中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (7): 943-949 DOI: 10.7536/PC191120 Previous Articles   Next Articles

• Review •

Local Current Density Distribution of Proton Exchange Membrane Fuel Cell and Its Research Prospects

Zhenyu Huang1, Zhengkai Tu1,**()   

  1. 1. School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received: Online: Published:
  • Contact: Zhengkai Tu
  • About author:
  • Supported by:
    National Natural Science Foundation of China(51776144)
Richhtml ( 40 ) PDF ( 1596 ) Cited
Export

EndNote

Ris

BibTeX

Proton exchange membrane fuel cell(PEMFC) is being paid to special attention around the world duo to their zero pollution, low noise, high energy density, high efficiency and fast response, thus it is developing rapidly in recent years. However, the lifespan of PEMFC vehicle is an important issue that restricts its commercialization. Local current density is an important parameter during the operation of PEMFC, which can be used as the fault diagnosis and positioning tool, improving the operation durability and stability of PEMFC. Moreover, the internal information of an operating PEMFC can be also revealed by the local current density, providing comprehensive understanding of the reaction mechanism and guidance for the optimization design of PEMFC. In consequence, it is of great importance for the thorough and comprehensive research of the local current density. In this paper, the methods for the in-situ and real-time measurement of the local current density are introduced and analyzed, and the results obtained by previous experiments and numerical simulation are compared. The effect of operation parameters on local current density have been summarized in detail and the applications of local current density in fuel cell analysis are reviewed. Finally, the development tendency is proposed based on the research progress of this topic.

Contents

1 Introduction

2 Research methods of the local current density

2.1 Methods for the in-situ and real-time measurement of the local current density

2.2 Numerical Simulation of the local current density

2.3 Factors affecting the local current density distribution

3 Applications of the local current density

4 Conclusions and outlook

Fig.1 Schematic diagram of measuring gaskets
Fig.2 Examples of MEA design for the partial MEA method(a)catalyzed entrance area; (b)catalyzed single flow channel area
Fig.3 (a) Schematic diagram of the sub-cell; (b) Circuit diagram of several load banks testing system for the sub-cell
Fig.4 Circuit diagram of the shunt resistor testing system for segmented cell technology
Fig.5 The testing system integrated with a PCB
[1]
肖宽(Xiao K), 潘牧(Pan M), 詹志刚(Zhan Z G), 吴凡(Wu F) . 电源技术 (Chinese Journal of Power sources), 2018,42(01):153.
[2]
Wang G , Yu Y , Liu H , Gong C , Wen S , Wang X , Tu Z . Fuel Processing Technology, 2018,179:203. doi: 10.1016/j.fuproc.2018.06.013 https://linkinghub.elsevier.com/retrieve/pii/S0378382017315588
[3]
Majlan E H , Rohendi D , Daud W R W , Husaini T , Haque M A . Renewable and Sustainable Energy Reviews, 2018,89:117. doi: 10.1016/j.rser.2018.03.007 https://linkinghub.elsevier.com/retrieve/pii/S1364032118300935
[4]
Daud W R W , Rosli R E , Majlan E H , Hamid S A A , Mohamed R , Husaini T . Renewable Energy, 2017,113:620. doi: 10.1016/j.renene.2017.06.027 https://linkinghub.elsevier.com/retrieve/pii/S0960148117305281
[5]
Lim J W , Lee D , Kim M , Choe J , Nam S , Lee D G . Composite Structures, 2015,134:927. doi: 10.1016/j.compstruct.2015.08.121 https://linkinghub.elsevier.com/retrieve/pii/S026382231500817X
[6]
侯明(Hou M), 俞红梅(Yu H M), 衣宝廉(Yi B L) . 化学进展 (Progress in Chemistry), 2009,21(11):2319. 25fa250b-3df4-4e4b-84c9-bcd48cd68300 http://www.progchem.ac.cn//CN/abstract/abstract10165.shtml
[7]
Guerrero M N , Cisneros M M , Gervasio D , Pérez R J F . Renewable and Sustainable Energy Reviews, 2015,52:897.
[8]
Wang J . Energy, 2015,80:509.
[9]
Chen H , Zhao X , Zhang T , Pei P . Energy Conversion and Management, 2019,182:282.
[10]
王诚(Wang C), 王树博(Wang S B), 张剑波(Zhang J B), 李建秋(Li J Q), 王建龙(Wang J L), 欧阳明高(Ou Y M G) . 化学进展 (Progress in Chemistry), 2015,27(04):424. http://manu56.magtech.com.cn/progchem/CN/10.7536/PC140807
[11]
Lobato J , Cañizares P , Rodrigo M A , Pinar F J , úbeda D . Journal of Power Sources, 2011,196(9):4209.
[12]
Belhadj M , Aquino A , Heng J , Kmiotek S , Raël S , Bonnet C , Lapicque F . Chemical Engineering Science, 2018,185:18.
[13]
Reshetenko T V , Bethune K , Rubio M A , Rocheleau R . Journal of Power Sources, 2014,269:344.
[14]
Cleghorn S J C , Derouin C R , Wilson M S , Gottesfeld S . Journal of Applied Electrochemistry, 1998,28(7):663.
[15]
Stumper J , Campbell S A , Wilkinson D P , Johnson M C , Davis M . Electrochimica Acta, 1998,43(24):3773.
[16]
Albaghdadi M , Aljanabi H . International Journal of Hydrogen Energy, 2007,32(17):4510.
[17]
Asghari S , Mokmeli A , Samavati M . International Journal of Hydrogen Energy, 2010,35(17):9283.
[18]
Zhang Y , Verma A , Pitchumani R . International Journal of Hydrogen Energy, 2016,41(20):8412.
[19]
Weng F , Jou B , Li C , Su A , Chan S . Journal of Power Sources, 2008,181(2):251.
[20]
Yu Y , Yuan X , Li H , Gu E , Wang H , Wang G , Pan M . International Journal of Hydrogen Energy, 2012,37(20):15288.
[21]
Liang D , Shen Q , Hou M , Shao Z , Yi B . Journal of Power Sources, 2009,194(2):847.
[22]
Strickland D G , Litster S , Santiago J G . Journal of Power Sources, 2007,174(1):272.
[23]
Alaefour I , Karimi G , Jiao K , Li X . Applied Energy, 2012,93:80.
[24]
Lin R , Gülzow E , Schulze M , Friedrich K A . Journal of The Electrochemical Society, 2011,158(1):B11.
[25]
Mench M M , Wang C Y , Ishikawa M . Journal of The Electrochemical Society, 2003,150(8):A1052.
[26]
Wieser C , Helmbold A , Gülzow E . Journal of Applied Electrochemistry, 2000,30(7):803.
[27]
Noponen M , Mennola T , Mikkola M , Hottinen T , Lund P . Journal of Power Sources, 2002,106(1):304.
[28]
Zhang G , Guo L , Ma B , Liu H . Journal of Power Sources, 2009,188(1):213.
[29]
Sun H , Zhang G , Guo L , Liu H . Journal of Power Sources, 2006,158(1):326.
[30]
Sun H , Zhang G , Guo L , Dehua S , Liu H . Journal of Power Sources, 2007,168(2):400. doi: 10.1016/j.jpowsour.2007.03.022 https://linkinghub.elsevier.com/retrieve/pii/S037877530700571X
[31]
Wang L , Liu H . Journal of Power Sources, 2008,180(1):365.
[32]
Higier A , Liu H . Journal of Power Sources, 2009,193(2):639. doi: 10.1016/j.jpowsour.2009.03.059 https://linkinghub.elsevier.com/retrieve/pii/S0378775309005692
[33]
Liu Z , Mao Z , Wu B , Wang L , Schmidt V M . Journal of Power Sources, 2005,141(2):205.
[34]
Geiger A B , Eckl R , Wokaun A , Scherer G G . Journal of The Electrochemical Society, 2004,151(3):A394.
[35]
Bender G , Wilson M S , Zawodzinski T A . Journal of Power Sources, 2003,123(2):163.
[36]
Lin R , Sander H , Gülzow E , Friedrich A K . ECS Transactions, 2010,26(1):229.
[37]
Liu D , Lin R , Feng B , Han L , Zhang Y , Ni M , Wu S . Applied Energy, 2019,254:113712. doi: 10.1016/j.apenergy.2019.113712 https://linkinghub.elsevier.com/retrieve/pii/S0306261919313996
[38]
Shan J , Gazdzicki P , Lin R , Schulze M , Friedrich K A . Energy, 2017,128:357.
[39]
Zhang Q , Lin R , Técher L , Cui X . Energy, 2016,115:550.
[40]
Wang Y , Xie X , Zhou C , Feng Q , Zhou Y , Yuan X , Xu J , Fan J , Zeng L , Li H , Wang H . Journal of Power Sources, 2020,449:227542.
[41]
Priya K , Sathishkumar K , Rajasekar N . Renewable and Sustainable Energy Reviews, 2018,93:121.
[42]
Zhang G , Jiao K . Journal of Power Sources, 2018,391:120.
[43]
Jahnke T , Futter G , Latz A , Malkow T , Papakonstantinou G , Tsotridis G , Schott P , Gérard M , Quinaud M , Quiroga M , Franco A A , Malek K , Calle-Vallejo F , Ferreira De Morais R , Kerber T , Sautet P , Loffreda D , Strahl S , Serra M , Polverino P , Pianese C , Mayur M , Bessler W G , Kompis C . Journal of Power Sources, 2016,304:207.
[44]
Eslamibidgoli M J , Huang J , Kadyk T , Malek A , Eikerling M . Nano Energy, 2016,29:334.
[45]
Thosar A U , Agarwal H , Govarthan S , Lele A K . Chemical Engineering Science, 2019,206:96.
[46]
Chevalier S , Josset C , Auvity B . Renewable Energy, 2018,125:738.
[47]
Reshetenko T , Kulikovsky A . Electrochemistry Communications, 2019,101:35.
[48]
Nguyen P T , Berning T , Djilali N . Journal of Power Sources, 2004,130(1/2):149.
[49]
Jia S , Liu H . International Journal of Hydrogen Energy, 2014,39(3):1449.
[50]
Hakenjos A , Muenter H , Wittstadt U , Hebling C . Journal of Power Sources, 2004,131(1/2):213.
[51]
Lin R , Cao C , Ma J , Gülzow E , Andreas Friedrich K . International Journal of Hydrogen Energy, 2012,37(4):3373.
[52]
Liu D , Lin R , Feng B , Yang Z . International Journal of Hydrogen Energy, 2019,44(14):7564.
[53]
Kim S , Kim M , Sohn Y . International Journal of Hydrogen Energy, 2015,40(35):11676.
[54]
Ihonen J , Jaouen F , Lindbergh G , Sundholm G , Kemiteknik, Tidigare I F , Kth. Electrochimica Acta, 2001,46(19):2899.
[55]
Lee W , Ho C , Van Zee J W , Murthy M . Journal of Power Sources, 1999,84(1):45.
[56]
Reshetenko T V , Bender G , Bethune K , Rocheleau R . Electrochimica Acta, 2013,88:571.
[57]
Shin D K , Yoo J H , Kang D G , Kim M S . Renewable Energy, 2018,115:663.
[58]
Bertei A , Yufit V , Tariq F , Brandon N P . Journal of Power Sources, 2018,396:246.
[59]
Santis M , Freunberger S A , Reiner A , Büchi F N . Electrochimica Acta, 2006,51(25):5383.
[60]
Zhang Y , Smirnova A , Verma A , Pitchumani R . Journal of Power Sources, 2015,291:46.
[61]
Herden S , Riewald F , Hirschfeld J A , Perchthaler M . Journal of Power Sources, 2017,355:36.
[62]
Chen H , Xu S , Pei P , Qu B , Zhang T . International Journal of Hydrogen Energy, 2019,44(11):5437.
[63]
Dou M , Hou M , Liang D , Shen Q , Zhang H , Lu W , Shao Z , Yi B . Journal of Power Sources, 2011,196(5):2759.
[64]
Zhong D , Lin R , Liu D , Cai X . Journal of Power Sources, 2018,403:1. doi: 10.1016/j.jpowsour.2018.09.067 https://linkinghub.elsevier.com/retrieve/pii/S0378775318310371
[65]
Weng F , Hsu C , Li C . International Journal of Hydrogen Energy, 2010,35(8):3664. doi: 10.1016/j.ijhydene.2010.01.065 51d8b6dc-11da-48cc-9d46-d5d72f05c7aa http://www.sciencedirect.com/science/article/pii/S0360319910001369
[66]
Shan J , Lin R , Xia S , Liu D , Zhang Q . International Journal of Hydrogen Energy, 2016,41(7):4239.
[67]
Lin R , Xiong F , Tang W C , Técher L , Zhang J M , Ma J X . Journal of Power Sources, 2014,260:150.
[68]
Reshetenko T V , Bethune K , Rocheleau R . Journal of Power Sources, 2012,218:412.
[69]
Reshetenko T V , St-Pierre J . Journal of Power Sources, 2015,287:401. doi: 10.1016/j.jpowsour.2015.04.073 https://linkinghub.elsevier.com/retrieve/pii/S0378775315007302
[70]
Reshetenko T V , St-Pierre J . Journal of Power Sources, 2016,333:237. doi: 10.1016/j.jpowsour.2016.09.165 https://linkinghub.elsevier.com/retrieve/pii/S0378775316313647
[71]
Reshetenko T , Laue V , Krewer U , Artyushkova K . Journal of Power Sources, 2019,438:226949.
[72]
Reshetenko T V , St-Pierre J . Journal of Power Sources, 2015,293:929.
[73]
Mohammadi A , Djerdir A , Yousfi Steiner N , Khaburi D . International Journal of Hydrogen Energy, 2015,40(45):15845.
[74]
池滨(Chi B), 侯三英(Hou S Y), 刘广智(Liu G Z), 廖世军(Liao S J) . 化学进展 (Progress in Chemistry), 2018,30(2/3):243. http://manu56.magtech.com.cn/progchem/CN/10.7536/PC170818
[75]
叶跃坤(Ye Y K), 池滨(Chi B), 江世杰(Jiang S J), 廖世军(Liao S J) . 化学进展 (Progress in Chemistry), 2019,31(12):1637.
[1] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[2] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[3] Shaopeng Tian, Huaping Ren, Mingshu Chen, Zongcheng Miao, Yisheng Tan. The Crucial Role of Cation Distribution in Non-Stoichiometric Spinel-Structure Zn-Cr Catalysts for Isobutanol Synthesis from Syngas [J]. Progress in Chemistry, 2022, 34(1): 155-167.
[4] Yuyang Lei, Fangfang Li, Jie Ouyang, Minjie Li, Lianghong Guo. Environmental Distribution Characteristics and Source Analysis of Antibiotics in Zhejiang Area [J]. Progress in Chemistry, 2021, 33(8): 1414-1425.
[5] Qiang Li, Kun Lin, Xianran Xing. Local Structure Determination Based on Total Scattering and Condensed Matter [J]. Progress in Chemistry, 2020, 32(8): 1219-1230.
[6] Dongmei Yao, Weiqi Zhang, Qian Xu, Li Xu, Huaming Li, Huaneng Su. Membrane Electrode Assembly for High Temperature Polymer Electrolyte Membrane Fuel Cell Based on Phosphoric Acid-Doped Polybenzimidazole [J]. Progress in Chemistry, 2019, 31(2/3): 455-463.
[7] Junli Wang, Yaling Wang, Jingxia Zheng, Shiping Yu, Yongzhen Yang, Xuguang Liu. Mechanism, Tuning and Application of Excitation-Dependent Fluorescence Property in Carbon Dots [J]. Progress in Chemistry, 2018, 30(8): 1186-1201.
[8] Chenhui Wei, Heyun Fu, Xiaolei Qu, Dongqiang Zhu. Environmental Processes of Dissolved Black Carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052.
[9] Han Donglin, Qi Hongzhao, Zhao Jin, Long Lixia, Ren Yu, Yuan Xubo. Enhancement of Intra-Tumor Penetration and Distribution of Nano-Drug Carriers [J]. Progress in Chemistry, 2016, 28(9): 1397-1405.
[10] Liu Xu, Wu Juntao, Huo Jiangbei, Meng Xiaoyu, Cui Lishan, Zhou Qiong. Effects of Conducting Channels Microstructure in Proton Exchange Membrane on the Performance of Fuel Cells [J]. Progress in Chemistry, 2015, 27(4): 395-403.
[11] Li Dong, Li Wenhai, Dong Guifang, Duan Lian, Wang Liduo. The Functional Materials and Structure of Organic Photodiodes [J]. Progress in Chemistry, 2014, 26(12): 1889-1898.
[12] Liu Feng, Wang Cheng, Zhang Jianbo, Lan Aidong, Li Jianqiu, Ouyang Minggao. Ordered Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2014, 26(11): 1763-1771.
[13] Fu Chao, Zhu Yutian, Shi Dean. Separation and Characterization of Block Copolymers by Liquid Chromatography at the Critical Condition [J]. Progress in Chemistry, 2014, 26(01): 140-151.
[14] Wang Jiashu, Pan Guoshun, Guo Dan. Catalyst Layer Structure of Membrane Electrode Assemblies in PEMFC [J]. Progress in Chemistry, 2012, (10): 1906-1914.
[15] Yang Zhongzhi. Electronegativity Equalization [J]. Progress in Chemistry, 2012, 24(06): 1038-1049.