2014, 6: 727.
[20] Penev E S, Bhowmick S, Sadrzadeh A, Yakobson B I. Nano Letters, 2012, 12: 2441.
[21] Guzmán-Verri G G, Lew Yan Voon L C. Physical Review B, 2007, 76: 075131.
[22] Motohiko E. New Journal of Physics, 2012, 14: 033003.
[23] Liu C C, Feng W, Yao Y. Physical Review Letters, 2011, 107: 076802.
[24] Fu H, Ren J, Chen L, Si C, Qiu J, Li W, Zhang J, Sun J, Li H, Wu K, Duan W, Meng S. EPL (Europhysics Letters), 2016, 113: 67003.
[25] Liu F, Liu C C, Wu K, Yang F, Yao Y. Physical Review Letters, 2013, 111: 066804.
[26] Pan H, Li Z, Liu C C, Zhu G, Qiao Z, Yao Y. Physical Review Letters, 2014, 112: 106802.
[27] Fu H, Zhang J, Ding Z, Li H, Meng S. Applied Physics Letters, 2014, 104: 131904.
[28] Bai J, Tanaka H, Zeng X C. Nano Research, 2010, 3: 694.
[29] Chen J, Du Y, Li Z, Li W, Feng B, Qiu J, Cheng P, Xue D S, Chen L, Wu K. Scientific Reports, 2015, 5: 13590.
[30] De Padova P, Avila J, Resta A, Razado-Colambo I, Quaresima C, Ottaviani C, Olivieri B, Bruhn T, Vogt P, Asensio M C, Le Lay G. Journal of Physics: Condensed Matter, 2013, 25: 382202.
[31] Vogt P, Capiod P, Berthe M, Resta A, De Padova P, Bruhn T, Le Lay G, Grandidier B. Applied Physics Letters, 2014, 104: 021602.
[32] De Paola P, Carlo O, Claudio Q, Bruno O, Patrizia I, Eric S, Thierry A, Lucia Q, Claudia R, Alessandro V, Maurizio M M, Amanda G, Barbara P, Le Lay G. 2D Materials, 2014, 1: 021003.
[33] Fu H, Liu Z, Lian C, Zhang J, Li H, Sun J T, Meng S. Physical Review B, 2016, 94: 035427.
[34] Yao Y, Ye F, Qi X L, Zhang S C, Fang Z. Physical Review B, 2007, 75: 041401.
[35] Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P, Pirri C. Nano Letters, 2015, 15: 2510.
[36] Dávila M E, Xian L, Cahangirov S, Rubio A, Le Lay G. New Journal of Physics, 2014, 16: 095002.
[37] Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S, Gao H J. Adv. Mater., 2014, 26: 4820.
[38] Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M, Takagi N. Physical Review Letters, 2013, 110: 076801.
[39] Gou J, Zhong Q, Sheng S, Li W, Cheng P, Li H, Chen L, Wu K. 2D Materials, 2016, 3: 045005.
[40] Wu K H. Chinese Physics B, 2015, 24: 086802.
[41] Jiang W L Z, Zhou M, Ni X, Liu F. arXiv preprint arXiv:1612.01240, 2016.
[42] Tsoutsou D, Xenogiannopoulou E, Golias E, Tsipas P, Dimoulas A. Applied Physics Letters, 2013, 103: 231604.
[43] Thouless D J, Kohmoto M, Nightingale M P, den Nijs M. Physical Review Letters, 1982, 49: 405.
[44] Yao Y, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E, Niu Q. Physical Review Letters, 2004, 92: 037204.
[1] Rui Wang, Guoan Tai, Zenghui Wu, Wei Shao, Chuang Hou, Jinqian Hao. Theoretical and Experimental Research of Boron Nanostructures [J]. Progress in Chemistry, 2019, 31(12): 1696-1711.