中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (2/3): 455-463 DOI: 10.7536/PC180601 Previous Articles   Next Articles

Membrane Electrode Assembly for High Temperature Polymer Electrolyte Membrane Fuel Cell Based on Phosphoric Acid-Doped Polybenzimidazole

Dongmei Yao, Weiqi Zhang, Qian Xu, Li Xu, Huaming Li, Huaneng Su**()   

  1. 1. Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
  • Received: Online: Published:
  • Contact: Huaneng Su
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21676126); National Natural Science Foundation of China(51676092); National Natural Science Foundation of China(21506081); Natural Science Foundation of Jiangsu Province(BK20171296 the China Postdoctoral Science Foundation2017M610307); Natural Science Foundation of Jiangsu Province(2017M621648); Research Foundation for Advanced Talents of Jiangsu University(16JDG018); Research Foundation for Advanced Talents of Jiangsu University(17JDG012); Priority Academic Program Development(PAPD) of Jiangsu Higher Education Institutions(16JDG018); Priority Academic Program Development(PAPD) of Jiangsu Higher Education Institutions(17JDG012)
Richhtml ( 32 ) PDF ( 1060 ) Cited
Export

EndNote

Ris

BibTeX

High temperature polymer electrolyte membrane fuel cell(HT-PEMFC) based on phosphoric acid(PA)-doped polybenzimidazole(PBI) is considered as the trend of PEMFC future development due to its good environmental tolerance and simplified water/thermal management. As the key component of HT-PEMFC, membrane electrode assembly(MEA) plays an important role in determining its performance, cost and durability. Due to the presence of PA electrolyte, the composition and characteristics of the MEAs for HT-PEMFC are quite different from those for the PEMFC based on low temperature membranes(e.g. Nafion). At the same time, high use amount of Pt catalyst, PA loss and materials instabilities at high temperatures are concerns that HT-PEMFC currently confronts. In this paper, the studies on the construction, composition and structure optimization of HT-PEMFC MEA are reviewed, the research trend is summarized, and its future development is prospected, in the hope of providing useful guidance for the R&D of advanced HT-PEMFC MEAs in the future.

Fig. 1 Schematic diagram of MEA of PEMFC
Fig. 2 Schematic of constructing CCM type(left) and CCG type(right) MEA
Fig. 3 Cross-section images of CCM type MEA before(dry PBI membrane, upper) and after(bottom) test[20]. Copyright 2015, Elsevier
Fig. 4 Schematic of a dual catalyst layer structured GDE[71]. Copyright 2014, Elsevier
Fig. 5 Conceptual diagrams of the conventional GDE with MPL(left) and the GDE eliminated MPL(right)[73]. Copyright 2017, Elsevier
[1]
Li Q, Jensen J O, Savinell R F, Bjerrum N J . Prog. Polym. Sci., 2009,34:449.
[2]
刘志祥(Liu Z X), 钱伟(Qian W), 郭建伟(Guo J W), 张杰(Zhang J), 王诚(Wang C), 毛宗强(Mao Z Q) . 化学进展 (Progress in Chemistry), 2011,487.
[3]
池滨(Chi B), 侯三英(Hou S Y), 刘广智(Liu G Z), 廖世军(Liao S J) . 化学进展 (Progress in Chemistry), 2018,30:243.
[4]
Araya S S, Zhou F, Liso V, Sahlin S L, Vang J R, Thomas S, Gao X, Jeppesen C, Kær S K . Int. J. Hydrogen Energy, 2016,41:21310.
[5]
Ramasamy R P . Encyclopedia of Electrochemical Power Sources. (Fuel Cells-Proton-Exchange Membrane Fuel Cells | Membrane-Electrode Assemblies). Elsevier: Amsterdam, 2009. 787.
[6]
Kongstein O E, Berning T, Børresen B, Seland F, Tunold R . Energy, 2007,32:418.
[7]
Pan C, Li Q, Jensen J O, He R, Cleemann L N, Nilsson M S, Bjerrum N J, Zeng Q . J. Power Sources, 2007,172:278.
[8]
Ong A L, Jung G B, Wu C C, Yan W M . Int. J. Hydrogen Energy, 2010,35:7866.
[9]
Su H, Pasupathi S, Bladergroen B J, Linkov V, Pollet B G . J. Power Sources, 2013,242:510.
[10]
Su H, Jao T C, Barron O, Pollet B G, Pasupathi S . J. Power Sources, 2014,267:155. https://linkinghub.elsevier.com/retrieve/pii/S0378775314007782

doi: 10.1016/j.jpowsour.2014.05.086
[11]
Felix C, Jao T C, Pasupathi S, Pollet B G . J. Power Sources, 2013,243:40.
[12]
Su H, Felix C, Barron O, Bujlo P, Bladergroen B J, Pollet B, Pasupathi S . Electrocatalysis, 2014,5:361. http://link.springer.com/10.1007/s12678-014-0202-5

doi: 10.1007/s12678-014-0202-5
[13]
Mazúr P, Soukup J, Paidar M, Bouzek K . J. Appl. Electrochem., 2011,41:1013.
[14]
Lobato J, Rodrigo M A, Linares J J, Scott K . J. Power Sources, 2006,157:284.
[15]
Schmidt T J, Baurmeister J . J. Power Sources, 2008,176:428.
[16]
Wannek C, Lehnert W, Mergel J . J. Power Sources, 2009,192:258.
[17]
Cho Y H, Kim S K, Kim T H, Cho Y H, Lim J W, Jung N, Yoon W S, Lee J C, Sung Y E . Electrochem. Solid-State Lett., 2011,14:B38.
[18]
Wannek C, Konradi I, Mergel J, Lehnert W . Int. J. Hydrogen Energy, 2009,34:9479.
[19]
Liang H, Su H, Pollet B G, Linkov V, Pasupathi S . J. Power Sources, 2014,266:107.
[20]
Liang H, Su H, Pollet B G, Pasupathi S . J. Power Sources, 2015,288:121.
[21]
Haque M A, Sulong A B, Loh K S, Majlan E H, Husaini T, Rosli R E . Int. J. Hydrogen Energy, 2017,42:9156.
[22]
卢善富(Lu S F), 徐鑫(Xu X), 张劲(Zhang J), 相艳(Xiang Y) . 中国科学:化学 (SCIENTIA SINICA Chimica), 2017,47:565.
[23]
Bose S, Kuila T, Nguyen T X H, Kim N H, Lau K T, Lee J H . Prog. Polym. Sci., 2011,36:813.
[24]
Asensio J A, Gómez-Romero P . Fuel Cells, 2005,5:336.
[25]
Patric J . Curr. Opin. Colloid Interface Sci., 2003,8:96.
[26]
代化(Dai H), 林立(Lin L), 张华民(Zhang H M) . 船电技术 (Marine Electric & Electronic Engineering), 2011,31:39.
[27]
汪嘉澍(Wang J S), 潘国顺(Pan G S), 郭丹(Guo D) . 化学进展 (Progress in Chemistry), 2012,10:1906.
[28]
Debe M K . Nature, 2012,486:43. https://www.ncbi.nlm.nih.gov/pubmed/22678278

doi: 10.1038/nature11115 pmid: 22678278
[29]
刘宾(Liu B), 廖世军(Liao S J), 梁振兴(Liang Z X) . 化学进展 (Progress in Chemistry), 2011,852.
[30]
Søndergaard T, Cleemann L N, Zhong L, Becker H, Steenberg T, Hjuler H A, Seerup L, Li Q, Jensen J O . Electrocatalysis, 2018,9:302.
[31]
Zhai Y, Zhang H, Xing D, Shao Z G . J. Power Sources, 2007,164:126.
[32]
Zhai Y, Zhang H, Liu G, Hu J, Yi B . J. Electrochem. Soc., 2007,154:B72.
[33]
Liu G, Zhang H, Hu J, Zhai Y, Xu D, Shao Z G . J. Power Sources, 2006,162:547.
[34]
Hu J, Zhang H, Zhai Y, Liu G, Yi B . Int. J. Hydrogen Energy, 2006,31:1855.
[35]
Liu G, Zhang H M, Zhai Y, Zhang Y, Xu D, Shao Z G . Electrochem. Commun., 2007,9:135. https://linkinghub.elsevier.com/retrieve/pii/S1388248106003900

doi: 10.1016/j.elecom.2006.08.056
[36]
刘欣(Liu X), 刘刚(Liu G), 陈剑(Chen J), 张华民(Zhang H M) . 电池 (Battery Bimonthly), 2009,39:123.
[37]
Parrondo J, Mijangos F, Rambabu B . J. Power Sources, 2010,195:3977.
[38]
Zamora H, Plaza J, Cañizares P, Rodrigo M A, Lobato J . ChemElectroChem, 2017,4:3288.
[39]
Du H Y, Yang C S, Hsu H C, Huang H C, Chang S T, Wang C H, Chen J C, Chen K H, Chen L C . Int. J. Hydrogen Energy, 2015,40:14398. https://linkinghub.elsevier.com/retrieve/pii/S0360319915010691

doi: 10.1016/j.ijhydene.2015.04.131
[40]
Berber M R, Fujigaya T, Sasaki K, Nakashima N . Sci. Rep., 2013,3:1764. https://doi.org/10.1038/srep01764

doi: 10.1038/srep01764
[41]
Lobato J, Cañizares P, Ubeda D, Pinar F J, Rodrigo M A . Appl. Catal. B, 2011,106:174.
[42]
Zamora H, Plaza J, Velhac P, Cañizares P, Rodrigo M A, Lobato J . Appl. Catal. B, 2017,207:244. https://linkinghub.elsevier.com/retrieve/pii/S0926337317301236

doi: 10.1016/j.apcatb.2017.02.019
[43]
Lobato J, Zamora H, Plaza J, Cañizares P, Rodrigo M A . Appl. Catal. B, 2016,198:516. https://linkinghub.elsevier.com/retrieve/pii/S0926337316304490

doi: 10.1016/j.apcatb.2016.06.011
[44]
Lobato J, Zamora H, Plaza J, Rodrigo M A . ChemCatChem, 2016,8:848. http://doi.wiley.com/10.1002/cctc.v8.4

doi: 10.1002/cctc.v8.4
[45]
Lobato J, Cañizares P, Rodrigo M A, Linares J J, Úbeda D, Pinar F J . Fuel Cells, 2010,10:312. http://doi.wiley.com/10.1002/fuce.v10%3A2

doi: 10.1002/fuce.v10:2
[46]
Su H, Pasupathi S, Bladergroen B, Linkov V, Pollet B G . Int. J. Hydrogen Energy, 2013,38:11370.
[47]
Lobato J, Cañizares P, Rodrigo M A, Linares J J, Pinar F J . Int. J. Hydrogen Energy, 2010,35:1347.
[48]
Park J O, Kwon K, Cho M D, Hong S G, Kim T Y, Yoo D Y . J. Electrochem. Soc., 2011,158:B675. https://iopscience.iop.org/article/10.1149/1.3573773

doi: 10.1149/1.3573773
[49]
Mamlouk M, Scott K . Int. J. Hydrogen Energy, 2010,35:784.
[50]
Mamlouk M, Scott K . Int. J. Energy Res., 2011,35:507.
[51]
Oono Y, Sounai A, Hori M . J. Power Sources, 2013,241:87.
[52]
Oono Y, Sounai A, Hori M . J. Power Sources, 2012,210:366.
[53]
Kim J H, Kim H J, Lim T H, Lee H I . J. Power Sources, 2007,170:275.
[54]
Jeong G, Kim M, Han J, Kim H J, Shul Y G, Cho E . J. Power Sources, 2016,323:142.
[55]
Martin S, Li Q, Jensen J O . J. Power Sources, 2015,293:51.
[56]
Martin S, Li Q, Steenberg T, Jensen J O . J. Power Sources, 2014,272:559. https://linkinghub.elsevier.com/retrieve/pii/S0378775314013779

doi: 10.1016/j.jpowsour.2014.08.112
[57]
Holst-Olesen K, Nesselberger M, Perchthaler M, Hacker V, Arenz M . J. Power Sources, 2014,272:1072.
[58]
Kwon K, Park J O, Yoo D Y, Yi J S . Electrochim. Acta, 2009,54:6570.
[59]
Matar S, Higier A, Liu H . J. Power Sources, 2010,195:181.
[60]
Oono Y, Sounai A, Hori M . J. Power Sources, 2009,189:943.
[61]
王树博(Wang S B), 谢晓峰(Xie X F), 王要武(Wang Y W), 王金海(Wang J H), 尚玉明(Shang Y M), 李薇薇(Li W W), 方谋(Fang M) . 化工进展 (Chemical Industry and Engineering Progress), 2012,343.
[62]
Barron O, Su H, Linkov V, Pollet B G, Pasupathi S . J. Power Sources, 2015,278:718.
[63]
Barron O, Su H, Linkov V, Pollet B G, Pasupathi S . J. Appl. Electrochem., 2014,44:1037.
[64]
Oh H S, Cho Y, Lee W H, Kim H . J. Mater. Chem. A, 2013,1:2578. http://xlink.rsc.org/?DOI=c2ta00492e

doi: 10.1039/c2ta00492e
[65]
Xu X, Tao S, Irvine J T S . Solid State Ionics, 2009,180:343. https://linkinghub.elsevier.com/retrieve/pii/S0167273808006425

doi: 10.1016/j.ssi.2008.11.001
[66]
Su H, Sita C, Pasupathi S . Int. J. Electrochem. Sci., 2016,11:2919.
[67]
Lobato J, Cañizares P, Rodrigo M A, Ruiz-López C, Linares J J . J. Appl. Electrochem., 2008,38:793.
[68]
Lobato J, Canizares P, Rodrigo M A, Ubeda D, Pinar F J, Linares J J . Fuel Cells, 2010,10:770.
[69]
Chevalier S, Fazeli M, Mack F, Galbiati S, Manke I, Bazylak A, Zeis R . Electrochim. Acta, 2016,212:187.
[70]
Kannan A, Li Q, Cleemann L N, Jensen J O . Fuel Cells, 2018,18:103. http://doi.wiley.com/10.1002/fuce.v18.2

doi: 10.1002/fuce.v18.2
[71]
Su H, Jao T C, Pasupathi S, Bladergroen B J, Linkov V, Pollet B G . J. Power Sources, 2014,246:63. https://linkinghub.elsevier.com/retrieve/pii/S0378775313012524

doi: 10.1016/j.jpowsour.2013.07.062
[72]
Su H, Liang H, Bladergroen B J, Linkov V, Pollet B G, Pasupathi S . J. Electrochem. Soc., 2014,161:F506.
[73]
Su H, Xu Q, Chong J, Li H, Sita C, Pasupathi S . J. Power Sources, 2017,341:302.
[74]
DOE. Fuel Cells Technical Plan, in: Multi-Year Research, Development and Demonstration Plan. Department of Energy: US, 2016. 18.
[75]
Søndergaard T, Cleemann L N, Becker H, Aili D, Steenberg T, Hjuler H A, Seerup L, Li Q, Jensen J O . J. Power Sources, 2017,342:570.
[76]
Rastedt M, Büsselmann J, Tullius V, Wagner P, Dyck A . Fuel Cells, 2018,18:113.
[77]
Jung G B, Chen H H, Yan W M . J. Power Sources, 2014,247:354.
[78]
Schonvogel D, Rastedt M, Wagner P, Wark M, Dyck A . Fuel Cells, 2016,4:480.
[79]
Thomas S, Jeppesen C, Steenberg T, Araya S S, Vang J R, Kær S K . Int. J. Hydrogen Energy, 2017,42:27230.
[80]
Schenk A, Gamper S, Grimmer C, Pichler B E, Bodner M, Weinberger S, Hacker V . ECS Trans., 2016,75:435.
[81]
Gokhale R, Asset T, Qian G, Serov A, Artyushkova K, Benicewicz B C, Atanassov P . Electrochem. Commun., 2018,93:91.
[82]
You D J, Kim D H, De Lile J R, Li C, Lee S G, Kim J M, Pak C . Appl. Catal. A, 2018,562:250.
[83]
刘锋(Liu F), 王诚(Wang C), 张剑波(Zhang J B), 兰爱东(Lan A D), 李建秋(Li J Q), 欧阳明高(Ouyang M G) . 化学进展 (Progress in Chemistry), 2014,26:1763.
[1] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[2] Yu Bai, Shuanjin Wang, Min Xiao, Yuezhong Meng, Chengxin Wang. Phosphoric Acid Based Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2021, 33(3): 426-441.
[3] Jiao Lin, Chunwei Liu, Hongbin Cao, Li Li, Renjie Chen, Zhi Sun. Recovery of Spent Lithium Ion Batteries Based on High Temperature Chemical Conversion [J]. Progress in Chemistry, 2018, 30(9): 1445-1454.
[4] Yunhan Xu, Leilei Wang, Aijun Hu, Lili Yuan, Zhiyuan Wang, Shiyong Yang*. Polyimide Foams for High Temperature Applications [J]. Progress in Chemistry, 2018, 30(5): 684-691.
[5] Bin Chi, Sanying Hou, Guangzhi Liu, Shijun Liao*. High Performance and High Power Density Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2018, 30(2/3): 243-251.
[6] Yang Lujiao, Zhang Ying, Cheng Xuan. Performance and Structure of Polymer Derived SiBCN Ceramics [J]. Progress in Chemistry, 2016, 28(2/3): 308-316.
[7] Liu Feng, Wang Cheng, Zhang Jianbo, Lan Aidong, Li Jianqiu, Ouyang Minggao. Ordered Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2014, 26(11): 1763-1771.
[8] Wang Zhen, Yu Bo*, Zhang Wenqiang, Chen Jing, Xu Jingming. Clean Fuel Production Through High Temperature Co-Electrolysis of H2O and CO2 [J]. Progress in Chemistry, 2013, 25(07): 1229-1236.
[9] Han Jinduo, Wen Zhaoyin, Zhang Jingchao, Ma Guoqiang, Chi Xiaowei. CaZrO3 Based High Temperature Proton Conductors [J]. Progress in Chemistry, 2012, (9): 1845-1856.
[10] Wang Xindong, Xie Xiaofeng, Wang Meng, Liu Guicheng, Miao Ruiying, Wang Yituo, Yan Qun. Critical Materials and Technology in Direct Methanol Fuel Cells [J]. Progress in Chemistry, 2011, 23(0203): 509-519.
[11] Suo Chunguang Liu Xiaowei Zhang Yufeng Zhang Bo Zhang Peng Wang Luwen. Development of Membrane Electrode Assembly for Direct Methanol Fuel Cells [J]. Progress in Chemistry, 2009, 21(0708): 1662-1671.
[12] Zhu Jianxin Chen Mengjun Zhang Fushen. Application of Self-Propagating High Temperature Synthesis for Environmental Protection [J]. Progress in Chemistry, 2009, 21(0708): 1693-1704.
[13] Liu Xiaoyang. Chemistry under High Pressure [J]. Progress in Chemistry, 2009, 21(0708): 1373-1388.
[14] Chen Xiaofen|Liu Zenglu|Mao Zhenmin*. Application of Chiral Phosphoric Acid in Asymmetric Synthesis [J]. Progress in Chemistry, 2008, 20(10): 1534-1543.
[15] Zhang Wenqiang| Yu Bo**| Chen Jing| Xu Jingming. Hydrogen Production through Solid Oxide Electrolysis at Elevated temperatures [J]. Progress in Chemistry, 2008, 20(05): 778-788.