中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (9): 1289-1298 DOI: 10.7536/PC160418 Previous Articles   Next Articles

• Review and comments •

Capsid-Inspired Multi-Component Self-Assembly of Nanocontainers: Structure, Functionalization, and Applications

Zhang Guanglu1,2, Zhang Ting1, Zhou Lipeng1, Sun Qingfu1*   

  1. 1. Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21402201).
PDF ( 632 ) Cited
Export

EndNote

Ris

BibTeX

Inspired by the spontaneous self-assembly of hollow virus capsids and protein cages found in nature, a family of hollow spherical structure with general formula MnL2n can be obtained via the coordination-directed multi-component self-assembly of bent bis(pyridine) ligands and square-planar Pd2+ ions. Endo and exo-hedral functionalization of the nanocontainer complexes have been realized by introduction of functional groups into the organic ligands. Due to the nanoconcentrator effect, endo-functionalised spherical complex could be used not only for the template-synthesis of mono-dispersed polymers or nanoparticles, but also for the catalytic transformations of small substrates. Meanwhile, exo-functionalized complexes can selectively recognize a variety of substrates, such as oligonucleotides and DNA. The design principles, synthesis, characterization and functional applications of such nano-container molecules are summarized in this paper.

Contents
1 Introduction
2 Design and synthesis of the nano-containers
3 Functionalization and applications
3.1 Functional cavity
3.2 Functional surface
4 Conclusion and outlook

CLC Number: 

[1] Philp D, Stoddart J F. Angew. Chem., Int. Ed.,1996, 35:1155.
[2] Horne R W. Virus Structure (Academic, New York), 1974.
[3] Casjens S. Virus Structure and Assembly. Jones and Bartlett, Boston, MA, 1985.
[4] Klug A.Angew. Chem., Int. Ed., 1983, 22:565.
[5] Caspar D L D, Klug A. Cold Spring Harbor Symp. Quant. Biol., 1962, 27:1.
[6] Carrillo-Tripp M, Shepherd C M, Borelli I A, Venkataraman S, Lander G, Natarajan P, Johnson J E, Brooks C L Ⅲ, Reddy V S. Nucleic acids research,2009, 37:D436.
[7] Wikoff W R, Liljas L, Duda R L, Tsuruta H, Hendrix R W, Johnson J E. Science,2000, 289:2129.
[8] Kang S, Zheng H, Liu T, Hamachi K, Kanegawa S, Sugimoto K, Shiota Y, Hayami S, Mito M, Nakamura T, Nakano M, Baker M L, Nojiri H, Yoshizawa K, Duan C, Sato O. Nat. Commun.,2015, 6:5955.
[9] MacGillivray L R, Atwood J L, Nature, 1997, 389:469.
[10] Ono K, Johmoto K, Yasuda N, Uekusa H, Fujii S,Kiguchi M, Iwasawa N. J. Am. Chem. Soc., 2015, 137:7015.
[11] Zhang G, Presly O, White F, Oppel I M, Mastalerz M. Angew. Chem., Int. Ed., 2014, 53:5126.
[12] Abrahams B F, Egan S J, Robson R. J. Am.Chem. Soc.,1999, 121:7172.
[13] Chand D K, Biradha K, Fujita M, Sakamoto S, Yamaguchi K. Chem. Commun.,2002, 2486.
[14] Olenyuk B, Whiteford J A, Fechtenkotter A, Stang P J. Nature,1999, 398:796.
[15] Olenyuk B, Levin M D, Whiteford J A, Shield J E, Stang P J. J. Am.Chem. Soc., 1999, 121:10434.
[16] Muller A, Krickemeyer E, Bogge H, Schmidtmann M, Peters F. Angew. Chem., Int. Ed.,1998, 37:3360.
[17] Bilbeisi R A, Ronson T K, Nitschke J R. Angew. Chem., Int. Ed., 2013, 52:9027.
[18] Xie T Z, Guo K, Guo Z, Gao W, Wojtas Y L, Ning G H, Huang M, Lu X, Li J Y, Liao S Y, Chen Y S, Moorefield C N, Saunders M J, Cheng S Z, Wesdemiotis C, Newkome G R. Angew. Chem., Int. Ed.,2015, 54:9224.
[19] Pasquale S, Sattin S, Escudero-Adan E C, Martinez-Belmonte M, de Mendoza J. Nat. Commun.,2012, 3:785.
[20] Haris K, Fujita D, Fujita M. Chem. Commun., 2013, 49:6703.
[21] Takezawa H, Akiba S, Murase T, Fujita M. J. Am. Chem. Soc.,2015, 137:7043.
[22] Ono K, Yoshizawa M, Akita M, Kato T, Tsunobuchi Y, Ohkoshi S I, Fujita M. J. Am. Chem. Soc.,2009, 131:2782.
[23] Murase T, Nishijima Y, Fujita M. J. Am. Chem. Soc., 2012, 134:162.
[24] Sawada T, Hisada H, Fujita M. J. Am. Chem. Soc., 2014, 136:4449.
[25] Tominaga M, Suzuki K, Kawano M, Kusukawa T, Ozeki T, Sakamoto S, Yamaguchi K, Fujita M. Angew. Chem., Int. Ed.,2004, 43:5621.
[26] Sato S, Ishido Y, Fujita M. J. Am. Chem. Soc.,2009, 131:6064.
[27] Fujita D, Takahashi A, Sato S, Fujita M. J. Am. Chem. Soc.,2011, 133:13317.
[28] Suzuki K, Tominaga M, Kawano M, Fujita M. Chem. Commun., 2009, 1638.
[29] Li J R, Timmons D J, Zhou H C. J. Am. Chem. Soc.,2009, 131:6368.
[30] Tranchemontagne D J, Ni Z, O'Keeffe M, Yaghi O M. Angew. Chem., Int. Ed.,2008, 47:5136.
[31] Li J R, Zhou H C. Nature Chem.,2010, 2:893.
[32] Sun Q F, Iwasa J, Ogawa D, Ishido Y, Sato S, Ozeki T, Sei Y, Yamaguchi K, Fujita M. Sci.,2010, 328:1144.
[33] Bunzen J, Iwasa J, Bonakdarzadeh P, Numata E, Rissanen K, Sato S, Fujita M. Angew. Chem., Int. Ed.,2012, 51, 3161.
[34] Sun Q F, Murase T, Sato S, Fujita M. Angew. Chem., Int. Ed.,2011, 50:10318.
[35] Sun B, Wang M, Lou Z, Huang M, Xu C, Li X, Chen L J, Yu Y, Davis G L, Xu B, Yang H B, Li X. J. Am. Chem. Soc.,2015, 137:1556.
[36] Bhat I A, Samanta D, Mukherjee P S. J. Am. Chem. Soc.,2015, 137:9497.
[37] Sun Q F, Sato S, Fujita M. Nature Chem.,2012, 4:330.
[38] Fujita D, Yokoyama H, Ueda Y, Sato S, Fujita M. Angew. Chem., Int. Ed.,2015, 54:155.
[39] Yoneya M, Tsuzuki S, Yamaguchi T, Sato S, Fujita M. ACS Nano, 2014, 8:1290.
[40] Sun Q F, Sato S, Fujita M. Angew. Chem., Int. Ed.,2014, 53:13510.
[41] Zhang G L, Zhou L P, Yuan D Q, Sun Q F. Angew. Chem., Int. Ed., 2015, 54:9844.
[42] Harris K, Sun Q F, Sato S, Fujita M. J. Am. Chem. Soc.,2013, 135:12497.
[43] Tominaga M, Suzuki K, Murase T, Fujita M. J. Am. Chem. Soc.,2005, 127:11950.
[44] Sato S, Iida J, Suzuki K, Kawano M, Ozeki T, Fujita M. Sci.,2006, 313:1273.
[45] Murase T, Sato S, Fujita M. Angew. Chem., Int. Ed.,2007, 46:5133.
[46] Bruns C J, Fujita D, Hoshino M, Sato S, Stoddart J F, Fujita M. J. Am. Chem. Soc., 2014, 136:12027.
[47] Suzuki K, Takao K, Sato S, Fujita M. J. Am. Chem. Soc.,2010, 132:2544.
[48] Suzuki K, Kawano M, Sato S, Fujita M. J. Am. Chem. Soc., 2007, 129:10652.
[49] Gramage-Doria R, Hessels J, Leenders S H, Troppner O, Durr M, Ivanovic-Burmazovic I, Reek J N. Angew. Chem., Int. Ed., 2014, 53:13380.
[50] Abe S, Hirata K, Ueno T, Morino K, Shimizu N, Yamamoto M, Takata M, Yashima E, Watanabe Y. J. Am. Chem. Soc.,2009, 131:6958.
[51] Murase T, Sato S, Fujita M. Angew. Chem., Int. Ed.,2007, 46:1083.
[52] Kikuchi T, Murase T, Sato S, Fujita M. Supramol. Chem., 2008, 20:81.
[53] Suzuki K, Sato S, Fujita M. Nature Chem.,2010, 2:25.
[54] Suzuki K, Takao K, Sato S, Fujita M. Angew. Chem., Int. Ed.,2011, 50:4858.
[55] Takao K, Suzuki K, Ichijo T, Sato S, Asakura H, Teramura K, Kato K, Ohba T, Morita T, Fujita M. Angew. Chem., Int. Ed.,2012, 51:5893.
[56] Sontz P A, Bailey J B, Ahn S, Tezcan F A. J. Am. Chem. Soc.,2015, 137:11598.
[57] Fujita D, Fujita M. ACS Central Science,2015, 1:352.
[58] Fujita D, Suzuki K, Sato S, Yagi-Utsumi M, Yamaguchi Y, Mizuno N, Kumasaka T, Takata M, Noda M, Uchiyama S, Kato K, Fujita M. Nature Commun.,2012, 3:1093.
[59] Kamiya N, Tominaga M, Sato S, Fujita M. J. Am. Chem. Soc.,2007, 129:3816.
[60] Sato S, Yoshimasa Y, Fujita D, Yagi-Utsumi M, Yamaguchi T, Kato K, Fujita M. Angew. Chem., Int. Ed., 2015, 54:8435.
[61] Kikuchi T, Sato S, Fujita M. J. Am. Chem. Soc.,2010, 132:15930.
[62] Ikemi M, Kikuchi T, Matsumura S, Shiba K, Sato S, Fujita M. Chemical Science,2010, 1:68.
[63] Sato S, Ikemi M, Kikuchi T, Matsumura S, Shiba K, Fujita M. J. Am. Chem. Soc.,2015, 137:12890.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[3] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[4] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[5] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[6] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[7] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[8] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[9] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[10] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[11] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[12] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[13] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[14] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[15] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.