中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (2/3): 198-205 DOI: 10.7536/PC170712 Previous Articles   Next Articles

• Review •

Applications of Halloysite Nanotubes in Separation and Enrichment

Huadong Zhang, Gongke Li*, Yufei Hu*   

  1. School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21675178, 21475153, 21575167), the Guangdong Provincial Natural Science Foundation(No. 2015A030311020, 2016A030313358), the Special Funds for Public Welfare Research and Capacity Building in Guangdong Province of China(No. 2015A030401036), and the Guangzhou Minsheng Science and Technology Major Project of China(No.201604020165).
PDF ( 990 ) Cited
Export

EndNote

Ris

BibTeX

Halloysite nanotubes(HNTs), as a natural nano-tubular material, with a variety of advantages, such as environmental friendliness, biocompatibility, low cytotoxicity and so on, have been widely used in recent years. As a kind of biocompatible "green" material, because of their low cost and abundant natural resources, HNTs can be used as excellent additives for biomaterials. Besides, nano-tubular structure, surface charge and adsorption properties provide favorable conditions for separation and enrichment of metal ions, dyes, organic compounds and so on. Even better, HNTs and HNTs-derived biomaterials have been used as absorbents to capture circulating tumor cells in recent studies. For better understanding and utilize the nanotube, we introduce the structure and properties of HNTs in detail, and review their application in separation, loading and controlled release of active molecules, etc. in this paper. Finally, we give a conclusion that HNTs own a splendid perspectives on future opportunities and promising applications.
Contents
1 Introduction
2 Structure and properties of halloysite nanotubes
2.1 General Structure
2.2 Main Properties
3 Application of halloysite nanotubes in detection
3.1 Application in detection of heavy metal ions
3.2 Application in detection of compounds
4 Application of halloysite nanotubes in enrichment
4.1 Enrichment of dyes
4.2 Enrichment of functional compounds
4.3 Enrichment of tumor cells
5 Conclusion

CLC Number: 

[1] Münzer A M, Michael Z P, Star A. ACS Nano, 2013, 7(9):7448.
[2] Xiao F X, Hung S F, Miao J W, Wang H Y, Yang H B, Liu B. Small, 2015, 11(5):554.
[3] Mollaamin F. J. Comput. Theor. Nanos., 2014, 11(11):2393.
[4] Berthier P. Annales de Chimie et de Physique, 1826, 32:332.
[5] Liu M X, Jia Z X, Jia D M, Zhou C R. Prog. Polym. Sci., 2014, 39(8):1498.
[6] Yu L, Wang H X, Zhang Y T, Zhang B, Liu J D. Environ. Sci. Nano, 2016, 3(1):28.
[7] Krawczyk-Coda M. Spectrochim. Acta Part B:At. Spectrosc., 2017, 129:21.
[8] Massaro M, Colletti C G, Lazzara G, Guernelli S, Noto R, Riela S. ACS Sustainable Chem. Eng., 2017, 5(4):3346.
[9] Abolghasemi M M, Arsalani N, Yousefi V, Arsalani M, Piryaei M. J. Sep. Sci., 2016, 39(5):956.
[10] Feng K Y, Hong G Y, Liu J S, Li M Q, Zhou C R, Liu M X. Chem. Eng. J., 2018, 331:744.
[11] Yang J, Wu Y P, Shen Y, Zhou C R, Li Y F, He R R, Liu M X. ACS Appl. Mater. Interfaces, 2016, 8(40):26578.
[12] Lvov Y, Wang W C, Zhang L Q, Fakhrullin R. Adv. Mater., 2015, 28(6):1227.
[13] Pauling L. Proc. Natl. Acad. Sci.U.S.A., 1930, 16:578.
[14] 牛继南(Niu J N), 强颖怀(Qiang Y H), 王春阳(Wang C Y), 李祥(Li X), 周一浩(Zhou Y H), 商翔宇(Shang X Y), 庄全超(Zhuang Q C). 矿物学报(Acta Mineralogica Sinica), 2014, (1):13.
[15] Yuan P, Tan D Y, Annabi-Bergaya F. Appl. Clay Sci., 2015, 112/113:75.
[16] Lvov Y, Abdullayev E. Prog. Polym. Sci., 2013, 38(10/11):1690.
[17] Lvov Y M, Shchukin D G, Möhwald H, Price R R. ACS Nano, 2008, 2(5):814.
[18] Abdullayev E, Joshi A, Wei W B, Zhao Y F, Lvov Y. ACS Nano, 2012, 6(8):7216.
[19] Carli L N, Daitx T S, Soares G V, Crespo J S, Mauler R S. Appl. Clay Sci., 2014, 87:311.
[20] Guimarães L, Enyashin A N, Frenzel J, Heine T, Duarte H A, Seifert G. ACS Nano, 2007, 1(4):362.
[21] Guimaraães L, Enyashin A N, Seifert G, Duarte H A. J. Phys. Chem. C, 2010, 114(26):11358.
[22] Piperno S, Kaplan-Ashiri I, Cohen S R, Popovitz-Biro R, Wagner H D, Tenne R, Foresti E, Lesci I G, Roveri N. Adv. Funct. Mater., 2010, 17(16):3332.
[23] Tully J, Yendluri R, Lvov Y. Biomacromolecules, 2016, 17(2):615.
[24] Peixoto A F, Fernandes A C, Pereira C, Pires J, Freire C. Micropor. Mesopor. Mater., 2016, 219:145.
[25] Churchman G J, Davy G J, Aylmore T J, Gilkes L, Self R J. Clay Miner., 1995, 30(2):89.
[26] Sing K S W. Pure Appl. Chem., 1985, 57(4):603.
[27] Zhang A B, Pan L, Zhang H Y, Liu S T, Ye Y, Xia M S, Chen X G. Colloids Surface A, 2012, 396(7):182.
[28] Zhou T Z, Li C P, Jin H L, Lian Y Y, Han W M. ACS Appl. Mater. Interfaces, 2017, 9(7):6030.
[29] Ferrante F, Armata N, Cavallaro G, Lazzara G. J. Phys. Chem. C, 2017, 121(5):2951.
[30] Shu Z, Chen Y, Zhou J, Li T T, Sheng Z M, Tao C W, Wang Y X. Appl. Clay. Sci., 2016, 132:114.
[31] Massaro M, Lazzara G, Milioto S, Noto R, Riela S. J. Mater. Chem. B, 2017, 5(16):2867.
[32] Vergaro V, Abdullayev E, Lvov Y M, Zeitoun A, Cingolani R, Rinaldi R, Leporatti S. Biomacromolecules, 2010, 11(3):820.
[33] Liu M X, Wu C C, Jiao Y P, Xiong S, Zhou C R. J. Mater. Chem. B, 2013, 1(15):2078.
[34] Huang B, Liu M X, Long Z R, Shen Y, Zhou C R. Mater. Sci. Engineering C, 2017, 70:303.
[35] Fayazi M, Taher M A, Afzali D, Mostafavi A. Sens. Actuators. B Chem., 2016, 228:1.
[36] Amjadi M, Samadi A, Manzoori J L, Arsalani N. Anal. Methods, 2015, 7(14):5847.
[37] Samadi A, Amjadi M. J. Appl. Spectrosc., 2016, 83(3):1.
[38] Li R J, Hu Z, Zhang S R, Li Z H, Chang X J. Int. J. Environ. Anal. Chem., 2013, 93(7):767.
[39] He Q, Yang D, Deng X L, Wu Q, Li R J, Zhai Y H, Zhang L J. Water Res., 2013, 47(12):3976.
[40] Li R J, He Q, Hu Z, Zhang S R, Zhang L J, Chang X J. Anal. Chim. Acta, 2012, 713(3):136.
[41] Amjadi M, Samadi A, Manzoori J L. Microchim. Acta, 2015, 182(9):1.
[42] Saraji M, Jafari M T, Mossaddegh M. Anal. Chim. Acta, 2016, 926:55.
[43] Saraji M, Jafari M T, Mossaddegh M. Anal. Chim. Acta, 2017, 964:85.
[44] Zhong S A, Zhou C Y, Zhang X N, Zhou H, Li H, Zhu X H, Wang Y. J. Hazard. Mater., 2014, 276:58.
[45] Wang H B, Zhao X P, Wang S F, Tao S, Ai N, Wang Y. J. Chromatogr. A, 2015, 1392:20.
[46] Chang J, Xiao W, Liu P, Liao X N, Wen Y P, Bai L, Li L J, Li M F. J. Electroanal. Chem., 2016, 780:103.
[47] Li Y Y, Tian L H, Liu L, Liu L, Li J J, Wei Q, Cao W. New J. Chem., 2016, 40(1):558.
[48] Cao H M, Sun X M, Zhang Y, Jia N Q. Anal. Biochem., 2012, 430(2):111.
[49] Yao Y J, Xu F F, Chen M, Xu Z X, Zhu Z W. Bioresour. Technol., 2010, 101:3040.
[50] Robati D, Mirza B, Ghazisaeidi R, Rajabi M, Moradi O, Tyagi I, Agarwal S, Gupta V K. J. Mol. Liq., 2016, 216, 830.
[51] Xiong L, Yang Y, Mai J X, Sun W L, Zhang C Y, Wei D P, Chen Q, Ni J R. Chem. Eng. J., 2010, 156(2):313.
[52] Ghosh D, Bhattacharyya K G. Appl. Clay Sci., 2002, 20(6):295.
[53] Zhao M F, Liu P. Micropor. Mesopor. Mater., 2008, 112:419.
[54] Luo P, Zhao Y F, Zhang B, Liu J D, Yang Y, Liu J F. Water Res., 2010, 44(5):1489.
[55] Zhao Y F, Abdullayev E, Vasiliev A, Lvov Y. J. Colloid Interface Sci., 2013, 406(18):121.
[56] Peng Q, Liu M X, Zheng J W, Zhou C R. Micropor. Mesopor. Mater., 2015, 201:190.
[57] Xie Y F, Qian D Y, Wu D L, Ma X F. Chem. Eng. J., 2011, 168(2):959.
[58] Hu Q, Yu J C, Liu M, Liu A P, Dou Z S, Yang Y. J. Med. Chem., 2014, 57(13):5679.
[59] Das M, Singh R P, Datir S R, Jain S. Bioconjug. Chem., 2013, 24(4):626.
[60] Shanmugam V, Chien Y H, Cheng Y S, Liu T Y, Huang C C, Su C H, Chen Y S, Kumar U, Hsu H F, Yeh C S. ACS Appl. Mater. Interfaces, 2014, 6(6):4382.
[61] Kruif J K, Ledergerber G, Garofalo C, Fasler-Kan E, Kuentz M. Eur. J. Pharm. Biopharm., 2016, 101:90.
[62] Kelly H M, Deasy P E, Claffey N. Int. J. Pharm., 2004, 274(2):167.
[63] Liu M X, Chang Y Z, Yang J, You Y Y, He R, Chen T F, Zhou C R. J. Mater. Chem. B, 2016, 4(13):2253.
[64] Guo M Y, Wang A F, Muhammad F, Qi W X, Ren H, Guo Y J, Zhu G S. Chin. J. Chem., 2012, 30(9):2115.
[65] Rao K M, Nagappan S, Seo D J, Ha C S. Appl. Clay. Sci., 2014, s97/98:33.
[66] Vergaro V, Lvov Y M, Leporatti S. Macromol. Biosci., 2012, 12(9):1265.
[67] Dzamukova M R, Naumenko E A, Lvov Y M, Fakhrullin R F. Sci. Rep., 2015, 5:10560.
[68] Tan D Y, Yuan P, Annabi-Bergaya F, Yu H G, Liu D, Liu H M, He H P. Micropor. Mesopor. Mater., 2013, 179(10):89.
[69] Li H, Zhu X H, Xu J F, Peng W, Zhong S A, Wang Y. RSC Adv., 2016, 6(59):54463.
[70] Luo Y Y, Mills D K. Southern Biomedical Engineering Conference. IEEE, 2016, 76.
[71] Tu J X, Cao Z, Jing Y H, Fan C J, Zhang C, Liao L Q, Liu L J. Compos. Sci. Technol., 2013, 85(9):126.
[72] Noein L, Haddadi-Asl V, Salami-Kalajahi M. Int. J. Polymer Mater. Polymer Biomater., 2017, 66(3):123.
[73] Duce C, Della Porta V, Bramanti E, Campanella B, Spepi A, Tine M R. Nanotechnology, 2016, 28(5):055706.
[74] Lee I W, Li J L, Chen X G, Park H J. J. Appl. Polym. Sci., 2015, 133(4):42900.
[75] Lee M H, Park H J. J. Appl. Polym. Sci., 2015, 132(46):132.
[76] Cavallaro G, Grillo I, Gradzielski M, Lazzara G. J. Phys. Chem. C, 2016, 120(25):13492.
[77] Massaro M, Riela S, Guernelli S, Parisi F, Lazzara G, Baschieri A, Valgimigli L, Amorati R. J. Mater. Chem. B, 2016, 4(13):2229.
[78] Eccles S A, Welch D R. Lancet, 2007, 369(9574):1742.
[79] Dey S, Vaidyanathan R, Carrascosa L G, Shiddiky M J A, Trau M. ACS Sensor, 2016, 1:399.
[80] Hughes A D, King M R. Langmuir, 2010, 26(14):12155.
[81] Mitchell M J, Castellanos C A, King M R. Biomaterials, 2015, 56:179.
[82] Liu M X, He R, Yang J, Zhao W, Zhou C R. ACS Appl. Mater. Interfaces, 2016, 8(12):7709.
[83] He R, Liu M X, Shen Y, Long Z R, Zhou C R. J. Mater. Chem. B, 2017, 5(9):1712.
[1] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[2] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[3] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[4] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[5] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[6] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[7] Dechao Wang, Yangyang Xin, Xiaoqian Li, Dongdong Yao, Yaping Zheng. Porous liquids and Their Applications in Gas Capture and Separation [J]. Progress in Chemistry, 2021, 33(10): 1874-1886.
[8] Shan Guo, Xiang Zhou. Detection of Circulating Tumor Cell in Vivo:Technology and Application [J]. Progress in Chemistry, 2021, 33(1): 1-12.
[9] Bo Li, Lijian Ma, Ning Luo, Shoujian Li, Yunming Chen, Jinsong Zhang. Extraction and Separation of Uranium via Solid Phase Extraction [J]. Progress in Chemistry, 2020, 32(9): 1316-1333.
[10] Fengfeng Gao, Yanyan Yang, Xiao Du, Xiaogang Hao, Guoqing Guan, Bing Tang. Electrically Switched Ion Membrane for Ion Selective Separation and Recovery: From ESIX to ESIPM [J]. Progress in Chemistry, 2020, 32(9): 1344-1351.
[11] Guohua Xu, Kai Cheng, Chen Wang, Conggang Li. Multi-Hierarchical Structural Characterization of Biological Condensed Matters [J]. Progress in Chemistry, 2020, 32(8): 1231-1239.
[12] Runtian Wang, Chunli Liu, Zhenbin Chen. Imprinted Composite Membranes [J]. Progress in Chemistry, 2020, 32(7): 989-1002.
[13] Xiaojian Li, Haijun Zhang, Saisai Li, Jun Zhang, Quanli Jia, Shaowei Zhang. Preparation of Superhydrophilic and Oleophobic Materials and Their Oil-Water Separation Properties [J]. Progress in Chemistry, 2020, 32(6): 851-860.
[14] Yang Liu, Xinbo Zhang, Yingcan Zhao. Two-Dimensional MoS2 Nanomaterials and Applications in Water Treatment [J]. Progress in Chemistry, 2020, 32(5): 642-655.
[15] Heli Wang, Meihua Zhu, Li Liang, Ting Wu, Fei Zhang, Xiangshu Chen. Preparation and Gas Separation Performance of SSZ-13 Zeolite Membranes [J]. Progress in Chemistry, 2020, 32(4): 423-433.