中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (2/3): 296-307 DOI: 10.7536/PC150931 Previous Articles   Next Articles

• Review and comments •

Chiral Gold Nanoclusters: Synthesis, Properties and Applications

Gong Dejun1, Gao Guanbin2, Zhang Mingxi2*, Sun Taolei1,2   

  1. 1. School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China;
    2. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51173142, 51325302, 51533007).
PDF ( 1824 ) Cited
Export

EndNote

Ris

BibTeX

Chiral phenomena are ubiquitous in nature from macroscopic to microscopic, including the high chirality preference of small biomolecules, e.g. L-amino and D -saccharide, special steric conformations of bio-macromolecules induced by it, e.g. DNA, as well as chirality-triggered biological and physiological processes. The introduction of molecule chirality onto the surface of gold nanoclusters lead to the generation of chiral gold nanoclusters, which provides a new platform for controlling chirality signal transmission from molecular level to nanoscale level. As one of most intensively investigated materials with unique properties of both chiral-molecule and gold nanoclusters, chiral gold nanoclusters have application in molecular detection, chiral catalysts, chiral recognition and many other areas. This critical review gives a brief introduction to the recent advances in this field. We start from the preparation of chiral gold nanoclusters, and further characterize their structures to find out key factors governing the chiroptical properties, further introduce some hot applications and finally discuss the future developments and challenges of chiral gold nanoclusters.

Contents
1 Introduction
2 Synthesis and characterization of gold nanoclusters
2.1 Synthesis of chiral gold nanoclusters
2.2 Purification and isolation
2.3 Characterization of chiral gold nanoclusters
3 Properties of chiral gold nanoclusters
3.1 Special optical activity
3.2 The origin of chirality
4 Application of chiral gold nanoclusters
4.1 Chiral catalysis
4.2 Chiral recognition
4.3 Potential application
5 Conclusion and outlook

CLC Number: 

[1] Zhang M X, Qing G Y, Sun T L. Chem. Soc. Rev., 2012, 41:1972.
[2] Sun T L, Qing G Y, Su B L, Jiang L. Chem. Soc. Rev., 2011, 40:2909.
[3] Murphy C J, Gole A M, Stone J W, Sisco P N, Alkilany A M, Goldsmith E C, Baxter S C. Acc. Chem. Res., 2008, 41:1721.
[4] Haruta M. Cattech, 2002, 6:102.
[5] Kelly K L, Coronado E, Zhao L L, Schatz G C. J. Phys. Chem. B, 2003, 107:668.
[6] Wang H, Wang Y X, Jin J Y, Yang R H. Anal. Chem., 2008, 80:9021.
[7] Ray P C, Fortner A, Darbha G K. J. Phys. Chem. B, 2006, 110:20745.
[8] Zhang M X, Qing G Y, Xiong C L, Cui R, Pang D W, Sun T L. Adv. Mater., 2013, 25:749.
[9] Kumar A, Ma H L, Zhang X, Huang K Y, Jin S B, Liu J, Wei T, Cao W P, Zou G Z, Liang X J. Biomaterials, 2012, 33:1180.
[10] El-Sayed I H, Huang X H, El-Sayed M A. Nano Lett., 2005, 5:829.
[11] Zheng J, Nicovich P R, Dickson R M. Annu. Rev. Phys. Chem., 2007, 58:409.
[12] Liu C R, Pan J, Li S, Zhao Y, Wu L Y, Berkman C E, Whorton A R, Xian M. Angew. Chem. Int. Ed., 2011, 50:10327.
[13] Reilly S M, Krick T, Dass A. J. Phys. Chem. C, 2010, 114:741.
[14] Gautier C, Bürgi T. ChemPhysChem, 2009, 10:483.
[15] Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R. J. Chem. Soc. Chem. Commun., 1994, 7:801.
[16] Hostetler M J, Wingate J E, Zhong C, Harris J E, Vachet R W, Clark M R, Londono J D, Green S J, Stokes J J, Wignall G D, Glish G L, Porter M D, Evans N D, Murray R W. Langmuir, 1998, 14:17.
[17] Levi-Kalisman Y, Jadzinsky P D, Kalisman N, Tsunoyama H, Tsukuda T, Bushnell D A, Kornberg R D. J. Am. Chem. Soc., 2011, 133:2976.
[18] Shichibu Y, Negishi Y, Tsukuda T, Teranishi T. J. Am. Chem. Soc., 2005, 127:13464.
[19] Zeng C J, Qian H F, Li T, Li G, Rosi N L, Yoon B, Barnett R N, Whetten R L, Landman U, Jin R C. Angew. Chem. Int. Ed., 2012, 51:13114.
[20] Qian H F, Zhu Y, Jin R C. ACS Nano, 2009, 3:3795.
[21] Gautier C, Bürgi T. J. Am. Chem. Soc., 2006, 128:11079.
[22] Qian H F, Jin R C. Chem. Mater., 2011, 23:2209.
[23] Jin S S, Meng X M, Jin S, Zhu M Z. J. Nanosci. Nanotechnol., 2013, 13:1282.
[24] Parker J F, Choi J, Wei W, Murray R W. J. Phys. Chem. C, 2008, 112:13976.
[25] Zhu M Z, Eckenhoff W T, Pintauer T, Jin R C. J. Phys. Chem. C, 2008, 112:14221.
[26] Jadzinsky P D, Calero G, Ackerson C J, Bushnell D A, Kornberg R D. Science, 2007, 318:430.
[27] Das A, Liu C, Byun H Y, Nobusada K, Zhao S, Rosi N, Jin R C. Angew. Chem. Int. Ed., 2015, 54:3183.
[28] Zeng C J, Liu C, Chen Y X, Rosi N L, Jin R C. J. Am. Chem. Soc., 2014, 136:11922.
[29] Das A, Li T, Li G, Nobusada K, Zeng C J, Rosi N L, Jin R C. Nanoscale, 2014, 6:6458.
[30] Zhu M Z, Aikens C M, Hollander F J, Schatz G C, Jin R C. J. Am. Chem. Soc., 2008, 130:5883.
[31] Zeng C J, Li T, Das A, Rosi N L, Jin R C. J. Am. Chem. Soc., 2013, 135:10011.
[32] Qian H F, Eckenhoff W T, Zhu Y, Pintauer T, Jin R C. J. Am. Chem. Soc., 2010, 132:8280.
[33] Tlahuice-Flores A, Santiago U, Bahena D, Vinogradova E, Conroy C V, Ahuja T, Bach S B H, Ponce A, Wang G L, José-Yacamán M, Whetten R L. J. Phys. Chem. A, 2013, 117:10470.
[34] Chen Y X, Zeng C J, Liu C, Kirschbaum K, Gayathri C, Gil R R, Rosi N L, Jin R C. J. Am. Chem. Soc., 2015, 137:10076.
[35] Zeng C J, Chen Y X, Kirschbaum K, Appavoo K, Sfeir M Y, Jin R C. Sci. Adv., 2015, 1:e1500045.
[36] Song Y B, Wang S X, Zhang J, Kang X, Chen S, Li P, Sheng H T, Zhu M Z. J. Am. Chem. Soc., 2014, 136:2963.
[37] Schaaff T G, Knight G, Shafigullin M N, Borkman R F, Whetten R L. J. Phys. Chem. B, 1998, 102:10643.
[38] Yao H, Miki K, Nishida N, Sasaki A, Kimura K. J. Am. Chem. Soc., 2005, 127:15536.
[39] Wan X K, Yuan S F, Lin Z W, Wang Q M. Angew. Chem. Int. Ed., 2014, 53:2923.
[40] Yanagimoto Y, Negishi Y, Fujihara H, Tsukuda T. J. Phys. Chem. B, 2006, 110:11611.
[41] Sánchez-Castillo A, Noguez C, Garzón I L. J. Am. Chem. Soc., 2010, 132:1504.
[42] Zhu M Z, Qian H F, Meng X M, Jin S S, Wu Z K, Jin R C. Nano Lett., 2011, 11:3963.
[43] Wu Z K, Gayathri C, Gil R R, Jin R C. J. Am. Chem. Soc., 2009, 131:6535.
[44] Gautier C, Bürgi T. J. Am. Chem. Soc., 2008, 130:7077.
[45] Cao T T, Jin S S, Wang S X, Zhang D D, Meng X M, Zhou M Z. Nanoscale, 2013, 5:7589.
[46] Yao H, Fukui T, Kimura K. J. Phys. Chem. C, 2008, 112:16281.
[47] Xu Q, Kumar S, Jin S S, Qian H F, Zhu M Z, Jin R C. Small, 2014, 10:1008.
[48] Dolamic I, Varnholt B, Bürgi T. Nat. Commun., 2015, 6:7117.
[49] Nie X T, Qian H F, Ge Q J, Xu H Y, Jin R C. ACS Nano, 2012, 6:6014.
[50] Zhu Y, Qian H F, Zhu M Z, Jin R C. Adv. Mater., 2010, 22:1915.
[51] Zhu Y, Wu Z K, Gayathri C, Qian H F, Gil R R, Jin R C. J. Catal., 2010, 271:155.
[52] Oila M J, Koskinen A M P. ARKIVOC, 2006, 15:76.
[53] Kang Y, Oh J, Kim Y, Kim J S, Kim H. Chem. Commun., 2010, 46:5665.
[54] Yang Y, Pei X L, Wang Q M. J. Am. Chem. Soc., 2013, 135:16184.
[55] Tu X J, Chen W B, Guo X Q. Nanotechnology, 2011, 22:95701.
[56] Chen W Y, Lan G Y, Chang H T. Anal. Chem., 2011, 83:9450.
[57] Shiang Y C, Huang C C, Chang H T. Chem. Commun., 2009, 23:3437.
[58] Tian D H, Qian Z S, Xia Y S, Zhu C Q. Langmuir, 2012, 28:3945.
[59] He Y, Wang X, Zhu J J, Zhong S H, Song G W. Analyst, 2012, 137:4005.
[60] Hong R, Han G, Fernández J M, Kim B, Forbes N S, Rotello V M. J. Am. Chem. Soc., 2006, 128:1078.
[61] Wu X, He X X, Wang K M, Xie C, Zhou B, Qing Z H. Nanoscale, 2010, 2:2244.
[62] Li Z T, Zhu Z N, Liu W J, Zhou Y L, Han B, Gao Y, Tang Z Y. J. Am. Chem. Soc., 2012, 134:3322.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[3] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[4] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[5] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[6] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[7] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[8] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[9] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[10] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[11] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[12] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.
[13] Wen Zhou, Xin Zhang, Hongpeng Ma, Jie Xu, Bin Guo, Panxin Li. Chemical and Physical Mechanism and Method of Preparation of Thermoplastic Starch [J]. Progress in Chemistry, 2021, 33(11): 1972-1982.
[14] Runtian Wang, Chunli Liu, Zhenbin Chen. Imprinted Composite Membranes [J]. Progress in Chemistry, 2020, 32(7): 989-1002.
[15] Jianlei Qi, Qinqin Xu, Jianfei Sun, Dan Zhou, Jianzhong Yin. Synthesis, Characterization and Analysis of Graphene-Supported Single-Atom Catalysts [J]. Progress in Chemistry, 2020, 32(5): 505-518.