中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (2/3): 422-432 DOI: 10.7536/PC180726 Previous Articles   Next Articles

Performance and Mechanism of Contaminants Removal by Carbon Materials-Modified Zerovalent Iron

Shuchang Wang1,2, Yadan Son1,2, Yuankui Sun1,2,**()   

  1. 1. State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
    2. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
  • Received: Online: Published:
  • Contact: Yuankui Sun
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21876129); National Natural Science Foundation of China(51608431)
Richhtml ( 24 ) PDF ( 711 ) Cited
Export

EndNote

Ris

BibTeX

Nanoscale zero-valent iron(nZVI) is always considered to be a promising technology for water and soil remediation, due to its high reactivity and good adsorption ability. However, given the high surface energy and intrinsic magnetic interactions, unstabilized nZVI tends to aggregate and thus causes poor mobility and lower reactivity, which limits its further development and application. To address these issues, prior and ongoing research efforts have provided several promising strategies that can potentially improve the performance of nZVI. Among of them, carbon based materials such as surfactants, polymers and porous carbon materials are commonly used to modify the surface properties of nZVI, considering carbon based materials always have superior adsorption ability, stability, electron conductivity, etc. Accordingly, this review comprehensively summarizes the modification methods with different carbon materials. Moreover, the influence of surface modification on the mobility, reactivity and especially the selectivity(electron efficiency) of nZVI is discussed in detail. It can be concluded that, for the successful application of nZVI, the mobility and selectivity of nZVI are still the bottleneck factors, although they can be enhanced by the modification with carboxymethyl cellulose, starch, activated carbon and also other carbon based materials. Therefore, future research may attempt to explore some more effective modification methods, such as with the combination of different carbon materials, to improve the mobility and selectivity of nZVI.

Fig. 1 Illustration of the major mechanisms of contaminants removal by zero-valent iron[14]
Fig. 2 Schematic representation of(a) surface modification stabilization(where surface coating facilitates particle repulsion), and(b) network stabilization(where a medium network is formed due to hydrogen bonding and polymer entanglements)[30]
Fig. 3 Schematic illustration for the fabrication of GAC/ZVI/Pd[37]
Fig. 4 Schematic illustration for the fabrication of polystyrene resin-supported nZVI[41]
Fig. 5 Schematic illustration for the fabrication of ordered mesoporous carbon-supported nZVI[10]
Fig. 6 Schematic illustration for the fabrication of polystyrene resin-supported nZVI[46]
Fig. 7 Composite photograph of water samples taken from the first three sample wells over the time period of the injection test. Rectangular markers highlight the location of the two color transitions that indicate breakthrough of CMC/nZVIox(yellow) and CMC/nZVI(black)[50]
Fig. 8 Sketch of the Fe-AC composite material Carbo-Iron and its transport in groundwater[39]
Fig. 9 Schematic illustration of the role of AC on TCE reduction by nZVI[67]
Table 1 Summary of data on the removal rate of various contaminants by bare nZVI and carbon-modified nZVI
nZVI type Cont. Reaction conditons kobs+C(h-1) kobs-C(h-1) ref
Coated nZVI CMC TCE TCE=50 mg/L, Fe0=0.1 g/L,0.1%Pd, CMC90 K 0.381 0.022 54
TCE=50 mg/L, Fe0=0.1 g/L,0.1%Pd, CMC250 K 0.557 0.022
TCE=50 mg/L, Fe0=0.1 g/L,0.1%Pd, CMC700 K 0.497 0.022
PVP TCE=50 mg/L, Fe0=0.1 g/L,0.1%Pd, PVP360 K 0.219 0.022
GG TCE=50 mg/L, Fe0=0.1 g/L,0.1%Pd, GG 0.05% 0.051 0.022
CMC TCE TCE=50 mg/L, Fe0=0.1 g/L 7.4 0.44 27
Starch TCE TCE=25 mg/L, Fe0=0.1 g/L 0.11 0.034 55
TCE=25 mg/L, Fe0=0.1 g/L, 0.1%Pd 3.7 0.9
PCB PCB=2.5 mg/L, Fe0=0.1 g/L, 0.1%Pd 0.029 0.017
CMC Pb(Ⅱ) Pb(Ⅱ)=200 mg/L, Fe0=0.75 g/L, pH=5.0 1.12 0.204 56
Starch Pb(Ⅱ)=200 mg/L, Fe0=0.75 g/L, pH=5.0 1.46 0.204
Agar Pb(Ⅱ)=200 mg/L, Fe0=0.75 g/L, pH=5.0 5.60 0.204
CMC NO3- NO3-=200 mg/L, Fe0=0.7 g/L, pH=~7.0 7.8 1.5 57
CMC ClO4- ClO4-=10 mg/L, Fe0=1.8 g/L, pH=~7.0, 110 ℃ 0.33 0.18 58
Starch ClO4-=10 mg/L, Fe0=1.8 g/L, pH=~7.0, 110 ℃ 0.984 0.1
Supported nZVI Graphene oxide CT CT=3 mg/L, Fe0=0.5 g/L, pH=5.5, T=10 ℃ 1.308 0.834 46
CT=3 mg/L, Fe0=0.5 g/L, pH=5.5, T=20 ℃ 2.166 1.404
CT=3 mg/L, Fe0=0.5 g/L, pH=5.5, T=30 ℃ 2.844 2.292
CT=3 mg/L, Fe0=0.5 g/L, pH=5.5, T=35 ℃ 3.618 2.862
CT=3 mg/L, Fe0=0.5 g/L, pH=5.5, T=40 ℃ 4.776 3.342
GAC TCE TCE=80 mg/L, Fe0=0.15 g/L, GAC-105 ℃ 339.6 9 36
TCE=80 mg/L, Fe0=0.15 g/L, GAC-700 ℃ 374.4 9
AC BrO3- BrO3-=0.2 mg/L, Fe0=5 g/L, pH=~7.0 13.62 8.84 59
BrO3-=0.2 mg/L, Fe0=5 g/L, pH=~7.0 29.4 8.84
BrO3-=0.2 mg/L, Fe0=5 g/L, pH=~7.0 36.7 8.84
Graphene oxide Cr(Ⅵ) Cr(Ⅵ)=25 mg/L, Fe0=1.0 mg/L 4.38 1.56 60
Fig. 10 Summary of the ratio of kinetic constants with and without carbon-modification for currently available data on contaminants removal by nZVI
Fig. 11 Schematic diagram of the electron-transfer processes in the reaction of Ox with ZVI/Fe(Ⅱ) open to the air[70]
Fig. 12 Proposed electron-transfer processes in Cr(Ⅵ) removal using the core-shell nZVI@C@PANI[66]
Table 2 Summary of the effects of typical carbon materials on modifying nZVI
Carbon-based materials Key properties Remarks ref
Surfactants SDBS Anionic surfactants electrostatic repulsion Relative weak stabilization effect; limited transportability in real soil; the introduced surfactants in the subsurface may solubilize/mobilize non-targeted contaminants 33
Tween 20 Nonionic surfactant Network stabilization 34
Synthetic polymers CMC Food grade polysaccharide. Nontoxic and biodegradable. Weak anionic functional groups(pKa=4.3). MW=90 or 700 kDa. CMC binds with nZVI through bidentate bridging. Very effective stabilization effect; better transportability than surfactant-coated nZVI; no enhancing effect on nZVI selectivity 23, 35, 40, 49, 50
PVP Neutral polyelectrolyte. MW=40 or 360 kDa. Less effective than CMC; may enhance transportability of nZVI; no enhancing effect on nZVI selectivity 54
Natural biopolymers Starch Neutral polysaccharide. nZVI-starch interactions and formation of intrastarch Fe clusters play a fundamental role in stabilizing nZVI. Effective stabilization effect; may enhance transportability of nZVI; no enhancing effect on nZVI selectivity 55, 58
Guar gum Neutral polysaccharide. It binds with nZVI via the hydroxyl groups. More effective stabilization effect than starch; may enhance transportability of nZVI; no enhancing effect on nZVI selectivity 54, 56
Solid supports AC Highly porous internal structure; ideal adsorption property. Ideal supports or vehicles for stabilizing and delivering nZVI into porous media; Carbo-Iron? could highly enhance ZVI selectivity; inexpensive 25, 39
Mesoporous carbon Ordered mesoporous carbon, high surface area, good electroconductivity. Good supports for stabilizing and delivering nZVI into porous media; may enhance ZVI selectivity; expensive 10, 43
Graphene oxide Consisting of a single layer of carbon atoms arranged in a hexagonal lattice. Good supports for stabilizing and delivering nZVI into porous media; could enhance ZVI reactivity and selectivity; expensive 45, 46
[1]
Wang C B, Zhang W X . Environ. Sci. Technol., 1997,31:2154.
[2]
Zou Y D, Wang X X, Khan A, Wang P Y, Liu Y H, Alsaedi A, Hayat T, Wang X K . Environ. Sci. Technol., 2016,50:7290. https://www.ncbi.nlm.nih.gov/pubmed/27331413

doi: 10.1021/acs.est.6b01897 pmid: 27331413
[3]
Li L Y, Hu J W, Shi X D, Fan M Y, Luo J, Wei X H . Environ. Sci. Pollu. Res., 2016,23:17880. https://www.ncbi.nlm.nih.gov/pubmed/27094266

doi: 10.1007/s11356-016-6626-0 pmid: 27094266
[4]
Stefaniuk M, Oleszczuk P, Ok Y S . Chem. Eng. J., 2016,287:618.
[5]
Matheson L J, Tratnyek P G . Abstracts of Papers of the American Chemical Society, 1994,207:135.
[6]
Su C M, Puls R W . Environ. Sci. Technol., 2001,35:1487. https://www.ncbi.nlm.nih.gov/pubmed/11348091

doi: 10.1021/es001607i pmid: 11348091
[7]
Wang W, Hua Y L, Li S L, Yan W L, Zhang W X . Chem. Eng. J., 2016,304:79.
[8]
Nam S, Tratnyek P G . Water Res., 2000,34:1837.
[9]
Agrawal A, Tratnyek P G . Environ. Sci. Technol., 1996,30:153. https://www.ncbi.nlm.nih.gov/pubmed/21648602

doi: 10.1021/es962168j pmid: 21648602
[10]
Teng W, Bai N, Liu Y, Liu Y P, Fan J W, Zhang W X . Environ. Sci. Technol., 2018,52:230. https://www.ncbi.nlm.nih.gov/pubmed/29215872

doi: 10.1021/acs.est.7b04775 pmid: 29215872
[11]
Xiang W, Zhang B, Zhou T, Wu X, Mao J . Sci. Rep., 2016,6:24094. https://www.ncbi.nlm.nih.gov/pubmed/27053228

doi: 10.1038/srep24094 pmid: 27053228
[12]
Xiong X, Sun B, Zhang J, Gao N, Shen J, Li J, Guan X . Water Res., 2014,62:53. https://www.ncbi.nlm.nih.gov/pubmed/24934323

doi: 10.1016/j.watres.2014.05.042 pmid: 24934323
[13]
Xiong X, Sun Y, Sun B, Song W, Sun J, Gao N, Qiao J, Guan X . RSC Adv., 2015,5:13357.
[14]
Guan X H, Y Sun K, Qin H J, Li J X, I M Lo, He D, Dong H R . Water Res., 2015,75:224. https://www.ncbi.nlm.nih.gov/pubmed/25770444

doi: 10.1016/j.watres.2015.02.034 pmid: 25770444
[15]
Li X Q, Elliott D W, Zhang W X . Crit. Rev. Solid State Mater. Sci., 2006,31:111.
[16]
Liu Y Q, Lowry G V . Environ. Sci. Technol., 2006,40:6085. https://www.ncbi.nlm.nih.gov/pubmed/17051804

doi: 10.1021/es060685o pmid: 17051804
[17]
Gu Y W, B B Wang, F He, M J Bradley, P G Tratnyek . Environ. Sci. Technol., 2017,51:12653. https://www.ncbi.nlm.nih.gov/pubmed/28984446

doi: 10.1021/acs.est.7b03604 pmid: 28984446
[18]
Fan D M, Johnson G O, Tratnyek P G, Johnson R L . Environ. Sci. Technol., 2016,50:9558. https://www.ncbi.nlm.nih.gov/pubmed/27454131

doi: 10.1021/acs.est.6b02170 pmid: 27454131
[19]
Li J, Zhang X, Liu M, Pan B, Zhang W, Shi Z, Guan X . Environ. Sci. Technol., 2018,52:2988. https://www.ncbi.nlm.nih.gov/pubmed/29446929

doi: 10.1021/acs.est.7b06502 pmid: 29446929
[20]
Lim T T, Zhu B W . Chemosphere, 2008,73:1471. https://www.ncbi.nlm.nih.gov/pubmed/18760820

doi: 10.1016/j.chemosphere.2008.07.050 pmid: 18760820
[21]
Muller K A, Esfahani S G, Chapra S C, Ramsburg C A . Environ. Sci. Technol., 2018,52:4256. https://www.ncbi.nlm.nih.gov/pubmed/29522321

doi: 10.1021/acs.est.7b06012 pmid: 29522321
[22]
Berge N D, Ramsburg C A . Environ. Sci. Technol., 2009,43:5060. https://www.ncbi.nlm.nih.gov/pubmed/19673307

doi: 10.1021/es900358p pmid: 19673307
[23]
He F, Zhao D Y . Environ. Sci. Technol., 2007,41:6216. https://www.ncbi.nlm.nih.gov/pubmed/17937305

doi: 10.1021/es0705543 pmid: 17937305
[24]
Xin J, Zheng X L, Han J, Shao H B, Kolditz O . Chem. Eng. J., 2015,271:164.
[25]
Bleyl S, Kopinke F D, Mackenzie K . Chem. Eng. J., 2012,191:588.
[26]
Zhang Y, Li Y M, Li J F, Hu L J, Zheng X M . Chem. Eng. J., 2011,171:526.
[27]
Sheng G D, Shao X Y, Li Y M, Li J F, Dong H P, Cheng W, Gao X, Huang Y Y . J. Phys. Chem. A, 2014,118:2952. https://www.ncbi.nlm.nih.gov/pubmed/24730556

doi: 10.1021/jp412404w pmid: 24730556
[28]
Tang J, Tang L, Feng H P, Dong H R, Zhang Y, Liu S S, Zeng G M . Acta Chim. Sinica, 2017,75:575.
[29]
Li J X, Zhang X Y, Sun Y K, Liang L P, Pan B C, Zhang W M, Guan X H . Environ. Sci. Technol., 2017,51:13533. https://www.ncbi.nlm.nih.gov/pubmed/29135239

doi: 10.1021/acs.est.7b02695 pmid: 29135239
[30]
Zhao X, Liu W, Cai Z Q, Han B, Qian T W, Zhao D Y . Water Res., 2016,100:245. https://www.ncbi.nlm.nih.gov/pubmed/27206054

doi: 10.1016/j.watres.2016.05.019 pmid: 27206054
[31]
He F, Zhao D Y . Applied Catalysis B-Environmental, 2008,84:533.
[32]
Phenrat T, Liu Y Q, Tilton R D, Lowry G V . Environ. Sci. Technol., 2009,43:1507. https://www.ncbi.nlm.nih.gov/pubmed/19350927

doi: 10.1021/es802187d pmid: 19350927
[33]
Saleh N, Sirk K, Liu Y Q, Phenrat T, Dufour B, Matyjaszewski K, Tilton R D, Lowry G V . Environ. Eng. Sci., 2007,24:45.
[34]
Kanel S R, Nepal D, Manning B, Choi H . J. Nanopart. Res., 2007,9:725.
[35]
He F, Zhao D Y, Liu J C, Roberts C B . Industrial & Engineering Chemistry Research, 2007,46:29.
[36]
Tseng H H, Su J G, Liang C J . J. Hazard. Mater., 2011,192:500. https://www.ncbi.nlm.nih.gov/pubmed/21676545

doi: 10.1016/j.jhazmat.2011.05.047 pmid: 21676545
[37]
Choi H, Al-Abed S R, Agarwal S, Dionysiou D D . Chem. Mater., 2008,20:3649.
[38]
Hoch L B, Mack E J, Hydutsky B W, Hershman J M, Skluzacek I M, Mallouk T E . Environ. Sci. Technol., 2008,42:2600. https://www.ncbi.nlm.nih.gov/pubmed/18505003

doi: 10.1021/es702589u pmid: 18505003
[39]
Mackenzie K, Bleyl S, Kopinke F D, Doose H, Bruns J . Sci. Total Environ., 2016,563:641. https://www.ncbi.nlm.nih.gov/pubmed/26299641

doi: 10.1016/j.scitotenv.2015.07.107 pmid: 26299641
[40]
He F, Zhao D Y, Paul C . Water Res., 2010,44:2360. https://www.ncbi.nlm.nih.gov/pubmed/20106501

doi: 10.1016/j.watres.2009.12.041 pmid: 20106501
[41]
Jiang Z M, Lv L, Zhang W M, Du Q O, Pan B C, Yang L, Zhang Q X . Water Res., 2011,45:2191. https://www.ncbi.nlm.nih.gov/pubmed/21316071

doi: 10.1016/j.watres.2011.01.005 pmid: 21316071
[42]
Du Q, Zhang S J, Pan B C, Lv L, Zhang W M, Zhang Q X . Water Res., 2013,47:6064. https://www.ncbi.nlm.nih.gov/pubmed/23969401

doi: 10.1016/j.watres.2013.07.020 pmid: 23969401
[43]
Ling X F, Li J S, Zhu W, Zhu Y Y, Sun X Y, Shen J Y, Han W Q, Wang L J . Chemosphere, 2012,87:655. https://www.ncbi.nlm.nih.gov/pubmed/22365414

doi: 10.1016/j.chemosphere.2012.02.002 pmid: 22365414
[44]
梁宇(Liang Y), 顾鹏程(Gu P C), 姚文(Yao W), 于淑君(Yu S J), 王建(Wang J), 王祥科(Wang X K) . 化学进展 (Progress in Chemistry), 2017,29:1062.
[45]
Li J, Chen C L, Zhu K R, Wang X K . Journal of the Taiwan Institute of Chemical Engineers, 2016,59:389.
[46]
Ma Y Y, Lv X F, Yang Q, Wang Y Y, Chen X . Applied Catalysis A-General, 2017,542:252.
[47]
Tufenkji N, Elimelech M . Environ. Sci. Technol., 2004,38:529. https://www.ncbi.nlm.nih.gov/pubmed/14750730

doi: 10.1021/es034049r pmid: 14750730
[48]
He F, Zhang M, Qian T W, Zhao D Y . J. Colloid Interface Sci., 2009,334:96. https://www.ncbi.nlm.nih.gov/pubmed/19383562

doi: 10.1016/j.jcis.2009.02.058 pmid: 19383562
[49]
Bennett P, He F, Zhao D Y, Aiken B, Feldman L . J. Contam. Hydrol., 2010,116:35. https://www.ncbi.nlm.nih.gov/pubmed/20542350

doi: 10.1016/j.jconhyd.2010.05.006 pmid: 20542350
[50]
Johnson R L, Nurmi J T, Johnson G S O, Fan D M, Johnson R L O, Shi Z Q, Salter-Blanc A J, Tratnyek P G, Lowry G V . Environ. Sci. Technol., 2013,47:1573. https://www.ncbi.nlm.nih.gov/pubmed/23311327

doi: 10.1021/es304564q pmid: 23311327
[51]
Busch J, Meissner T, Potthoff A, Oswald S E . J. Contam. Hydrol., 2014,164:25. https://www.ncbi.nlm.nih.gov/pubmed/24914524

doi: 10.1016/j.jconhyd.2014.05.006 pmid: 24914524
[52]
Bianco C, Tosco T, Sethi R . J. Contam. Hydrol., 2016,193:10. https://www.ncbi.nlm.nih.gov/pubmed/27607520

doi: 10.1016/j.jconhyd.2016.08.006 pmid: 27607520
[53]
Mackenzie K, Bleyl S, Georgi A, Kopinke F D . Water Res., 2012,46:3817. https://www.ncbi.nlm.nih.gov/pubmed/22591820

doi: 10.1016/j.watres.2012.04.013 pmid: 22591820
[54]
Sakulchaicharoen N, O’Carroll D M, Herrera J E . J. Contam. Hydrol., 2010,118:117. https://www.ncbi.nlm.nih.gov/pubmed/20934234

doi: 10.1016/j.jconhyd.2010.09.004 pmid: 20934234
[55]
He F, Zhao D Y . Environ. Sci. Technol., 2005,39:3314. https://www.ncbi.nlm.nih.gov/pubmed/15926584

doi: 10.1021/es048743y pmid: 15926584
[56]
Cheng Y, Jiao C, Fan W J . Desalin. Water Treat., 2015,54:502.
[57]
Xiong Z, Zhao D Y, Pan G . J. Nanopart. Res., 2009,11:807.
[58]
Xiong Z, Zhao D Y, Pan G . Water Res., 2007,41:3497. https://www.ncbi.nlm.nih.gov/pubmed/17597179

doi: 10.1016/j.watres.2007.05.049 pmid: 17597179
[59]
Wu X Q, Yang Q, Xu D C, Zhong Y, Luo K, Li X M, Chen H B, Zeng G M . Industrial & Engineering Chemistry Research, 2013,52:12574.
[60]
Li X Y, Ai L H, Jiang J . Chem. Eng. J., 2016,288:789.
[61]
Tratnyek P G, Salter-Blanc A J, Nurmi J T, Amonette J E, Liu J, Wang C M, Dohnalkova A, Baer D R . Aquatic Redox Chemistry, 2011,1071:381.
[62]
Fan D M, Gilbert E J, Fox T . J. Environ. Manage., 2017,204:793. https://www.ncbi.nlm.nih.gov/pubmed/28233638

doi: 10.1016/j.jenvman.2017.02.014 pmid: 28233638
[63]
Wu L M, Liao L B, Lv G C, Qin F X, He Y J, Wang X Y . J. Hazard. Mater., 2013,254:277. https://www.ncbi.nlm.nih.gov/pubmed/23632041

doi: 10.1016/j.jhazmat.2013.03.009 pmid: 23632041
[64]
Dou X M, Li R, Zhao B, Liang W Y . J. Hazard. Mater., 2010,182:108. https://www.ncbi.nlm.nih.gov/pubmed/20599323

doi: 10.1016/j.jhazmat.2010.06.004 pmid: 20599323
[65]
王春雷(Wang C L), 马丁(Ma D), 包信和(Bao X H) . 化学进展 (Progress in Chemistry), 2009,21:1705.
[66]
Gong K D, Hu Q, Xiao Y Y, Cheng X, Liu H, Wang N, Qiu B, Guo Z H . Journal of Materials Chemistry A, 2018,6:11119.
[67]
Kopinke F D, Speichert G, Mackenzie K, Hey-Hawkins E . Applied Catalysis B-Environmental, 2016,181:747.
[68]
Liu H, Wang Q, Wang C, Li X Z . Chem. Eng. J., 2013,215:90.
[69]
Schöftner P, Waldner G, Lottermoser W, Stöger-Pollach M, Freitag P, Reichenauer T G . Sci. Total Environ., 2015,535:69. https://www.ncbi.nlm.nih.gov/pubmed/26006053

doi: 10.1016/j.scitotenv.2015.05.033 pmid: 26006053
[70]
Qin H J, Li J X, Yang H Y, Pan B C, Zhang W M, Guan X H . Environ. Sci. Technol., 2017,51:5090. https://www.ncbi.nlm.nih.gov/pubmed/28358503

doi: 10.1021/acs.est.6b04832 pmid: 28358503
[71]
Fan D M, O’Carroll D M, Elliott D W, Xiong Z, Tratnyek P G, Johnson R L, Garcia A N . Remediation-the Journal of Environmental Cleanup Costs Technologies & Techniques, 2016,26:27.
[72]
Fan D M, Lan Y, Tratnyek P G, Johnson R L, Filip J, O’Carroll D M, Garcia A N, Agrawal A . Environ. Sci. Technol., 2017,51:13070. https://www.ncbi.nlm.nih.gov/pubmed/29035566

doi: 10.1021/acs.est.7b04177 pmid: 29035566
[73]
Choi H, Al-Abed S R, Agarwal S . Environ. Sci. Technol., 2009,43:4137. https://www.ncbi.nlm.nih.gov/pubmed/19569342

doi: 10.1021/es803535b pmid: 19569342
[74]
陈海军(Chen H J), 黄舒怡(Huang S Y), 张志宾(Zhang Z B), 刘云海(Liu Y H), 王祥科(Wang X K) . 化学学报 (Acta Chimica Sinica), 2017,75:560.
[75]
杨姗也(Yang S Y), 王祥学(Wang X X), 陈中山(Chen Z S), 李倩(Li Q), 韦犇犇(Wei B B), 王祥科(Wang X K) . 化学学报 (Progress in Chemistry), 2018,30:225.
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[3] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[4] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[5] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[6] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[7] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[8] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[9] Jinhui Zhang, Jinhua Zhang, Jiwei Liang, Kaili Gu, Wenjing Yao, Jinxiang Li. Progress in Zerovalent Iron Technology for Water Treatment of Metal(loid) (oxyan) Ions: A Golden Decade from 2011 to 2021 [J]. Progress in Chemistry, 2022, 34(5): 1218-1228.
[10] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[11] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.
[12] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[13] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[14] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[15] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.