中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (5): 476-490 DOI: 10.7536/PC170209 Previous Articles   Next Articles

• Review •

Azo-Bridged Coupling Bisfurazan: Synthesis and Its Structure-Function Relationship Between Molecular Structure and Melting Point

Ruqin Liu1,2, Zhirong Suo2, Naizhen He2, Shuang Chen2, Ming Huang1*   

  1. 1. Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China;
    2. School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Technology-Fundamental Research Project of State Administration of Science,Technology and Industry for National Defense of China (No.JSJL2015212A001).
PDF ( 489 ) Cited
Export

EndNote

Ris

BibTeX

Azo-bridged coupling bisfurazan is formed by two same furazan rings via the azo-bridged coupling reaction. Azo-bridged coupling bisfurazan compounds are one of the nitrogen rich high-energy density materials with predominant thermal-chemical property, which have attracted great attention due to their excellent features such as high percentage of nitrogen, low carbon and hydrogen content, good oxygen balance, high formation enthalpy, and conjugated structure. And they have an optimistic and bright foreground for applying to the fields of high energetic explosive, as well as solid rocket propellant. The research advances of some azo-bridged coupling bisfurazan compounds, such as 3,3'-diamino-4,4'-azofurazan, 3,3'-dinitro-4,4'-azofurazan, azo-bridged coupling bisfurazan halide and azole substituted azo-bridged coupling bisfurazan, in recent 20 years were reviewed from a point view of synthetic methods in this paper. Effects of the side chain substituents on azo-bisfurazan melting point were discussed preliminarily based on the large amounts of melting point data from the literatures. Factors influencing azo-bisfurazan melting point mainly include hydrogen bonded effect, inductive effect, planarity effect, side chain substituent volume and symmetry effect. The structure-function relationship between azo-bisfurazan molecular structure and melting point was studied. This study could contribute to supporting a theoretical reference for the design and synthesis of the novel azo-bridged coupling furazan compounds with specified thermal-chemical performance.
1 Introduction
2 Synthesis of azo-bridged coupling bisfurazan
2.1 Diamino azofurazan and its derivatives
2.2 3,3'-Dinitro-4,4'-azofurazan (DNAzF)
2.3 Azofurazan halide
2.4 Cyano azofurazan and its derivatives
2.5 Azole substituted azofurazan
2.6 Other azo-bridged coupling bisfurazan
3 Structure-function relationship between molecular structure and melting point for azo-bridged coupling bisfurazan
3.1 The basic chemical structure and melting point data of azo-bridged coupling bisfurazan
3.2 Effect of simple substituent groups on melting point
3.3 Effect of the side chain heterocyclic substituents on melting point
3.4 Volume and planarity effect of the side chain substituents 3.5 Symmetry effect of the side chain substituents 4 Conclusion

CLC Number: 

[1] (a) 欧育湘(Ou Y X), 孟征(Meng Z), 刘进全(Liu J Q). 化工进展(Chemical Industry and Engineering Progress), 2007, 26:762.; (b) 欧育湘(Ou Y X), 孟征(Meng Z), 刘进全(Liu J Q). 化工进展(Chemical Industry and Engineering Progress), 2007, 26:1690.; (c) 公绪滨(Gong X B), 孙成辉(Sun C H), 庞思平(Pang S P), 张静(Zhang J), 李玉川(Li Y C), 赵信岐(Zhao X Q). 有机化学(Chinese Journal of Organic Chemistry), 2012, 32:486.
[2] (a) Bayat Y, Mokhtari J, Farhadian N, Bayat M. J. Energ. Mater., 2012, 30:124.; (b) Mandal A K, Pant C S, Kasar S M, Soman T. J. Energ. Mater., 2009, 27:231.; (c) 庞思平(Pang S P), 申帆帆(Shen F F), 吕芃浩(Lü P H), 董凯(Dong K), 张义迎(Zhang Y Y), 孙成辉(Sun C H), 宋建伟(Song J W), 赵信岐(Zhao X Q). 兵工学报(Acta Armamentarii), 2014, 35:725.
[3] Eaton P E, Gilardi R L, Zhang M X. Adv. Mater., 2000, 12:1143.
[4] (a) Koch E C. Propellants Explos. Pyrotech., 2016, 41:526.; (b) Zhang J H, Shreeve J M. J. Am. Chem. Soc., 2014, 136:4437.; (c) 柳沛宏(Liu P H), 曹端林(Cao D L), 王建龙(Wang J L), 冯璐璐(Feng L L), 张楠(Zhang N), 秦宗扬(Qin Z Y). 化工进展(Chemical Industry and Engineering Progress), 2015, 34:1357.
[5] (a) Zhang J H, Shreeve J M. J. Phys. Chem. C, 2015, 119:12887.; (b) Wu B, Yang H W, Lin Q H, Wang Z X, Lua C X, Cheng G B. New J. Chem., 2015, 39:179.
[6] Tang Y X, Zhang J H, Mitchell L A, Parrish D A, Shreeve J M. J. Am. Chem. Soc., 2015, 137:15984.
[7] (a) 高莉(Gao L). 南京理工大学硕士论文(Master Dissertation of Nanjing University of Science and Technology), 2013.; (b) 李战雄(Li Z X), 唐松青(Tang S Q). 含能材料(Chinese Journal of Energetic Materials), 2006, 14:77.
[8] (a) 霍欢(Huo H), 王伯周(Wang B Z), 王锡杰(Wang X J), 周诚(Zhou C), 贾思媛(Jia S Y). 化学推进剂与高分子材料(Chemical Propellants & Polymeric Materials), 2013, 11:15.; (b) 张俊林(Zhang J L), 毕福强(Bi F Q), 王伯周(Wang B Z), 霍欢(Huo H), 翟连杰(Zhai L J), 王锡杰(Wang X J). 含能材料(Chinese Journal of Energetic Materials), 2016, 24:810.; (c) Li X, Liu X Y, Zhang S, Wu H P, Wang B Z, Yang Q, Wei Q, Xie G, Chen S P, Gao S L. J. Chem. Eng. Data, 2016, 61:207.; (d) Semyakin S S, Struchkova M I, Sheremetev A B. Chem. Heterocycl. Comp., 2016, 52:346.
[9] 张德雄(Zhang D X), 张衍(Zhang Y), 王琦(Wang Q). 固体火箭技术(Journal of Solid Rocket Technology), 2004, 27:32.
[10] (a) Wang L X, Yi C H, Zou H T, Liu Y, Li S N. Comput. Theor. Chem., 2011, 963:135.; (b) Li J Z, Wang B Z, Fan X Z, Wei H J, Fu X L, Zhou C, Huo H. Def. Technol., 2013, 9:153.; (c) Sinditskii V P, Vu M C, Sheremetev A B, Alexandrova N S. Thermochim. Acta, 2008, 473:25.; (d) Wang L X, Tuo X L, Yi C H, Zou H T, Xu J, Xu W L. J. Mol. Graphics Modell., 2009, 28:81.; (e) Zhang J Q, Zhang W, Zhu H, Zhang X G. Chin. J. Explos. Propellants, 2006, 29:36.
[11] (a) Pagoria P. Propellants Explos. Pyrotech., 2016, 41:452.; (b) 雷晴(Lei Q), 陶永杰(Tao Y J), 何金选(He J X). 固体火箭技术(Journal of Solid Rocket Technology), 2006, 29:354.
[12] Sheremetev A B, Ivanova E A, Dmitriev D E, Kulagina V O, Averkiev B B, Antipin M Y. J. Heterocycl. Chem., 2005, 42:803.
[13] (a) Sheremetev A B, Kulagina V O, Ivanova E A. J. Org. Chem., 1996, 61:1510.; (b) Liu Y J, Zhang J H, Wang K C, Li J S, Zhang Q H, Shreeve J M. Angew. Chem. Int. Ed., 2016, 55:11548.
[14] Solodyuk G D, Bolydrev M D, Gidaspov B V, Nikolaev V D. Zh. Org. Khim., 1981, 17:861.
[15] Gunasekaran A, Trudell M L, Boyer J H. Heteroat. Chem., 1994, 5:441.
[16] 高莉(Gao L), 杨红伟(Yang H W), 汤永兴(Tang Y X), 程广斌(Cheng G B), 吕春绪(Lü C X). 火炸药学报(Chinese Journal of Explosive & Propellants), 2013, 36:47.
[17] Brinck T. Green Energetic Materials. Germany:John Wiley & Sons. Ltd., 2014. 239.
[18] Batog L V, Konstantinova L S, Rozhkov V Y. Russ. Chem. Bull. Int. Ed., 2005, 54:1915.
[19] (a) Sheremetev A B, Aleksandrova N S, Novikova T S, Khmel'nitskii L I, Izv. Akad. Nauk USSR, Ser. Khim., 1989, 749.; (b) Chavez D, Hill L, Hiskey M, Kinkead S. J. Energ. Mater., 2000, 18:219.
[20] 周群(Zhou Q), 王伯周(Wang B Z), 张叶高(Zhang Y G), 霍欢(Huo H), 李辉(Li H), 马玲(Ma L). 火炸药学报(Chinese Journal of Explosive & Propellants), 2013, 36:16.
[21] Suponitsky K Y, Lyssenko K A, Antipin M Y, Aleksandrova N S, Sheremetev A B, Novikova T S. Russ. Chem. Bull. Int. Ed., 2009, 58:2129.
[22] Fischer D, Klap tke T M, Reymann M, Stierstorfer J. Chem. Eur. J., 2014, 20:6401.
[23] Batog L V, Konstantinova L S, Kulikov A S, Makhova N N. Russ. Chem. Bull. Int. Ed., 2013, 62:1388.
[24] Sheremetev A B, Aleksandrova N S, Yudin I L. Mendeleev Commun., 2003, 13:31.
[25] Yu Q, Wang Z X, Wu B, Yang H W, Ju X H, Lu C X, Cheng G B. J. Mater. Chem. A, 2015, 3:8156.
[26] (a) 李洪珍(Li H Z), 周小清(Zhou X Q), 李金山(Li J S), 黄明(Huang M). 有机化学(Chinese Journal of Organic Chemistry), 2008, 28:1646.; (b) 李洪珍(Li H Z), 李金山(Li J S), 黄明(Huang M), 周小清(Zhou X Q). 有机化学(Chinese Journal of Organic Chemistry), 2009, 29:798.
[27] Sheremetev A B, Aleksandrova N S, Dmitriev D E. Mendeleev Commun., 2006, 16:163.
[28] Sheremetev A B, Aleksandrova N S, Mantseva E V, Dmitriev D E. Mendeleev Commun., 2000, 10:67.
[29] Sheremetev A B, Shamshina J L, Dmitriev D E, Lyubetskii D V, Antipin M Y. Heteroat. Chem., 2004, 15:199.
[30] 范艳洁(Fan Y J), 王伯周(Wang B Z), 周彦水(Zhou Y S), 贾思媛(Jia S Y), 霍欢(Huo H). 含能材料(Chinese Journal of Energetic Materials), 2009, 17:385.
[31] Tang Y X, He C L, Mitchell L A, Parrish D A, Shreeve J M. Angew. Chem. Int. Ed., 2016, 55:5565.
[32] Tang Y X, Gao H X, Imler G H, Parrishc D A, Shreeve J M. RSC Adv., 2016, 6:91477.
[33] Leonard P W, Chavez D E, Pagoria P F, Parrish D L. Propellants Explos. Pyrotech., 2011, 36:233.
[34] Wang B Z, Zhang G F, Huo H, Fan Y J, Fan X Z. Chin. J. Chem., 2011, 29:919.
[35] 高莉(Gao L), 杨红伟(Yang H W), 伍波(Wu B), 程广斌(Cheng G B), 吕春绪(Lü C X). 含能材料(Chinese Journal of Energetic Materials), 2013, 21:226.
[36] 李辉(Li H), 于倩倩(Yu Q Q), 王伯周(Wang B Z), 来蔚鹏(Lai W P), 葛忠学(Ge Z X), 李亚南(Li Y N), 刘宁(Liu N). 含能材料(Chinese Journal of Energetic Materials), 2013, 21:821.
[37] Qu Y Y, Zeng Q, Wang J, Ma Q, Li H Z, Li H B, Yang G C. Chem. Eur. J., 2016, 22:12527.
[38] Li H, Wang B Z, Li X Z, Tong J F, Lai W P, Fan X Z. Bull. Korean Chem. Soc., 2013, 34:686.
[39] Luk'yanov O A, Pokhvisneva G V, Ternikova T V, Shlykova N I. Russ. Chem. Bull. Int. Ed., 2012, 61:360.
[40] Petrosyan V A, Frolovsky V A. Russ. Chem. Bull. Int. Ed., 2000, 49:1421.
[41] Sheremetev A B, Lyalin B V, Kozeev A M, Palysaeva N V, Struchkova M I, Suponitsky K Y. RSC Adv., 2015, 5:37617.
[42] Tselinskii I V, Mel'nikova S F, Zelenov M P. Zh. Org. Khim., 1996, 32:766.
[43] Romanova T V, Zelenov M P, Mel'nikova S F, Tselinsky I V. Russ. Chem. Bull. Int. Ed., 2009, 58:2188.
[44] Sheremetev A B, Andrianov V G, Mantseva E V, Shatunova E V, Aleksandrova N S, Yudin I L, Dmitriev D E, Averkiev B B, Antipin M Y. Russ. Chem. Bull. Int. Ed., 2004, 53:596.
[45] Sheremetev A B, Kozeev A M, Aleksandrova N S, Struchkova M I, Suponitsky K Y. Chem. Heterocycl. Comp., 2013, 49:1358.
[46] 李云路(Li Y L), 薛梅(Xue M), 王建龙(Wang J L), 曹端林(Cao D L), 马忠亮(Ma Z L). 有机化学(Chinese Journal of Organic Chemistry), 2016, 36:1528.
[47] 闫涛(Yan T), 王建华(Wang J H), 刘玉存(Liu Y C), 张晓玉(Zhang X Y), 黄明(Huang M), 常双君(Chang S J), 于雁武(Yu Y W), 荆苏明(Jing S M). 含能材料(Chinese Journal of Energetic Materials), 2016, 24:202.
[48] 赵继阳(Zhao J Y), 俞所银(Yu S Y), 赵颖(Zhao Y). 江苏教育学院学报(自然科学版)(Journal of Jiangsu Institute of Education (Natural Sciences)), 2008, 25:16.
[49] 蒋栋(Jiang D), 王媛媛(Wang Y Y), 刘洁(Liu J), 戴立益(Dai L Y). 化学通报(Chemical Bulletin), 2007, 70:371.
[50] 张锁江(Zhang S J), 姚晓倩(Yao X Q), 刘晓敏(Liu X M), 王金泉(Wang J Q). 化学进展(Progress in Chemistry), 2009, 21:2465.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[7] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[8] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[9] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[10] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[13] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[14] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[15] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.