中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (2/3): 239-248 DOI: 10.7536/PC190814 Previous Articles   Next Articles

Sample Pretreatment, Analysis and Detection of Ginsenosides

Zhihua Song1,**(), Shenghong Li3, Gangqiang Yang1, Na Zhou2, Lingxin Chen2,**()   

  1. 1. Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
    2. CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research(YIC), Chinese Academy of Sciences(CAS), Shandong Provincial Key Laboratory of Coastal Environmental Processes, Yantai 264003, China
    3. CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
  • Received: Online: Published:
  • Contact: Zhihua Song, Lingxin Chen
  • About author:
    ** e-mail: (Zhihua Song);
    (Lingxin Chen)
  • Supported by:
    Key Research Project of Yantai City(2018ZHGY085); National Demonstration Center for Experimental Pharmacy Education(Yantai University)()
Richhtml ( 13 ) PDF ( 706 ) Cited
Export

EndNote

Ris

BibTeX

Ginsenosides are an important kind of active ingredients in Panax genus and can be classified into four main types: the protopanaxadiols(PPD), protopanaxatriols(PPT), oleanolic acids(OA) and ocotillol type(OT). Recently, more than 620 kinds of these compounds have been isolated. Their chemical structures are similar but have quite different medicinal functions. It is of vital importance to develop simple and facile sample pretreatment methods and detection techniques to detect the content of ginsenosides in complex matrix. This review includes many kinds of sample pretreatment methods(such as liquid phase extraction, and solid phase extraction) and detection methods(such as high performance liquid chromatography, ultra-performance liquid chromatography, thin layer chromatography, and gas chromatography), etc., summarizes the sensitivity and recovery of various methods, and reviews the advantages and disadvantages of each method and its research progress.

Table 1 Four types of common ginsenosides:(a) 20(s)-PPD,(b) 20(s)-PPT,(c) OA,(d) 24(R)-OT[13]. Copyright 2000 American Chemical Society
Table 2 Sample pretreatment methods for ginsenosides
Sample pretreatment methods Principles Advantages Disadvantages
Solvent extraction method Microwave assisted extraction(MAE) Cell walls of the Chinese traditional medicine are disrupted by the microwave with energy of 300 MHz~300 GHz, and then the extracting rate is increased. Convenient operation, short extraction time, high extraction yield, less solvent consumption, and low cost[24, 25]. Some heat-sensitive
compounds are easy to be destroyed.
Ultrasonic assisted extraction(UAE) The disruption of cell walls, reduction of particle-size and enhancing mass transfer of the cell contents are caused by cavitation bubble collapse, mechanical and thermal effects. Highly efficient, low consumption of solvent, fast(tens minutes), mild conditions(20~30 ℃), simple and low cost[26]. Low degree of automation and difficult to be used on-line.
Accelerated solvent extraction(ASE) ASE is carried out in closed container with a high pressure and a temperature above the boiling point of organic solvent. The extraction rate increases with the increase of pressure and temperature. Fast(a few minutes to ten minutes), save solvent, realize automation easily. Some heat-sensitive
compounds are easy to be destroyed; the instruments are expensive; and operation skills are hard to master.
Sub-and supercritical fluid extraction The extraction process proceeds by using sub-and supercritical fluids near the critical point of temperature and pressure with the good properties of high-density, low-viscosity, and high-permeability. Non-toxic and safe, no organic solvent residual, environment friendly, low energy cost [27]. The instrument is expensive
due to high pressure
resistant.
Enzymatic dissociation method Active ingredients can beextracted from plant tissues by using suitable enzymes(cellulase, amylase, etc.) under mild conditions[28]. Furthermore, the fragmentation of cell walls will be accelerated with the increase of the pressure(100~600 MPa) [29]. Efficient and has great potential in extraction of active ingredients from traditional Chinese medicine. Susceptible to external
conditions.
Solid phase extraction (SPE) The ginsenoside compounds and impurities are separated by adsorbents according to the difference in adsorption. Simple, low cost and wide
range ofapplication.
Large amount of organic reagents consumption, only suitable for pretreatment of small batches of samples.
Table 3 The application of liquid chromatography for analysis of active compounds in Chinese herbs
Analyte Matrix Sample
pretreatment
Column and temperature Mobile phases and detection Recovery(%) LOD Ref
Re, Rh1, Rg2,
Rg1, Rf
White ginseng, red ginseng, American ginseng, and ginseng. Extracted by methanol Shiseido UG 80 Capcell Pak
NH2 column
(250 × 4.6 mm
i.d., 5 μm), 25 ℃
0~3 min, 89% A; 3~25 min, 89%→84% A; 25~30 min, 84%→82% A; 30~35 min, 82%→76% A; 35~40 min,89% A.
A:acetonitrile; B water. UV:203 nm
95.31%~103.85% 0.0047 ~
0.225
(mg·L-1)
12
20 (S)-Rh1, 20
(R)-Rh1, Rg6,
F4, Rk3, 20(S)-Rg3, 20(R)-Rg3, Rk1, Rg5
Roots of P. quinquefolius L. Reflux extraction by water and
methanol
Acchrom Technologies ODS-C18 type column(250 ×4.6 mm i.d., 5 μm), 30 ℃. 0~10 min, 33% B; 10~15 min, 33%→40% B; 15~40 min, 40%→60% B; 40~70 min, 60% B.
A: water; B: acetonitrile. HPLC-UV: 203 nm.
HPLC-ESI-MS
97.97%~103.24% 0.18~
0.45
(μg·mL-1)
24
ginsenosides Rb1, Rc, Rb2, Rb3;
notoginsenosides Fc, Fe, Fd
Panax notoginseng leaves Rxtracted by methanol Agilent Zorbax ODS C8 column(250 × 4.6 mm
i.d.,5 μm),
35 ℃
0~5 min, 15%→30% B; 5~15 min, 30%→32% B; 15~35 min, 32%→32% B; 35~45 min, 32%→45% B; 45~60 min, 45%→50% B. A: water; B: acetonitrile.
HPLC-UV: 203 nm
98.7%~106.1% 98 (ng) 40
Ginsenoside Rg1,
Ginsenoside Rb1,
Ginsenoside Rc,
Ginsenoside Rd,
Ginsenoside Re,
Ginsenoside Rf,
Ginsenoside Rg3,
Ginsenoside Rh1,
Ginsenoside Rb2,
Ginsenoside Rb3
Ginsenosides in chronic
heart failure(CHF) rats
Solid-phase extraction(SPE) ACQUITY UPLC?? HSS T3 column(100 × 2.1 mm i.d.,
1.8 μm),
40 ℃
0~1 min, 30%→35% B; 1.0~5.0 min, 35%→38% B; 5.0~5.5 min, 38%→45% B; 5.5~6.0 min, 45%→80% B; 6.0~7.0 min, 80%→90% B; 7.0~7.5 min, 90%→30% B; 7.5~8.0 min, 30%→30% B. A: water with 0.1% formic acid; B: acetonitrile.
UFLC-MS/MS
60%~105% - 42
Ginsenoside Rg1,
Ginsenoside Re,
Ginsenoside Rb1
Panax quinquefolii Radix Reflux extraction by water-saturated
n-butanol
Venusil XBP
C18 column
(250 × 4.6 mm i.d., 5 μm),
30 ℃.
0.01~25 min, 19%→20% A;
25.01~60 min, 20%→40% A;
60.01~80 min, 40.1%→100% A.
A: acetonitrile; B: 0.1%
phosphoric acid solution.
UV: 203 nm
88.61%~94.29% 0.066~
0.400
(μg·mL-1)
55
notoginsenoside R1,
ginsenoside Rg1,
ginsenoside Rb1,
astragaloside Ⅳ,
ginsenoside Rd
Qishen Yiqi
Dripping Pills(QYDP)
liquid-liquid Extraction using water-
saturated n-butanol
Acquity UPLC HSS T3 column (100 × 2.1 mm i.d., 5 μm), 30 ℃ 0~1 min, 83% A; 1~14 min, 83%→56%; 14~15 min, 56% A. A: water containing 0.1% formic acid; B: acetonitrile. UPLC-ELSD 96.87%~99.97% 2.36~
7.68
(μg·mL-1)
57
Analyte Matrix Sample
pretreatment
Column and temperature Mobile phases and detection Recovery(%) LOD Ref
G-Ra1, G-Ra2,
G-Rb1, G-Rb2,
G-Rb3, G-Rc,
G-Rd, G-Re,
G-Re4, G-Rf,
G-Rg1, G-Rg2,
G-Ro, G-Rs2,
G-RoMe, 20-Glc-
G-Rf, Ma-G-Rb2,
NG-R1, NG-R2
Roots and
rhizomes of
Panax ginseng samples.
Extracted by 70% aqueous MeOH solutions Diamonsil ODS C18 column
(250 × 4.6 mm i.d., 5 μm), room temperature
0~20 min, 10%→20% A; 20~30 min, 20%→22% A; 30~40 min, 22%→31%A; 40~75 min, 31%→33% A; 75~80 min, 33%→40% A; 80~90 min, 40%→50% A; 90~100 min, 50%→60% A; 100~110 min, 60%→70% A. Flow rate: 0~32 min, 0.8 mL/min; 32.1~110 min, 0.5 mL/min.
A: MeCN; B: MeCN: H2O: 0.1% formic acid aqueous solution(5∶90∶8; v/v/v)
HPLC-ESI-MS
94.87%~102.45% 0.159~
9.052 (ng)
58
N-R1, G-Rg1,
G-Re, G-Rf,
G-F3, G-Rg2,
G-Rh1, G-Rb1,
G-Ro, G-Rc,
G-Rb2, G-Rb3,
CS-IV, CS-Iva,
G-Rd, G-Rg3
Panax japonicas(PJ), Panax japonicus var. major(PM), and Panax zingiberensis (PZ) Extracted by 60% aqueous methanol solutions Waters C18
column(150×3.9 mm i.d., 4.6 μm), room
temperature
0~3 min, 20%→23% A; 3~8 min, 30%→35% A; 8~15 min, 35% A; 15~20 min, 35%→60% A; 20~22 min, 60%→80% A; 22~24 min, 80%→95% A; 24~25 min, 95%→20% A.
A: acetonitrile; B: 0.05% formic acid aqueous solution.
HPLC-ESI-MS/MS
99.25%~104.10% 0.13~
2.22
(ng·mL-1)
59
ginsenosides Rg1, 20(S)-Rg2, Re, 20(S)-Rh, Rb1, Rb2, Rd Tissue extracts from the root and rhizome of Panax ginseng C.A. Mey. Extracted by methanol Waters C18
column(100 mm ×2.1 mm i.d., 1.7 μm), room temperature ~20 ℃.
0~3 min, 10%→20% B; 3~25 min, 20%→38% B; 25~30 min, 38%→85% B; 30~30.1 min, 85%→100% B; 30.1~32 min, 100% B; 32~32.1 min 100%→10% B. A: formic acid aqueous solution; B: acetonitrile containing 0.1% formic acid.
UPLC-QTOF-MS
- 6.08~
108.72
(ng·mL-1)
60
Rg1 and
its metabolites
Sprague-
Dawley rat
bile, urine,
and feces
Extracted by methanol Shim-Pack XR-ODS Ⅱ(75 × 2 mm, 2.3 μm) column, 40 ℃. 0~7 min, 22%→80% B; 7~7.01 min, 80%→22%; 7.01~10 min, 22%→22% B.
A: 0.05% formic acid aqueous solution; B: 0.05% formic acid in acetonitrile.
HPLC-MS/MS
Rg1, ginsenoside Rh1(Rh1), and protopanaxatriol(Ppt) in bile, urine, and feces ≥70%. The fecal excretion recoveries of Rg1, Rh1, and Ppt, 22.19%~ 40.11%. Rg1 in bile, 6.88%; Rh1 and Rg1in Urinary excretion 0.04%~0.09%. - 61
Rg1, Re, Rf,
Rg2, Rb1, Rc,
Rb2, Rd
Kang’ai
injection
Aqueous two-
phase system
based Deep
eutectic solvent
and K2HPO4
solution
Agilent Zorbax SB-C18 column(250×4.6 mm i.d., 5 μm),
30 ℃
0~34 min, 19.2% A; 34~35 min, 19.2%→28.0% A; 35~48 min, 28.0% A; 48~56 min, 28.5% A; 56~72 min, 36.0% A. A: acetonitrile; B: 0.1% phosphoric acid aqueous solution. HPLC-DAD: 203 nm 92.7%~110.8% 0.3~1.5
(μg·mL-1)
62
[1]
Gurung B, Bhardwaj P K, Rai A K, Sahoo D . Nat. Prod. Res., 2018,32:234. https://www.ncbi.nlm.nih.gov/pubmed/28649854

doi: 10.1080/14786419.2017.1343322 pmid: 28649854
[2]
Gao Y L, Wang T, Wang G F, Li G S, Sun C F, Jiang Z M, Yang J R, Li Y S, You Y L, Wu X R, Sun L Q, Wang H B, Li C M, Tian J W, Zhu J, Wang K Z . Cho S. Food Chem. Toxicol., 2019,131:110578. https://www.ncbi.nlm.nih.gov/pubmed/31201900

doi: 10.1016/j.fct.2019.110578 pmid: 31201900
[3]
Wang W Y, Ni Y Y, Wang L, Che X, Liu W H, Meng Q G . Xenobiotica, 2015,45:385. https://www.ncbi.nlm.nih.gov/pubmed/25430797

doi: 10.3109/00498254.2014.986562 pmid: 25430797
[4]
Ren Q W, Yang G Q, Guo M Q, Guo J W, Li Y, Lu J, Yang Q, Tang H H, Li Y, Fang X J, Sun Y X, Qi J G, Tian J W, Wang H B . Eur. J. Med. Chem., 2019,161:118. https://www.ncbi.nlm.nih.gov/pubmed/30347326

doi: 10.1016/j.ejmech.2018.10.038 pmid: 30347326
[5]
Xu X F, Gao Y, Xu S Y, Liu H, Xue X, Zhang Y, Zhang H, Liu M N, Xiong H, Lin R C, Li X R . J. Ginseng Res., 2018,42:277. https://www.ncbi.nlm.nih.gov/pubmed/29983609

doi: 10.1016/j.jgr.2017.02.003 pmid: 29983609
[6]
Liu Z Y, Zhang H Y, Bi Y, Liu X X, Lu J, Zhang X C, Xu J Y, Wang C Z, Yuan C S . Nat. Prod. Res., 2017,31:1523. https://www.ncbi.nlm.nih.gov/pubmed/28107791

doi: 10.1080/14786419.2017.1280488 pmid: 28107791
[7]
Liu F, Ma N, Xia F B, Li P, He C W, Wu Z Q, Wan J B . J. Ginseng Res., 2019,43:105. https://www.ncbi.nlm.nih.gov/pubmed/30662299

doi: 10.1016/j.jgr.2017.09.003 pmid: 30662299
[8]
Song Y Q, Zhao F, Zhang L M, Du Y, Wang T, Fu F H . Fitoterapia, 2013,91:173. https://www.ncbi.nlm.nih.gov/pubmed/24035860

doi: 10.1016/j.fitote.2013.09.001 pmid: 24035860
[9]
杨刚强(Yang G Q), 李阳(Li Y), 杨青(Yang Q), 岳馨(Yue X), 姚雷(Yao L), 姜永涛(Jiang Y T) . 有机化学 (Chinese Journal of Organic Chemistry), 2017,37:1530.
[10]
An K S, Choi Y O, Lee S M, Ryu H Y, Kang S J, Yeon Y, Kim Y R, Lee J G, Kim C J, Lee Y J, Kang B J, Choi J E, Song K S . Nutrients, 2019,11:1120.
[11]
Zhang J Q, Zhang Q, Xu Y R, Li H X, Zhao F L, Wang C M, Liu Z, Liu P, Liu Y N, Meng Q G, Zhao F . Planta Med., 2019,85:292. https://www.ncbi.nlm.nih.gov/pubmed/30380571

doi: 10.1055/a-0770-0994 pmid: 30380571
[12]
Zhang L N, Wang S Y, Qu B Q, Chi H J, Quan Y L, Wu X H . J. Pharmaceut. Biomed., 2019,170:48.
[13]
Chan T W D, But P P H, Cheng S W, Kwok M Y I, Lau F W, Xu H X . Anal. Chem., 2000,72:1281. https://www.ncbi.nlm.nih.gov/pubmed/10740871

doi: 10.1021/ac990819z pmid: 10740871
[14]
Chen W, Balan P, Popovich D. G ., J. Ginseng Res., 2019, DOI: 10.1016/j.jgr.2019.04.007.
[15]
Huang X, Liu Y, Zhang Y, Li S P, Yue H, Chen C B, Liu S Y . J. Ginseng Res., 2019,43:27. https://www.ncbi.nlm.nih.gov/pubmed/30662291

doi: 10.1016/j.jgr.2017.08.001 pmid: 30662291
[16]
Liu J, Xu Y R, Yang J J, Wang W Z, Zhang J Q, Zhang R M, Meng Q G . J. Ginseng Res., 2017,41:373. https://www.ncbi.nlm.nih.gov/pubmed/28701880

doi: 10.1016/j.jgr.2017.01.001 pmid: 28701880
[17]
Bi Y, Ma C, Zhou Z W, Zhang T T, Zhang H Y, Zhang X C, Lu J, Meng Q G, Lewis P J, Xu J Y . Rec. Nat. Prod., 2015,9:356.
[18]
Bi Y, Yang J, Ma C, Liu Z Y, Zhang T T, Zhang X C, Lu J, Meng Q G . Pharmazie, 2015,70:213. https://www.ncbi.nlm.nih.gov/pubmed/26012249

pmid: 26012249
[19]
Kim S J, Shin J Y, Ko S K . J. Ginseng Res., 2016,40:86. https://www.ncbi.nlm.nih.gov/pubmed/26843826

doi: 10.1016/j.jgr.2015.04.008 pmid: 26843826
[20]
Xia Y G, Liang J, Li G Y, Yang B Y, Kuang H X . J. Mass Spectrom., 2016,51:947. https://www.ncbi.nlm.nih.gov/pubmed/27383264

doi: 10.1002/jms.3806 pmid: 27383264
[21]
Hu Y P, Cui X M, Zhang Z J, Chen L J, Zhang Y M, Wang C X, Yang X Y, Qu Y, Xiong Y . Molecules, 2018,23:1206.
[22]
Munir M T, Kheirkhah H, Baroutian S, Quek S Y, Young B R . J. Clean. Prod., 2018,183:487.
[23]
Zhang Y, Li Y, Liu Z, Zhong L, Chi R, Yu J . Wuhan University Journal of Natural Sciences, 2015,20:247.
[24]
Zhong Z X, Li G K, Luo Z B, Zhu B H . Talanta, 2019,194:46. https://www.ncbi.nlm.nih.gov/pubmed/30609558

doi: 10.1016/j.talanta.2018.09.105 pmid: 30609558
[25]
Choi P, Park J Y, Kim T, Park S. H, Kim H. K, Kang K S, Ham J . J. Funct. Foods, 2015,14:613.
[26]
Wu W, Sun L, Zhang Z, Guo Y, Liu S . J. Pharmaceut. Biomed., 2015,107:141.
[27]
Lee J H, Ko M J, Chung M S . J. Supercrit. Fluids, 2018,133:177.
[28]
Wan H D, Li D . RSC Adv., 2015,5:78874.
[29]
Palaniyandi S A, Damodharan K, Lee K W, Yang S H, Suh J W . Biotechnol. Bioprocess Eng., 2015,20:608.
[30]
Ganzler K, Salgo A, Valko K . J. Chromatogr., 1986,371:299. https://www.ncbi.nlm.nih.gov/pubmed/3558551

doi: 10.1016/s0021-9673(01)94714-4 pmid: 3558551
[31]
Yao H, Li X, Liu Y, Wu Q, Jin Y . J. Ginseng Res., 2016,40:415. https://www.ncbi.nlm.nih.gov/pubmed/27746695

doi: 10.1016/j.jgr.2016.06.007 pmid: 27746695
[32]
Yoon S H, Nam Y M, Hong J T, Kim S J, Ko S K . J. Ginseng Res., 2016,40:300. https://www.ncbi.nlm.nih.gov/pubmed/27616907

doi: 10.1016/j.jgr.2015.09.001 pmid: 27616907
[33]
Biswas T, Ajayakumar P V, Mathur A K, Mathur A Nat . Prod. Res., 2015,29:1256. https://www.ncbi.nlm.nih.gov/pubmed/25813381

doi: 10.1080/14786419.2015.1024119 pmid: 25813381
[34]
Liu Z, Xia J, Wang C Z, Zhang J Q, Ruan C C, Sun G Z, Yuan C S . J. Agr. Food Chem., 2016,64:5389. https://www.ncbi.nlm.nih.gov/pubmed/27295137

doi: 10.1021/acs.jafc.6b00963 pmid: 27295137
[35]
Cui Q, Liu J, Xu W, Kang Y F, Wang X, Li Y, Fu Y J . Clean. Prod., 2019,210:1507. https://linkinghub.elsevier.com/retrieve/pii/S0959652618335455

doi: 10.1016/j.jclepro.2018.11.142
[36]
Zhang Y C, Zhang J X, Liu C M, Yu M, Li S N . J. Chromatogr. A, 2017,1483:20. https://www.ncbi.nlm.nih.gov/pubmed/28027838

doi: 10.1016/j.chroma.2016.12.068 pmid: 28027838
[37]
Wang Y H, Li Y, Zhang Y, Feng G, Yang Z X, Guan Q X, Wang R, Han F J . Molecules, 2017,22:17.
[38]
Sunwoo H H, Gujral N, Huebl A C, Kim C T . Food Bioprocess Tech., 2014,7:1246. http://link.springer.com/10.1007/s11947-013-1234-1

doi: 10.1007/s11947-013-1234-1
[39]
Zhong F L, Ma R, Jiang M L, Dong W W, Jiang J, Wu S Q, Li D H, Quan L H . J. Microbiol. Biotechnol., 2016,26:1661. https://www.ncbi.nlm.nih.gov/pubmed/27435543

doi: 10.4014/jmb.1605.05052 pmid: 27435543
[40]
Liu F, Ma N, He C W, Hu Y J, Li P, Chen M W, Su H X, Wan J B . J. Ginseng Res., 2018,42:149. https://www.ncbi.nlm.nih.gov/pubmed/29719461

doi: 10.1016/j.jgr.2017.01.007 pmid: 29719461
[41]
Wan J Y, Wang C Z, Liu Z, Zhang Q H, Musch M W, Bissonnette M, Chang E B, Li P, Qi L W, Yuan C S . J. Chromatogr. B, 2016,1015:62.
[42]
Zheng H R, Chu Y, Zhou D Z, Ju A C, Li W, Li X, Xia Y, Polachi N, Li D K, Zhou S P, Sun H, Liu C X . J. Chromatogr. B, 2018,1072:282. https://www.ncbi.nlm.nih.gov/pubmed/29202359

doi: 10.1016/j.jchromb.2017.10.056 pmid: 29202359
[43]
Yang Q, Li J H, Wang X Y, Xiong H, Chen L X . Anal. Chem., 2019,91:6561. https://www.ncbi.nlm.nih.gov/pubmed/31010290

doi: 10.1021/acs.analchem.9b00082 pmid: 31010290
[44]
明魏娜(Ming W N), 王晓艳(Wang X Y), 明永飞(Ming Y F), 李金花(Li J H), 陈令新(Chen L X) . 化学进展 (Progress in Chemistry), 2016,28:552.
[45]
Wang L Y, Li J H, Wang J N, Guo X T, Wang X Y, Choo J, Chen L X . J. Colloid Interf. Sci., 2019,541:376. https://www.ncbi.nlm.nih.gov/pubmed/30710820

doi: 10.1016/j.jcis.2019.01.081 pmid: 30710820
[46]
Xing R R, Wen Y R, Dong Y R, Wang Y J, Zhang Q, Liu Z . Anal. Chem., 2019,91:9993. https://www.ncbi.nlm.nih.gov/pubmed/31347834

doi: 10.1021/acs.analchem.9b01826 pmid: 31347834
[47]
BelBruno J J . Chem. Rev., 2019,119:94. https://www.ncbi.nlm.nih.gov/pubmed/30246529

doi: 10.1021/acs.chemrev.8b00171 pmid: 30246529
[48]
Culver H R, Peppas N A . Chem. Mat., 2017,29:5753.
[49]
张伟(Zhang W), 孙成贺(Sun C H), 王绍艳(Wang S Y), 李芊(Li Q)1, 王英平(Wang Y) . 精细化工 (Fine Chemicals), 2015,32:1102.
[50]
Sun C H, Wang J H, Huang J J, Yao D D, Wang C Z, Zhang L, Hou S Y, Chen L N, Yuan C S . Polymers, 2017,9:18.
[51]
Liu Q S, He J, Zhou W B, Gu Y L, Huang H Q, Li K Q, Yin X Y . J. Sep. Sci., 2017,40:744. https://www.ncbi.nlm.nih.gov/pubmed/27935252

doi: 10.1002/jssc.201601193 pmid: 27935252
[52]
Cai Q Z, Yang Z Y, Chen N, Zhou X M, Hong J L . J. Chromatogr. A, 2016,1455:65. https://www.ncbi.nlm.nih.gov/pubmed/27295967

doi: 10.1016/j.chroma.2016.05.089 pmid: 27295967
[53]
李健(Li J), 官亦标(Guan Y B), 傅凯(Fu K), 苏岳锋(Su Y F), 包丽颖(Bao L Y), 吴锋(Wu F) . 化学进展( Progress in Chemistry), 2014,26:1233. 10b2a9eb-4495-4417-9d72-ab630532eba9 http://www.progchem.ac.cn//CN/abstract/abstract11392.shtml

doi: 10.7536/PC140227
[54]
韩强(Han Q), 王宗花(Wang Z), 张晓琼(Zhang X), 丁明玉(Ding M) . 化学进展( Progress in Chemistry), 2014,26:820. 758efe2b-7014-4c6e-a098-8e292f8a8cf0 http://www.progchem.ac.cn//CN/abstract/abstract11356.shtml

doi: 10.7536/PC131145
[55]
苗瑞(Miao R), 吴冬雪(Wu D X), 王秋颖(Wang Q Y), 赵幻希(Zhao H X), 李雪(Li X), 修洋(Xiu Y), 刘淑莹(Liu S Y) . 高等学校化学学报 (Chemical Journal of Chinese Universities), 2018,39:2178.
[56]
He Y D, Wei Y Q, Sun X J, Zhou G W, Zheng J . Anal. Methods, 2018,10:2464.
[57]
Peng J J, Li D X, Huang J Y, Tong L, Yu B Y . Chin. Herb. Med., 2017,9:267.
[58]
Wang H P, Zhang Y B, Yang X W, Zhao D Q, Wang Y P . J. Ginseng Res., 2016,40:382. https://www.ncbi.nlm.nih.gov/pubmed/27746691

doi: 10.1016/j.jgr.2015.12.001 pmid: 27746691
[59]
Du Z X, Li J H, Zhang X, Pei J, Huang L F . Molecules, 2018,23:20.
[60]
Liang Z T, Chen Y J, Xu L, Qin M J, Yi T, Chen H B, Zhao Z Z . J. Pharmaceut. Biomed., 2015,105:121. https://linkinghub.elsevier.com/retrieve/pii/S0731708514006001

doi: 10.1016/j.jpba.2014.12.005
[61]
He C Y, Feng R, Sun Y P, Chu S F, Chen J, Ma C, Fu J, Zhao Z X, Huang M, Shou J W, Li X Y, Wang Y Z, Hu J F, Wang Y, Zhang J T . Acta Pharm. Sin. B, 2016,6:593. https://www.ncbi.nlm.nih.gov/pubmed/27818927

doi: 10.1016/j.apsb.2016.05.001 pmid: 27818927
[62]
Li P, Zhao P Y, Liu W J, Jiang Y F, Wang W J, Bao L Y, Jin Y R, Li X W . Microchem. J., 2018,137:302.
[63]
Wang Y L, Sha C J, Liu W H, Gai Y Y, Zhang H Y, Qu H L, Wang W S . J. Pharmaceut. Biomed., 2012,62:87.
[64]
Biswas T, Kalra A, Mathur A K, Lal R K, Singh M, Mathur A . Appl. Microbiol. Biot., 2016,100:4909. https://www.ncbi.nlm.nih.gov/pubmed/26795963

doi: 10.1007/s00253-015-7264-z pmid: 26795963
[65]
Zhang J J, Su H, Zhang L, Liao B S, Xiao S M, Dong L L, Hu Z G, Wang P, Li X W, Huang Z H, Gao Z M, Zhang L J, Shen L, Cheng R Y, Xu J, Chen S L . Molecules, 2017,22:13. http://www.mdpi.com/1420-3049/22/1/13

doi: 10.3390/molecules22010013
[66]
Yunusova N, Kim J Y, Lee G J, Hong J Y, Shin B K, Cai S Q, Piao X L, Park J H, Kwon S W . Int. J. Food Sci. Tech., 2015,50:1607.
[67]
Lee G J, Shin B K, Yu Y H, Ahn J, Kwon S W, Park J H . J. Pharmaceut. Biomed., 2016,128:158. https://linkinghub.elsevier.com/retrieve/pii/S0731708516302692

doi: 10.1016/j.jpba.2016.05.030
[68]
Yu H S, Wang Y, Liu C Y, Yang J M, Xu L Q, Li G H, Song J G, Jin F X . Chem. Pharm. Bull., 2018,66:901. https://www.ncbi.nlm.nih.gov/pubmed/30175750

doi: 10.1248/cpb.c18-00426 pmid: 30175750
[69]
Guo C, Li D M, Liu C M, Guo Z P, Chen Y . Anal. Bioanal. Chem., 2018,410:4293. https://www.ncbi.nlm.nih.gov/pubmed/29748756

doi: 10.1007/s00216-018-1078-7 pmid: 29748756
[70]
张俊杰(Zhang J J), 贾金萍(Jia J P), 秦雪梅(Qin X M) . 分析测试学报 (Journal of Instrumental Analysis), 2017,36:579.
[71]
Cheng C S, Wu W R, Huang B M, Liu L, Luo P, Zhou H . Phytochem. Lett., 2016,17:194.
[72]
Wu W, Jiao C X, Li H, Ma Y, Jiao L L, Liu S Y . Phytochem. Anal., 2018,29:331. https://www.ncbi.nlm.nih.gov/pubmed/29460310

doi: 10.1002/pca.2752 pmid: 29460310
[73]
Wang Y P, Choi H K, Brinckmann J A, Jiang X, Huang L F . J. Chromatogr. A, 2015,1426:1. https://www.ncbi.nlm.nih.gov/pubmed/26643719

doi: 10.1016/j.chroma.2015.11.012 pmid: 26643719
[74]
Liu J, Liu Y, Wang Y, Abozeid A, Zu Y G, Tang Z H . J. Pharmaceut. Biomed., 2017,135:176. https://linkinghub.elsevier.com/retrieve/pii/S0731708516314613

doi: 10.1016/j.jpba.2016.12.026
[75]
Cui S Q, Wang J, Yang L C, Wu J F, Wang X L . J. Pharmaceut. Biomed., 2015,102:64.
[76]
Yang L, Yu Q T, Ge Y Z, Zhang W S, Fan Y, Ma C W, Liu Q, Qi L W . Sci. Rep., 2016,6:11. https://www.ncbi.nlm.nih.gov/pubmed/28442704

doi: 10.1038/s41598-016-0013-4 pmid: 28442704
[77]
Liu J, Liu Y, Wang Y, Abozeid A, Zu Y G, Zhang X N, Tang Z H . Molecules, 2017,22:14.
[78]
Park S E, Seo S H, Lee K I, Na C S and Son H S J . Ginseng Res., 2018,42:57. https://www.ncbi.nlm.nih.gov/pubmed/29348723

doi: 10.1016/j.jgr.2016.12.010 pmid: 29348723
[79]
Sun Y F, Chen S Q, Wei R M, Xie X, Wang C C, Fan S H, Zhang X, Su J, Liu J, Jia W, Wang X Y . Food Funct., 2018,9:3547. https://www.ncbi.nlm.nih.gov/pubmed/29896600

doi: 10.1039/c8fo00025e pmid: 29896600
[80]
Chang K H, Jo M N, Kim K T, Paik H D . J. Ginseng Res., 2014,38:47. c83995f3-6a1e-4331-83a2-5319de937469 https://www.ncbi.nlm.nih.gov/pubmed/24558310

doi: 10.1016/j.jgr.2013.11.008 pmid: 24558310
[81]
Yan X, Zhao Y, Zhang Y, Qu H H . Molecules, 2017,22:29.
[82]
Bai H R, Wang S J, Liu J J, Gao D, Jiang Y Y, Liu H X, Cai Z W . J. Chromatogr. B, 2016,1026:263. https://www.ncbi.nlm.nih.gov/pubmed/26520809

doi: 10.1016/j.jchromb.2015.09.024 pmid: 26520809
[83]
Buchberger A R, DeLaney K, Johnson J, Li L J . Anal. Chem., 2018,90:240. https://www.ncbi.nlm.nih.gov/pubmed/29155564

doi: 10.1021/acs.analchem.7b04733 pmid: 29155564
[1] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[2] Yujian Liu, Zhimin Liu, Zhigang Xu, Gongke Li. Stir Bar Sorptive Extraction Technology [J]. Progress in Chemistry, 2020, 32(9): 1334-1343.
[3] Lei Bai, Yanfeng Wang, Shuhui Huo, Xiaoquan Lu. Application of Food and Water Samples Pretreatment Using Functional Metal-Organic Frameworks Materials [J]. Progress in Chemistry, 2019, 31(1): 191-200.
[4] Wang Ruiying, Zhang Chaoyan, Wang Shuping, Zhou Youya. Synthesis and Application of Magnetic Metal-Organic Frameworks [J]. Progress in Chemistry, 2015, 27(7): 945-952.
[5] Yang Yin, Fan Mengxing, Guo Zhihui, Zhang Hui, Wu Ping, Cai Chenxin. Electrochemical Analysis for DNA Methylation [J]. Progress in Chemistry, 2014, 26(12): 1977-1986.
[6] Xu Zhigang, Liu Zhimin, Yang Baomin, Zi Futing. Development of Dummy Template Molecularly Imprinted Techniques in Sample Pretreatment [J]. Progress in Chemistry, 2012, 24(08): 1592-1598.
[7] . Advances in Liquid-Phase Microextraction [J]. Progress in Chemistry, 2009, 21(04): 696-704.
[8]

Li Ruiping, Zhang Yi, Huang Yingping

. Determination of Tetracycline Antibiotics in the Environmental Samples [J]. Progress in Chemistry, 2008, 20(12): 2075-2082.
[9] Jia Jinping,He Yi,Huang Junxiong. Solid-Phase Microextraction in the Pretreatment of Environmental Samples [J]. Progress in Chemistry, 1998, 10(01): 74-.