中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (10): 1752-1762 DOI: 10.7536/PC140524 Previous Articles   

• Review •

Preparation and Applications of Microfibrillated Cellulose

Zhou Sukun, Mao Jianzhen, Xu Feng*   

  1. Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Science and Technology Program of the Twelfth Five-Year Plan Period (No. 2012BAD32B06)

PDF ( 3446 ) Cited
Export

EndNote

Ris

BibTeX

Microfibrillated cellulose(MFC)is a new kind of functional nano-materials. Due to its advantages of biocompatibility, biodegradable, excellent mechanical, special optical and high barrier properties, it has extensive application prospects such as nanopaper, aerogel, nanocomposite materials, papermaking, medicine, etc. However, there remains many problems of MFC preparation and application. The main challenge is the high energy consumption regarding the mechanical fibrillation, which makes it impossible to industrial production. Meanwhile, the strong polar of MFC restricts its good dispersion in non-polar matrices and limits its applications in nanocomposites production. Accordingly, pretreatments before mechanical isolation are needed to reduce the high energy consumption and the composite mechanism of MFC and polymers should be studied systematically to satisfy more possible applications. This review focuses on MFC preparation and its applications in nanopaper, aerogel, nanocomposites. At last the future development of MFC is prospected.

Contents
1 Introduction
1.1 Nanocrystalline cellulose
1.2 Bacterial nanocellulose
1.3 Microfibrillated cellulose
2 Preparation of MFC
2.1 Mechanical methods
2.2 Pretreatment
3 Applications of MFC
3.1 Nanopaper
3.2 Aerogel
3.3 MFC nanocomposites
3.4 Other applications
4 Conclusion and outlook

CLC Number: 

[1] Beck S, Bouchard J, Berry R. Biomacromolecules, 2011, 12: 167.
[2] 江泽慧(Jiang Z H), 王汉坤(Wang H K), 余燕(Yu Y),田根林(Tian G L), 王昊(Wang H). 世界林业研究(World Forestry Research), 2012, 4: 46.
[3] Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A. Angew. Chem. Int. Ed., 2011, 50: 5438.
[4] Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J, Heux L, Dubreuil F, Rochas C. Biomacromolecules, 2008, 9: 57.
[5] Marchessault R H, Morehead, Walter N M. Nature, 1959, 184: 632.
[6] Revol J F, Bradford H, Giasson J, Marchessault R H, Gray D G. Int.J. Biol. Macromol., 1992, 14: 170.
[7] Revol J F, Godbout L, Gray D G. J. Pulp Pap. Sci., 1998, 24:146.
[8] Bodin A. Doctoral Dissertation of Chalmers University, 2007.
[9] Herrick F W, Casebier R L, Hamilton J K, Sandberg K R. Appl. Polym. Sci., 1983, 37: 797.
[10] Kontturi E, Tammelin T, Osterberg M, Chem. Soc. Rev., 2006, 35:1287.
[11] 叶代勇(Ye D Y),黄洪(Huang H),傅和清(Fu H Q). 化工学报(Journal of Chemical Industry and Engineering), 2006, 57: 782.
[12] Saito T, Nishiyama Y, Putaux J L, Vignon M, Isogai A. Biomacromolecules, 2006, 7: 1687.
[13] Stenstad P, Andresen M, Tanem B S, Stenius P. Cellulose, 2007, 15: 35.
[14] Alemdar A, Sain M. Bioresour. Technol., 2008, 99: 1664.
[15] Habibi Y, Vignon M R. Cellulose, 2007, 15: 177.
[16] Mohin S, Suhara P. Ind. Crop. Prod., 2006, 23: 1.
[17] Bendahou A, Kaddami H, Dufresne A. Eur. Polym. J., 2010, 46: 609.
[18] 卢芸(Lu Y), 孙庆丰(Sun Q F), 李坚(Li J). 科技导报 (Science & Technology Review), 2013, 31: 17.
[19] Henriksson M, Berglund L A. Biomacromolecules, 2008, 9: 1579.
[20] Missoum K, Belgacem M N, Bras J. Materials, 2013, 6: 1745.
[21] Frone A N, Panaitescu D M, Donescu D. U. P. B. Science Bulletin Series B, 2011, 73: 133.
[22] Uetani K, Yano H. Biomacromolecules, 2011, 12: 348.
[23] Lavoine N, Desloges I, Dufresne A, Bras J. Carbohyd. Polym., 2012, 90: 735.
[24] 吴雪(Wu X), 刘斌(Liu B), 冯涛(Feng T). 食品与机械(Food and Machinery), 2009, 25: 65.
[25] Ferrer A, Filpponen I, Rodguez A, Laine J, Rojas J. Bioresour. Technol., 2012, 125: 249.
[26] Iwamoto S, Nakagaito A N, Yano N, Nogi M. Appl. Phys. A, 2005, 81: 1109.
[27] Spence K L, Venditti R A, Rojas O J, Habibi Y, Pawlak J J. Cellulose, 2011, 18: 1097.
[28] Abdul Khalil H P S, Davoudpour Y, Sudesh K, Dungani R, Jawaid M. Carbohyd. Polym., 2014, 99: 649.
[29] Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P. Cellulose, 2011, 18: 433.
[30] Wang B, Sain M. Polym. Int., 2007, 56: 538.
[31] Jonoobi M, Harun J, Shakeri A, Misra M, Oksman K. Bioresources, 2009, 4: 626.
[32] Chen P, Yu H, Liu Y, Chen W, Wang X, Yang M. Cellulose, 2013, 20: 149.
[33] Wang S,Cheng Q. J. Appl. Polym. Sci., 2009, 113: 1270.
[34] Zhou Y M, Fu S Y, Zheng L M, Zhan H Y. Express Polym. Lett., 2012, 6: 794.
[35] Eriksen O, Syverud K, Gregersen O. Nordic Pulp & Paper Research Journal, 2008, 23: 299.
[36] Zimmermann T, Pöhler E, Geiger T. Adv. Eng. Mater., 2004, 6: 754.
[37] 钱荣敬(Qian R J). 华南理工大学硕士论文(Master Dissertation of South China University of Technology), 2011.
[38] 杨贯羽(Yang G Y), 武彦春(Wu Y C), 武光辉(Wu G H).化学进展(Progress in Chemistry), 2007, 19:1727.
[39] Rodionova G, Saito T, Lenes M, Kuramae R, Isogai A. J. Polym. Environ., 2013, 21: 207.
[40] Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A. Biomacromolecules, 2009, 10: 1992.
[41] Isogai T, Saito T, Isogai A. Cellulose, 2011, 18: 421.
[42] Isogai A, Saito T, Fukuzumi H. Nanoscale, 2011, 3: 71.
[43] Wagberg L, Decher G, Norgren M, Lindstrom T, Ankerfors M, Axnas K. Langmuir, 2008, 24: 784.
[44] Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J. Cellulose, 2010, 17: 1005.
[45] Eyholzer C, Bordeanu N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K. Cellulose, 2010, 17: 19.
[46] Siro I, Plackett D. Cellulose, 2010, 17: 459.
[47] Liimatainen H, Visanko M, Sirvio J, Hormi J, Niinimaki J D. Cellulose, 2013, 20: 741.
[48] Siqueira G, Tapin-Lingua S, Bras J, da Silva Perez D, Dufresne A. Cellulose, 2011, 18: 57.
[49] Siqueira G, Tapin-Lingua S, Bras J, da Silva Perez D, Dufresne A. Cellulose, 2010, 17: 1147.
[50] Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M. Biomacromolecules, 2007, 8: 1934.
[51] Henriksson M, Henriksson G, Berglund L A, Lindström T. Eur. Polym. J., 2007, 43: 3434.
[52] Wang J, Cheng Q, Lin L, Jiang L. ACS Nano, 2014, 8: 2739.
[53] Olsson R T, Azizi Samir M A S, Salazar-Alvarez G. Nat. Nanotechnol., 2010, 5: 584.
[54] Nystr m G, Razaq A, Strmme M. Nano Lett., 2009, 9: 3635.
[55] Sabrine A, Iskander B, Manuel V. Ind. Crop. Prod., 2013, 41: 250.
[56] Brinchia L, Cotanaa F, Fortunatib E. Carbohyd. Polym., 2013, 94: 154.
[57] Hu L, Liu N, Eskilsson M. Nano Energy, 2013, 2: 138.
[58] Taniguchi T, Okamura K. Polym. Int., 1998, 47: 291.
[59] Liu A D, Berglund L A. Carbohyd. Polym., 2012, 87: 53.
[60] Nogi M, Iwamoto S, Nakagaito A N, Yano H. Adv.Mater., 2009, 21: 1595.
[61] Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Osterberg M, Wagberg L. Langmuir, 2009, 25: 7675.
[62] Wang H, Li D, Zhang R. BioResources, 2013, 8: 1374.
[63] Liu A D, Berglund L A. Eur. Polym. J., 2013, 49: 940.
[64] Mautner A, Lee K, Lahtinen Y P, Hakalahti M, Tammelin T, Li K, Bismarck A. Chem. Commun., 2014, 50: 5778.
[65] Yan C Y, Wang J X, Kang W B, Cui M Q, Wang X, Foo C Y, Chee K, Lee P S. Adv. Mater., 2014, 26: 1950.
[66] Hamedi M M, Hajian A, Fall A, Hakansson K, Salajkova M, Lundell F, Wagberg L, Berglund L A. ACS Nano, 2014, 8: 2467.
[67] 陶丹丹(Tao D D), 白绘宇(Bai H Y), 刘石林(Liu S L), 刘晓亚(Liu X Y). 纤维素科学与技术(Journal of Cellulose Science and Technology), 2011, 19: 64.
[68] Moreno-Castilla C, Maldonado-Hodar F. Carbon, 2005, 43: 455.
[69] Biener J, Stadermann M, Suss M, Worsley M A, Biener M M, Rose K A, Baumann T F. Energ&Environ. Sci., 2011, 4: 656.
[70] Xu Z, Zhang Y, Li P, Gao C. ACS Nano, 2012, 6: 7103.
[71] Gui X, Wei J, Wang K, Cao A, Zhu H, Jia Y, Shu Q, Wu D. Adv. Mater., 2010, 22: 617.
[72] Schwertfeger F, Schubert U. Chem. Mater., 1995, 7: 1909.
[73] Schaefer D W, Keefer K D. Phys. Rev. Let., 1986, 56: 2199.
[74] Chervin C N, Clapsaddle B J, Chiu H W, Gash A E, Satcher J H, Kauzlarich S M. Chem. Mater., 2005, 17: 3345.
[75] Corrias A, Casula M F, Falqui A, Paschina G. Chem. Mater., 2004, 16: 3130.
[76] Gavillon R, Budtova T. Biomacromolecules, 2008, 9: 269.
[77] Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund L A, Ikkala O. Soft Matter, 2008, 4: 2492.
[78] Korhonen J, Kettunen M R, Robin H, Ikkala O. ACS Appl. Mater. Inter., 2011, 3: 1813.
[79] Jiang F, Hsieh Y L. J. Mater. Chem. A, 2014, 2: 350.
[80] Jin H, Kettunen M, Laiho A, Pynnoönen H, Paltakari J, Marmur A, Ras R H. Langmuir, 2011, 27: 1930.
[81] Wang M, Anoshkin I, Nasibulin A, Korhonen J, Seitsonen J, Pere J, Kauppinen E, Ras R H, Ikkala O. Adv. Mater., 2013, 25: 2428.
[82] Lu T H, Li Q, Chen W S, Yu H P. Compos. Sci. Technol., 2014, 94: 132.
[83] Henriksson M, Berglund L A. J. Appl. Polym. Sci., 2007, 106: 2817.
[84] Iwamoto S, Yamamoto S, Lee S H, Endo T. Compos. Part A: Appl. Sci. Manufact., 2014, 59: 26.
[85] Aksoy E A, Akata B, Bac N, Hasirci N J. Appl. Polym. Sci., 2007, 104: 3378.
[86] Bhatnagar A, Sain M J. Reinf. Plast Compos., 2005, 24: 1259.
[87] Dufresne A, Dupeyre D, Vignon M R. J. Appl. Polym. Sci., 2000, 76: 2080.
[88] Nakagaito A N, Yano H. Appl. Phys. A-Mater. Sci. Process, 2004, 78: 547.
[89] Nakagaito A N, Yano H. Cellulose, 2008, 15: 323.
[90] Seydibeyoglu M O, Oksman K. Compos. Sci. Technol., 2008, 68: 599.
[91] Siqueira G, Bras J, Dufresne A. Biomacromolecules, 2009, 10: 425.
[92] Mondragon M, Arroyo K, Romero-Garcia J. Carbohyd. Polym., 2008, 74: 201.
[93] Lopez-Rubio A, Lagaron J M, Ankerfors M, Lindstrom T, Nordqvist D, Mattozzi A, Hedenqvist M S. Carbohyd. Polym., 2007, 68: 718.
[94] Iwamoto S, Nakagaito A N, Yano H. Appl. Phys. A-Mater. Sci. Process, 2007, 89: 461.
[95] Nogi M, Yano H. Adv. Mater., 2008, 20: 1849.
[96] Svagan A J, Hedenqvist M S, Berglund L A. Compos. Sci. Technol., 2009, 69: 500.
[97] Berglund L A. Polymer Composite Materials for Wind Power Turbines, 2006. 1.
[98] Bulota M, Kreitsmann K, Hughes M, Paltakari J. J. Appl. Polym. Sci., 2012, 126: 448.
[99] Martins N, Freire C, Pinto R, Fernandes S, Pascoal Neto C, Silvestre A, Causio J, Baldi G, Sadocco P, Trindade T. Cellulose, 2012, 19: 1425.
[100] Liu A D, Walther A, Ikkala O, Belova L, Berglund L A. Biomacromolecules, 2011, 12: 633.
[101] 欧阳昌礼(Ou Yang Ch L),吴芹(Wu Q),王广河(Wang G H),宋海农(Song H N). 中国造纸学报(Transactions of China Pulp and Paper),2011,26: 1.
[102] 张俊华(Zhang J H). 广西大学硕士论文(Master Dissertation of Guang Xi University), 2008.
[103] Syverud K, Stenius P. Cellulose, 2009, 16: 75.
[104] Aulin C, Gällstedt M, Lindström T. Cellulose, 2010, 17: 559.
[105] Djafari Petroudy S R, Syverud K, Chinga-Carrasco G, Ghasemain A, Resalati H. Carbohyd. Polym., 2014, 99: 311.
[106] Fukui Y, Innami S. US 4659388, 1987.
[107] Bertolla L, Dlouhy I, Philippart A, Boccaccini A R. Mater. Lett., 2014, 118: 204.
[108] Sandberg K R, Snyder F W, Turbak A F. US 4341807, 1982.

[1] Fengqi Liu, Yonggang Jiang, Fei Peng, Junzong Feng, Liangjun Li, Jian Feng. Preparation and Application of Ultralight Nanofiber Aerogels [J]. Progress in Chemistry, 2022, 34(6): 1384-1401.
[2] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[3] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[4] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[5] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[6] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[7] Yujian Liu, Zhimin Liu, Zhigang Xu, Gongke Li. Stir Bar Sorptive Extraction Technology [J]. Progress in Chemistry, 2020, 32(9): 1334-1343.
[8] Deying Mu, Zhu Liu, Shan Jin, Yuanlong Liu, Shuang Tian, Changsong Dai. The Recovery and Recycling of Cathode Materials and Electrolyte from Spent Lithium Ion Batteries in Full Process [J]. Progress in Chemistry, 2020, 32(7): 950-965.
[9] Zhenyu Huang, Zhengkai Tu. Local Current Density Distribution of Proton Exchange Membrane Fuel Cell and Its Research Prospects [J]. Progress in Chemistry, 2020, 32(7): 943-949.
[10] Jian Li, Enshuang Zhang, Yuanyuan Liu, Hongyan Huang, Yuefeng Su, Wenjing Li. Preparation of the Ultralow Density Aerogel and Its Application [J]. Progress in Chemistry, 2020, 32(6): 713-726.
[11] Wanqiu Huang, Miaomiao Gao, Hongjing Dou. Polypyrrole and Its Nanocomposites Applied in Photothermal Therapy [J]. Progress in Chemistry, 2020, 32(4): 371-380.
[12] Zhihua Song, Shenghong Li, Gangqiang Yang, Na Zhou, Lingxin Chen. Sample Pretreatment, Analysis and Detection of Ginsenosides [J]. Progress in Chemistry, 2020, 32(2/3): 239-248.
[13] Bingqian Huang, Liyan Wang, Xuan Wei, Weichao Xu, Zhen Sun, Tinggang Li. Lignocellulose Pretreatment by Deep Eutectic Solvents for Biobutanol production [J]. Progress in Chemistry, 2020, 32(12): 2034-2048.
[14] Dongmei Yao, Weiqi Zhang, Qian Xu, Li Xu, Huaming Li, Huaneng Su. Membrane Electrode Assembly for High Temperature Polymer Electrolyte Membrane Fuel Cell Based on Phosphoric Acid-Doped Polybenzimidazole [J]. Progress in Chemistry, 2019, 31(2/3): 455-463.
[15] Lei Bai, Yanfeng Wang, Shuhui Huo, Xiaoquan Lu. Application of Food and Water Samples Pretreatment Using Functional Metal-Organic Frameworks Materials [J]. Progress in Chemistry, 2019, 31(1): 191-200.