中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (11): 1962-1972 DOI: 10.7536/PC130321 Previous Articles   Next Articles

• Review •

Surface Modification and Functionalization of Neural Electrodes

Xiao Hengyang1, Di Feng1, Che Jianfei1*, Xiao Yinghong2*   

  1. 1. Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
    2. Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210097, China
  • Received: Revised: Online: Published:
PDF ( 840 ) Cited
Export

EndNote

Ris

BibTeX

The great mismatch in physical and chemical properties between the hard electrodes and the soft brain tissues is still a barrier to achieve ideal neural prosthetic devices with excellent long-term performance. The current solutions focus on tailoring the properties of the electrode surface. This review summarizes the impediments that hinder the development of the neural electrodes including poor biocompatibility, low sensitivity, high impedance and poor stability, and then presents the progress in the surface modification and functionalization of neural electrodes. Conducting polymers and carbon nanotubes have been applied to modify the electrode surface due to their good electrical conductivity. Finally, promising strategies and methods for the development in the field are prospected, which include controlling surface morphology to optimize the mechanical properties, doping of biospecies and improving the interfacial adhesion between the modifying coatings and the electrode substrates.

Contents
1 Introduction
2 The development of neural electrodes
3 The challenges in the development of neural electrodes
3.1 Biocompatibility
3.2 Signal sensitivity
3.3 Mechanical match
3.4 Long-term stability
4 Surface modification with conducting polymers
4.1 Properties of conducting polymers
4.2 The methods of surface modification with conducting polymers
4.3 The challenges of surface modification with conducting polymers
5 Surface modification with carbon nanotubes
5.1 Properties of carbon nanotubes
5.2 The methods of surface modification with carbon nanotubes
5.3 The composite coating of conducting polymers and carbon nanotubes
6 Conclusions and prospects

CLC Number: 

[1] Charkhkar H, Knaack G L, Gnade B E, Keefer E W, Pancrazio J. Sens. Actuat. B Chem., 2012, 161: 655—660
[2] Kiyohara A, Taguchi T, Kudoh S N. IEEJ Trans. Electr. Electr., 2011, 6: 163—167
[3] Price A, Rayner L, Okon-Rocha E, Evans A, Valsraj K, Hotopf M. J. Neurol. Neurosurg. Psychiatry, 2011, 82: 914—923
[4] Khansari P S, Coyne L. Inflammopharmacology, 2012, 20: 159—167
[5] Schalk G, Miller K J, Anderson N R, Wilson J A, Smyth M D, Ojemann J G, Moran J G, Wolpaw J R, Leuthardt E C. J. Neural. Eng., 2008, 5: 75—84
[6] Wilson B S, Dorman M F. Hear. Res., 2008, 242: 3—21
[7] Hamani C, Nobrega J N, Lozano A M. Clin. Pharmacol. Ther., 2010, 88: 559—562
[8] Skarpaas T L, Morrell M J. Neurotherapeutics, 2009, 6: 238—243
[9] Gesteland R C, Howland B, Lettvin J Y, Pitts W H. Proc. Inst. Radio Eng., 1959, 47: 1856—1862
[10] Skrzypek J, Keller E. Biomed. Eng., 1975, 22: 435—437
[11] Terzuolo C A, Araki T. Ann. NY. Acad. Sci. 1961, 94, 547—558
[12] Tsytsarev V, Taketani M, Schottler F, Tanaka S, Hara M. J. Neural Eng., 2006, 3: 293—298
[13] Musallam S, Bak M J, Troyk P R, Andersen R A. J. Neurosci. Meth., 2007, 160: 122—127
[14] Wise K D, Angell J B, Starr A. IEEE Trans. Biomed. Eng., 1970, 17: 238—247
[15] Pearce T M, Williams J C. Lab. Chip, 2007, 7: 30—40
[16] Kim S, Bhandari R, Klein M, Negi S, Rieth L. Biomed. Microdevices, 2009, 11: 453—466
[17] Donaldson N, Rieger R, Schuettler M. Med. Biol. Eng. Comput., 2008, 46: 1005—1018
[18] Horch K W, Dhillon G S. Neuroprosthetics: Theory and Practice. New Jersey: World Scientific Publishing Co., 2004. 683—744
[19] Stieglitz T, Gross M. Sens. Actuat. B Chem., 2002, 83: 8—14
[20] Rousche P J, Pellinen D S, Pivin D P, Williams J C, Vetter R J, Kipke D R. Biomed. Eng., 2001, 48: 361—371
[21] Suh M, Ma H T, Zhao M R, Sharif S, Schwartz T H. Mol. Neurobiol., 2006, 33: 181—197
[22] Cui X T, Zhou D D. IEEE Trans. Neural Syst. Rehabil. Eng., 2007, 15: 502—508
[23] Stieglitz T, Schuettler M, Koch K P. Eng. Med. Biol. Mag., 2005, 24: 58—65
[24] Kim Y T, Hitchcock R W, Bridge M J, Tresco P A. Biomaterials, 2004, 25: 2229—2237
[25] Polikov V S, Tresco P A, Reichert W M. J. Neurosci. Meth., 2005, 148: 1—18
[26] Szarowski D H, Andersen M D, Retterer S, Spence A J, Isaacson M, Craighead H G, Turner J N, Shain W. Brain Res., 2003, 983: 23—35
[27] Norton W T, Aquino D A, Hozumi I, Chiu F C, Brosnan C F. Neurochem. Res., 1992, 17: 877—885
[28] Turner A M P, Dowell N, Turner S W P, Kam L, Isaacson M, Turner J N, Craighead H G, Shain W. J. Biomed. Mater. Res., 2000, 51: 430—441
[29] Bjornsson C S, Oh S J, Al-Kofahi Y A, Lim Y J, Smith K L, Turner J N, De S, Roysam B, Shain W, Kim S J. J. Neural. Eng., 2006, 3: 196—207
[30] Kotzar G, Freas M, Abel P, Fleischman A, Roy S, Zorman C, Moran J M, Melzak J. Biomaterials, 2003, 23: 2737—2750
[31] Mensinger A F, Anderson D J, Martin D, Buchko C J, Johnson M A, Martin D C, Tresco P A, Silver R B, Highstein S M. J. Neurophysiol., 2000, 83: 611—615
[32] Cogan S F. Annu. Rev. Biomed. Eng., 2008, 10: 275—309
[33] Buzsaki G, Anastassiou C A, Koch C. Nat. Rev. Neurosci., 2012, 13: 407—420
[34] Bernatchez S F, Parks P J, Gibbons D F. Biomaterials, 1996, 17: 2077—2086
[35] Sanders J E, Stiles C E, Hayes C L. J. Biomed. Mater. Res., 2000, 52: 231—237
[36] Keohan F, Wei X F, Wongsarnpigoon A, Lazaro E, Darga J E, Grill W M. J. Biomater. Sci. Polym. Ed., 2007, 18: 1057— 1073
[37] Subbaroyan J, Martin D C, Kipke D R. J. Neural Eng., 2005, 2: 103—113
[38] Llinas R R, Walton K D, Nakao M, Hunter I, Anquetil P A. J. Nanoparticle Res., 2005, 7: 111—127
[39] Paik S J, Park Y, Cho D I. J. Micromech. Microeng., 2003, 13: 373—379
[40] Webster T J, Waid M C, McKenzie J L, Price R L, Ejiofor J U. Nanotechnology, 2004, 15: 48—54
[41] Dalby M J, Gadegaard N, Riehle M O, Wilkinson C D W, Aitchison G. Nanobioscience, 2004, 3: 61—65
[42] Abrams G A, Goodman S L, Nealey P F, Franco M, Murphy C J. Cell Tissue Res., 2000, 299: 39—46
[43] McConnell G C, Schneider T M, Owens J, Bellamkonda R V. IEEE Trans. Biomed. Eng., 2007, 54: 1097—1107
[44] Grill W M, Norman S E, Bellamkonda R V. Annu. Rev. Biomed. Eng., 2009, 11: 1—24
[45] Snow S, Jacobsen S C, Wells D L, Horch K W. IEEE Trans. Biomed. Eng., 2006, 53: 320—326
[46] Mercanzini A, Cheung K, Buhl D L, Boers M, Maillard A, Colin P, Bensadoun J C, Bertsch A, Renaud P. Sens. Actuators A: Phys., 2008, 143: 90—96
[47] Abidian M R, Martin D C. Adv. Funct. Mater., 2009, 19: 573—585
[48] Jhaveri S J, Hynd M R, Dowell-Mesfin N, Turner J N, Shain W, Ober C K. Biomacromolecules, 2009, 10: 174—183
[49] Yoo J M, Song J I. J. Micromech. Microeng., 2012, 22: art. no. 105036
[50] Lacour S P, Benmerah S, Tarte E, FitzGerald J, Serra J, McMahon S, Fawcett J, Graudejus O, Yu Z, Morrison B. Med. Biol. Eng. Comput., 2010, 48: 945—954
[51] Fomani A A, Mansour R R. Sens. Actuators A: Phys., 2011, 168: 233—241
[52] Xiao Y H, He L, Che J F. J. Mater. Chem., 2012, 22: 8076—8082
[53] Ware T, Simon D, Arreaga-Salas D E, Reeder J, Rennaker R, Keefer E W, Voit W. Adv. Funct. Mater., 2012, 22: 3470— 3479
[54] Chen Y Y, Lai H Y, Lin S H, Cho C W, Chao W H, Liao C H, Tsang S, Chen Y F, Lin S Y. J. Neurosci. Methods, 2009, 182: 6—16
[55] Lempka S F, Miocinovic S, Johnson M D, Vitek J L, McIntyre C C. J. Neural Eng., 2009, 6: art. no. 046001
[56] Cheung K C, Renaud P, Tanila H, Djupsund K. Biosens. Bioelectron., 2007, 22: 1783—1790
[57] Berggren M, Richter-Dahlfors A. Adv. Mater., 2007, 19: 3201—3213
[58] Poole-Warren L, Lovell N, Baek S, Green R. Expert Rev. Med. Devices, 2010, 7: 35—49
[59] Isaksson J, Kjall P, Nilsson D, Robinson N D, Berggren M, Richter-Dahlfors A. Nat. Mater., 2007, 6: 673—679
[60] Abidian M R, Ludwig K A, Marzullo T C, Martin C R, Kipke D R. Adv. Mater., 2009, 21: 3764—3770
[61] Asplund M, Nyberg T, Ingans O. Polym. Chem., 2010, 1: 1374—1391
[62] Hassler C, Boretius T, Stieglitz T. J. Polym. Sci. B: Polym. Physics, 2011, 49: 18—33
[63] Abidian M R, Corey J M, Kipke D R, Martin D C. Small, 2010, 6: 421—429
[64] George P M, Lyckman A W, La Van D A, Hegde A, Leung Y, Avasare R, Testa C, Alexander P M, Langer R, Sur M. Biomaterials, 2005, 26: 3511—3519
[65] Gomez N, Lee J Y, Nickels J D, Schmidt C E. Adv. Funct. Mater., 2007, 17: 1645—1653
[66] Green R A, Lovell N H, Wallace G G, Poole-Warren L A. Biomaterials, 2008, 29: 3393—3399
[67] Richardson R T, Thompson B, Moulton S, Clark G, Newbold C, Lum M G, Cameron A, Wallace G, Kapsa R, O'Leary S. Biomaterials, 2007, 28: 513—523
[68] Chow W W Y, Herwik S, Ruther P, Gthelid E, Oscarsson S. Appl. Surf. Sci., 2012, 258: 7864—7871
[69] Green R A, Lovell N H, Poole-Warren L A. Acta Biomater., 2010, 6: 63—71
[70] Gelmi A, Higgins M J, Wallace G G. Biomaterials, 2010, 31: 1974—1983
[71] Green R A, Lovell N H, Poole-Warren L A. Biomaterials, 2009, 30: 3637—3644
[72] Lee J W, Serna F, Nickels J, Schmidt C E. Biomacromolecules, 2006, 7: 1692—1695
[73] Song H K, Toste B, Ahmann K, Hoffman-Kim D, Palmore G T R. Biomaterials, 2006, 27: 473—484
[74] Palecek S P, Loftus J C, Lauffenburger D A, Ginsberg M H, Horwitz A F. Nature, 1997, 385: 537—540
[75] Kim S Y, Kim K M, Hoffman-Kim D. Appl. Mater. Interfaces, 2011, 3: 16—21
[76] Thaning E M, Asplund M L, Nyberg T A, Inganas O W, Holst H V. J. Biomed. Mater. Res. B: Appl. Biomater., 2010, 93b: 407—415
[77] Green R A, Williams C M, Lovell N H. Poole-Warren L A. J. Mater. Sci.-Mater. Med., 2008, 19: 1625—1629
[78] Hendricks J, King Z A, Sereno A J, Richardson-Burns S, Martin D, Carmena J M. Neural Syst. Rehabil. Eng., 2011, 19: 307—316
[79] Hu H, Ni Y, Montana V, Haddon R C, Parpura V. Nano Letters, 2004, 4: 507—511
[80] Patolsky F, Timko B P, Yu G, Fang Y, Greytak A B, Zheng G, Lieber C M. Science, 2006, 313: 1100—1104
[81] Harris P J F. Carbon Nanotube Science: Synthesis, Properties and Applications. NewYork: Cambridge University Press, 2009, 179—199
[82] Keefer E W, Botterman B R, Romero M I, Rossi A F, Gross G W. Nat. Nanotechnol., 2008, 3: 434—439
[83] Cellot G, Cilia E, Cipollone S, Rancic V, Sucapane A, Giordani S, Gambazzi L, Markram H, Grandolfo M, Scaini D, Gelain F, Casalis L, Prato M, Giugliano M, Ballerini L. Nat. Nanotechnol., 2009, 4: 126—133
[84] Wang K, Fishman H A, Dai H J. Nano Letters, 2006, 6: 2043—2048
[85] Bottini M, Rosato N, Bottini N. Biomacromolecules, 2011, 12: 3381—3393
[86] Roman J A, Niedzielko T L, Haddon R C, Parpura V, Floyd C L. J. Neurotrauma, 2011, 28: 2349—2362
[87] Nunes A, Al-Jamal K, Nakajima T, Hariz M, Kostarelos K. Arch. Toxicol., 2012, 86: 1009—1020
[88] Muller J, Huaux F, Moreau N, Misson P, Heilier J F, Delos M, Arras M, Fonseca A, Nagy J B, Lison D. Toxicol. Appl. Pharmacol., 2005, 207: 221—231
[89] He L, Lin D M, Wang Y P, Xiao Y H, Che J F. Colloid Sur. B: Biointerface, 2011, 87: 273—279
[90] Gabriel G, Gomez R, Bongard M, Benito N, Fernndez E, Villa R. Biosens. Bioelectron., 2009, 24, 1942—1948
[91] Fuchsberger K, LeGoff A, Gambazzi L, Toma F M, Goldoni A, Giugliano M, Stelzle M, Prato M. Small, 2011, 7: 524—530
[92] Castagnola E, Ansaldo A, Fadiga L, Ricci D. Phys. Status Solidi B, 2010, 247: 2703—2707
[93] Ansaldo A, Castagnola E, Maggiolini E, Fadiga L, Ricci D. Nano, 2011, 5: 2206—2214
[94] Gabay T, Ben-David M, Kalifa I, Sorkin R, Abrams Z R, Ben-Jacob E, Hanein Y. Nanotechnology, 2007, 18: art. no. 035201
[95] Fletcher B L, Retterer S T, Fowlkes J D, Simpson M L, Doktycz M J. ACS Nano, 2008, 2: 247—254
[96] Yu Z, McKnight T E, Ericson M N, Melechko A V. Nano Letters, 2007, 7: 2188—2195
[97] Liu Z F, Shen Z Y, Zhu T, Hou S F, Ying L Z, Shi Z J, Gu Z N. Langmuir, 2000, 16, 3569—3573
[98] Lin C M, Lee Y T, Yehc S R, Fang W. Biosensors and Bioelectronics, 2009, 24: 2791—2797
[99] Hsu H L, Teng I J, Chen Y C, Hsu W L, Lee Y T, Yen S J, Su H C, Yeh S R, Yew T R. Adv. Mater., 2010, 22: 2177—2181
[100] Chen Y C, Hsu H L, Lee Y T, Su H C, Yen S J, Chen C H, Hsu W L, Yew T R, Yeh S R, Yao D J, Chang Y C, Chen H. J. Neural Eng., 2011, 8: art. no. 034001
[101] Hanein Y. Phys. Status Solidi B, 2010, 247: 2635—2640
[102] Bareket-Keren L, Hanein Y. Frontiers Neural Circuits, 2013, 6: 1—16
[103] Luo X L, Weaver C L, Zhou D D, Greenberg R, Cui X Y T. Biomaterials, 2011, 32: 5551—5557
[104] Xiao Y H, Ye X X, He L, Che J F. Polymer International, 2012, 61: 190—196
[105] Baranauskas G, Maggiolini E, Castagnola E, Ansaldo A, Mazzoni A, Angotzi G N, Vato A, Ricci D, Panzeri S, Fadiga L. J. Neural Eng., 2011, 8: art. no. 066013
[106] Chen H L, Guo L H, Ferhan A R, Kim D H. J. Phys. Chem. C, 2011, 115: 5492—5499

[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[3] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[4] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[5] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[6] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[7] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[8] Shiying Yang, Junqin Liu, Qianfeng Li, Yang Li. Modification Mechanism of Zero-Valent Aluminum by Mechanical Ball Milling [J]. Progress in Chemistry, 2021, 33(10): 1741-1755.
[9] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[10] Hao Sun, Chengwei Song, Yuepeng Pang, Shiyou Zheng. Functional Design of Separator for Li-S Batteries [J]. Progress in Chemistry, 2020, 32(9): 1402-1411.
[11] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.
[12] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[13] Huiya Wang, Limin Zhao, Fang Zhang, Dannong He. High-Performance Lithium-Ion Secondary Battery Membranes [J]. Progress in Chemistry, 2019, 31(9): 1251-1262.
[14] Zhaoxiang Wang, Jun Ma, Yurui Gao, Shuai Liu, Xin Feng, Liquan Chen. Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials [J]. Progress in Chemistry, 2019, 31(11): 1591-1614.
[15] Ping Liu, Jing Wang, Hongye Hao, Yunfan Xue, Junjie Huang, Jian Ji. Photochemical Surface Modification of Biomedical Materials [J]. Progress in Chemistry, 2019, 31(10): 1425-1439.