中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (2): 342-355 DOI: 10.7536/PC210101 Previous Articles   Next Articles

• Review •

Electrospinning Nanofibers Based on Bone Tissue Engineering

Xiaolian Niu1, Kejun Liu1, Ziming Liao1, Huilun Xu1, Weiyi Chen1,2, Di Huang1,2()   

  1. 1 Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology,Taiyuan 030024, China
    2 Institute of Applied Mechanics & Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology,Taiyuan 030024, China
  • Received: Revised: Online: Published:
  • Contact: Di Huang
  • Supported by:
    National Natural Science Foundation of China(11632013); National Natural Science Foundation of China(11502158)
Richhtml ( 32 ) PDF ( 390 ) Cited
Export

EndNote

Ris

BibTeX

It has become one of the main trends in the development of bone repair materials to design and control materials by imitating the composition and structural characteristics of natural bone to obtain new bionic artificial bone repair materials. Electrospun nanofibers are widely used in bone tissue engineering because of their adjustable nanostructure, high porosity, large specific surface area, and the ability to mimic the structure and biological functions of natural extracellular matrix. This review provides a comprehensive overview of electrospun nanofibers based on bone tissue engineering. We begin with a brief introduction of bone tissue engineering, followed by discussion of electrospinning principle, parameters and typical apparatus. We then discuss surface modification methods of electrospun nanofiber and highlight the most relevant and recent advances related to the applications of electrospun nanofibers and electrospun nanofiber reinforced composites by focusing on the most representative examples. Furthermore, we also offer perspectives of electrospun nanofibers on the challenges, opportunities, and new directions for future development.

Contents

1 Introduction

2 Bone tissue engineering

3 Electrospinning

3.1 Mechanism of electrospinning

3.2 Electrospinning equipment and methods

3.3 Influence of processing parameters

4 Surface modification of electrospun fibers

4.1 Plasma modification

4.2 Surface grafting

4.3 Surface chemical modification

5 Application of electrospun fibers in bone tissue engineering

5.1 Bone Defect Regeneration

5.2 Cartilage Defect Repair

5.3 Osteochondral Tissue Engineering

6 Conclusion and outlook

Fig. 1 (a) The concept of skeletal tissue regeneration via scaffold-based tissue engineering strategies; (b) Scaffold architecture affects cell binding and spreading[10]
Fig. 2 Timeline and milestone papers toward hybrid fabrication for tissue engineering and regenerative medicine and bio-fabrication: the convergence of different fabrication technologies to manufacture more complex 3D tissue constructs[23]
Fig. 3 (a) Treatments of bone, cartilage, and osteochondral defects with polymer fibers as scaffolds[18]; (b) Fabrication of self-healing SF-based hydrogel for bone regeneration[19]; (c) 3D printing of mechanically stable calcium-free alginate-based (Alg/ε-PL) scaffolds with tunable surface charge to enable cell adhesion and facile biofunctionalization[20]; (d) The fabrication of the 3D-printed silicate bioceramic scaffolds with hollow struts for vascularized bone regeneration by means of the synergistic effect of the pipeline structure and bioactive ions[21]; (e) Preparation of CaCO3/MgO/CMC/BMP2 scaffolds and their applications in vivo[22]
Fig. 4 (a) Typical vertical setup of electrospinning apparatus[24]; (b) Photographs showing the evolution of a pendant drop of PEO in water from a spherical to a conical shape, followed by the ejection of a jet[26]; (c) The path of an electrospun jet[26]; (d) Schematic illustration of the forces acting on a charged jet. The perturbed segment is forced by FDO downward and outward by the charges above the perturbed region. At the same time, the perturbed segment is forced by FUO upward and outward by the charges below the perturbation. The net force, FR (the lateral electrostatic force), is along a radial direction with respect to the straight jet, and it grows exponentially with time as the radial displacement of the segment increases. FR is responsible for the bending of the jet[26]; (e) Four jets from one drop, each with a well developed electrical bending coil[26]; (f) A wide angle X-ray diffraction pattern from a yarn of twisted as-spun poly (meta-phenylene isophthalamide) nanofibers[26]; (g) A fluorescence microscope image of nanofibers of poly (ethylene oxazoline) and fluorescent labeled albumin[26]
Fig. 5 (a) Schematics of electrospinning methods to alter fiber composition, orientation and mesh architecture[31]; (b) Process of fabricating the core (heparin)-shell (PC/SAB-MSN) fiber by coaxial electrospinning[29]; (c) Proposed material mixing strategies for multiple nozzle electrospinning[30]
Table 1 Electrospinning process, solution, and ambient parameters that affect fiber morphology[33,34]
Parameters categories Parameters Effect on fiber morphology ref
Solution Parameters Polymer molecular
weight
Irregular shape and larger pores with higher molecular weight 35
Reduction in the number of beads and droplets with increasing molecular weight 36,37
Solution conductivity
High voltage results in bead formation 38
Higher conductivity creates uniform charge density bead-free fibers with decreased fiber diameter 39
Solution concentration
(viscosity)
High solution concentration reduces bead formation and increases fiber diameter 40~43
Low concentrations or solution viscosities yielded defects in the form of beads and junctions
Solvent volatility
High solvent volatility resulted in the blocking of the needles 44
Low solvent volatility yielded defects in the form of beads and junction 44,45
Processing Parameters Applied voltage High voltage results in bead formation 46~48
Smaller fiber diameter with increased voltage
Working distance A minimum distance is required to obtain dried and uniform fibers 49
Observable beading if distance is too close or too far. 50,51
Solution flow rate Smaller fiber diameter achieved with slower flow rates 51,52
Generation of beads with too high flow rate 53,54
Grounded target Metal collectors yield smoother fibers 55,56
Porous collectors result in porous fiber and geometry structure 38
Needle tip design Rotating drum collects aligned fibers 40
Hollow fibers produced with coaxial, 2-capillary spinneret 28
Multiple needle tips increase throughput 57
Environmental Parameters Temperature Smaller fiber diameter results from higher temperature and decreased solution viscosity 44
Humidity Increasing humidity resulted in the appearance of circular pores on the fibers. 58
Air velocity Increasing air velocity results in larger fiber diameter 44,45
Fig. 6 The morphologic structure of nanofibers under different electrospinning parameters: (a) Random orientation nanofiber[80]; (b) Parallel nanofiber[74]; (c) Ribbon-like fiber[81]; (d) Dendritic structure fiber[82]; (e) Hollow nanofiber[28]; (f) Necklace-like structure fiber[83]; (g) Porous nanofiber[84]; (h) Nanofibrous hollow microspheres[85]; (i) Honeycomb-patterned nanofibrous structures[86]; (j) Core-shell nanofiber[87]; (k) Patterned nanofiber meshes; (l) Helical fibers[89]
Fig. 7 (a) Research ideas from preparation to animal experiment; (b) Schematic of 3D nanofibrous scaffold preparation; (c) Micro-CT images of rat cranial bones defects (diameter = 6 mm) repaired by PLA/Gel (A1, A2), n-HA/PLA/Gel (B1, B2), and n-HA/PLA/Gel-PEP (C1, C2) 3D scaffolds 4 and 8 weeks after surgery; d) H&E stained images of different sample groups (8 weeks after surgery). Blue arrows indicate new bone, and green arrows indicate host bone; (e) Masson’s trichrome stained images of different sample groups (8 weeks after surgery). Red arrows indicate new bone, green arrows indicate host bone, and black arrows indicate residual scaffolds
Fig. 8 (a) Schematic illustration of electrospinning fiber-reinforced CDM-based 3D-printed scaffold for cartilage regeneration; (b) Articular cartilage repair in rabbits. Macroscopic images of the cartilage joints from different groups at 12 weeks after surgery
Fig. 9 (a) Fabrication process of bi-layer COL scaffolds (top left) and COL-nanofiber scaffolds (top right); (b) Macroscopic images of the cartilage joints from three groups and their ICRS scores at 6 and 12 weeks after surgery. (A, D) non-treated group, (B, E) COL group and (C, F) COL-nanofiber group; (c) Histological examination of samples from three groups at 12 weeks after surgery, stained with hematoxylin and eosin (A-F) and Safranin O (G-L). The defect is indicated with black arrows in each image; (d) Architecture evaluation of the repaired tissues at 12 weeks after surgery: μ-CT images of tissues from non-treated group (B), COL group (C), COL-nanofiber group (D) and normal joints (E)
[1]
Mithal A, Bansal B, Kyer C, Ebeling P. Indian J. Endocrinol. Metab., 2014, 18(4): 449.

doi: 10.4103/2230-8210.137485
[2]
Wu S L, Liu X M, Yeung K W K, Liu C S, Yang X J. Mater. Sci. Eng. R: Rep., 2014, 80: 1.

doi: 10.1016/j.mser.2014.04.001
[3]
Wang Y J, Du C, Zhao N R, Ye J D, Chen X F. Journal of South China University of Technology(Natural Science Edition), 2012, 40: 51.
( 王迎军, 杜昶, 赵娜如, 叶建东, 陈晓峰. 华南理工大学学报(自然科学版), 2012, 40: 51.)
[4]
Nishida J, Shimamura T. Med. Sci. Monit., 2008, 14(8): RA107.
[5]
Langer R, Vacanti J. Science, 1993, 260(5110): 920.

doi: 10.1126/science.8493529 pmid: 8493529
[6]
Jiang T, Carbone E J, Lo K W H, Laurencin C T. Prog. Polym. Sci., 2015, 46: 1.

doi: 10.1016/j.progpolymsci.2014.12.001
[7]
Venugopal J, Low S, Choon A T, Sampath Kumar T S, Ramakrishna S. J. Mater. Sci. Mater. Med., 2008, 19(5): 2039.

doi: 10.1007/s10856-007-3289-x
[8]
Zhang Y Z, Ouyang H W, Lim C T, Ramakrishna S, Huang Z M. J. Biomed. Mater. Res., 2005, 72B(1): 156.

doi: 10.1002/(ISSN)1097-4636
[9]
Li J J, Kaplan D L, Zreiqat H. Journal of Materials Chemistry B, 2014, 2(42): 7272.

doi: 10.1039/C4TB01073F
[10]
Stevens M M, George J H. Science, 2005, 310: 1135.

pmid: 16293749
[11]
Amini A R, Laurencin C T, Nukavarapu S P. Crit. Rev. Biomed. Eng., 2012, 40(5): 363.

doi: 10.1615/critrevbiomedeng.v40.i5.10 pmid: 23339648
[12]
Yao Q Q, Cosme J G L, Xu T, Miszuk J M, Picciani P H S, Fong H, Sun H L. Biomaterials, 2017, 115: 115.

doi: 10.1016/j.biomaterials.2016.11.018
[13]
Li Q Q, Lu Q W, Li L H, Zhou C R. J. Biomed. Eng., 2007, 24(2): 332.
( 李茜茜, 卢绮雯, 李立华, 周长忍. 生物医学工程学杂志, 2007, 24(2): 332.)
[14]
Wegst U G K, Bai H, Saiz E, Tomsia A P, Ritchie R O. Nat. Mater., 2015, 14(1): 23.

doi: 10.1038/nmat4089
[15]
Buckwalter J A, Glimcher M J, Cooper R R, Recker R. Instr. Course Lect., 1996, 45: 371.

pmid: 8727757
[16]
Chahal S, Kumar A, Hussain F S J. Journal of Biomaterials Science Polymer Edition, 2019, 30(14): 1308.

doi: 10.1080/09205063.2019.1630699
[17]
Wang L L, Chen D, Jiang K, Shen G Z. Chem. Soc. Rev., 2017, 46(22): 6764.

doi: 10.1039/C7CS00278E
[18]
Zhang Y B, Liu X C, Zeng L D, Zhang J, Zuo J L, Zou J, Ding J X, Chen X S. Adv. Funct. Mater., 2019, 29(36): 1903279.

doi: 10.1002/adfm.v29.36
[19]
Shi L Y, Wang F L, Zhu W, Xu Z P, Fuchs S, Hilborn J, Zhu L J, Ma Q, Wang Y J, Weng X S, Ossipov D A. Adv. Funct. Mater., 2017, 27(37): 1700591.

doi: 10.1002/adfm.v27.37
[20]
Lin Z F, Wu M M, He H M, Liang Q F, Hu C S, Zeng Z W, Cheng D L, Wang G C, Chen D F, Pan H B, Ruan C S. Adv. Funct. Mater., 2019, 29(9): 1970053.

doi: 10.1002/adfm.v29.9
[21]
Zhang W J, Feng C, Yang G Z, Li G L, Ding X, Wang S Y, Dou Y D, Zhang Z Y, Chang J, Wu C T, Jiang X Q. Biomaterials, 2017, 135: 85.

doi: 10.1016/j.biomaterials.2017.05.005
[22]
Huang Y Z, Ji Y R, Kang Z W, Li F, Ge S F, Yang D P, Ruan J, Fan X Q. Chem. Eng. J., 2020, 395: 125098.

doi: 10.1016/j.cej.2020.125098
[23]
Dalton P D, Woodfield T B F, Mironov V, Groll J. Adv. Sci., 2020, 7(11): 1902953.

doi: 10.1002/advs.v7.11
[24]
Xue J J, Xie J W, Liu W Y, Xia Y N. Acc. Chem. Res., 2017, 50(8): 1976.

doi: 10.1021/acs.accounts.7b00218
[25]
Liu W Y, Thomopoulos S, Xia Y N. Adv. Healthc. Mater., 2012, 1(1): 10.

doi: 10.1002/adhm.201100021
[26]
Reneker D H, Yarin A L. Polymer, 2008, 49(10): 2387.

doi: 10.1016/j.polymer.2008.02.002
[27]
Loscertales I G, Barrero A, Guerrero I, Cortijo R, Marquez M, Gañán-Calvo A M. Science, 2002, 295(5560):1695.

pmid: 11872835
[28]
Li D, Xia Y N. Nano Lett., 2004, 4(5): 933.

doi: 10.1021/nl049590f
[29]
Kuang H Z, Wang Y, Hu J F, Wang C S, Lu S Y, Mo X M. ACS Appl. Mater. Interfaces, 2018, 10(23): 19365.

doi: 10.1021/acsami.8b02602
[30]
Kidoaki S, Kwon I K, Matsuda T. Biomaterials, 2005, 26(1): 37.

doi: 10.1016/j.biomaterials.2004.01.063 pmid: 15193879
[31]
Kishan A P, Cosgriff-Hernandez E M. J. Biomed. Mater. Res., 2017, 105(10): 2892.

doi: 10.1002/jbm.a.v105.10
[32]
Casper C L, Stephens J S, Tassi N G, Chase D B, Rabolt J F. Macromolecules, 2004, 37(2): 573.

doi: 10.1021/ma0351975
[33]
Ingavle G C, Leach J K. Tissue Eng. B: Rev., 2014, 20(4): 277.

doi: 10.1089/ten.teb.2013.0276
[34]
Casanova M R, Reis R L, Martins A, Neves N M. Adv. Exp. Med. Biol., 2018, 1058: 247.

doi: 10.1007/978-3-319-76711-6_11 pmid: 29691825
[35]
Casper C L, Stephens J S, Tassi N G, Chase D B, Rabolt J F. Macromolecules, 2004, 37(2): 573.

doi: 10.1021/ma0351975
[36]
Chen Z J, Wang L Q, Jiang H L. Biofabrication, 2012, 4(3): 035007.

doi: 10.1088/1758-5082/4/3/035007
[37]
Kasoju N, Bora U. Biomed. Mater., 2012, 7(4): 045004.

doi: 10.1088/1748-6041/7/4/045004
[38]
Zander N E, Orlicki J A, Rawlett A M, Beebe T P. J. Mater. Sci.: Mater. Med., 2013, 24(1): 179.

doi: 10.1007/s10856-012-4771-7
[39]
Sonseca A, Peponi L, Sahuquillo O, Kenny J M, GimÉnez E. Polym. Degrad. Stab., 2012, 97(10): 2052.

doi: 10.1016/j.polymdegradstab.2012.05.009
[40]
Srinath D, Lin S G, Knight D K, Rizkalla A S, Mequanint K. J. Tissue Eng. Regen. Med., 2012: 578.
[41]
Yang F, Murugan R, Wang S, Ramakrishna S. Biomaterials, 2005, 26(15): 2603.

pmid: 15585263
[42]
Piras A M, Nikkola L, Chiellini F, Ashammakhi N, Chiellini E. J. Nanosci. Nanotechnol., 2006, 6(9): 3310.

doi: 10.1166/jnn.2006.486
[43]
Bölgen N, Menceloğlu Y Z, Acatay K, Vargel Pişkin E. J. Biomater. Sci. Polym. Ed., 2005, 16(12): 1537.

doi: 10.1163/156856205774576655
[44]
Mit-Uppatham C, Nithitanakul M, Supaphol P. Macromol. Chem. Phys., 2004, 205(17): 2327.

doi: 10.1002/(ISSN)1521-3935
[45]
Reneker D H, Chun I. Nanotechnology, 1996, 7(3): 216.

doi: 10.1088/0957-4484/7/3/009
[46]
Kim B, Park H, Lee S H, Sigmund W M. Mater. Lett., 2005, 59(7): 829.

doi: 10.1016/j.matlet.2004.11.032
[47]
Haghi A K, Akbari M. Phys. Stat. Sol. (a), 2007, 204(6): 1830.
[48]
Mo X M, Xu C Y, Kotaki M, Ramakrishna S. Biomaterials, 2004, 25(10): 1883.

pmid: 14738852
[49]
Zhao Z Z, Li J Q, Yuan X Y, Li X, Zhang Y Y, Sheng J. J. Appl. Polym. Sci., 2005, 97(2): 466.

doi: 10.1002/(ISSN)1097-4628
[50]
Zhang C X, Yuan X Y, Wu L L, Han Y, Sheng J. Eur. Polym. J., 2005, 41(3): 423.

doi: 10.1016/j.eurpolymj.2004.10.027
[51]
Lee B L P, Jeon H, Wang A J, Yan Z Q, Yu J, Grigoropoulos C, Li S. Acta Biomater., 2012, 8(7): 2648.

doi: 10.1016/j.actbio.2012.04.023
[52]
Thoppey N M, Gorga R E, Bochinski J R, Clarke L I. Macromolecules, 2012, 45(16): 6527.

doi: 10.1021/ma301207t
[53]
Zuo W W, Zhu M F, Yang W, Yu H, Chen Y M, Zhang Y. Polym. Eng. Sci., 2005, 45(5): 704.

doi: 10.1002/(ISSN)1548-2634
[54]
Sill T J, von Recum H A. . Biomaterials, 2008, 29(13): 1989.

doi: 10.1016/j.biomaterials.2008.01.011
[55]
Wang X F, Um I C, Fang D F, Okamoto A, Hsiao B S, Chu B. Polymer, 2005, 46(13): 4853.

doi: 10.1016/j.polymer.2005.03.058
[56]
Liu H Q, Hsieh Y L. J. Polym. Sci. B Polym. Phys., 2002, 40(18): 2119.

doi: 10.1002/(ISSN)1099-0488
[57]
Li D, Babel A, Jenekhe S A, Xia Y. Adv. Mater., 2004, 16(22): 2062.

doi: 10.1002/(ISSN)1521-4095
[58]
Hardick O, Stevens B, Bracewell D. Nat. Preced., 2010: 1.
[59]
Kasoju N, Bora U. Biomedical Materials (Bristol, England), 2012, 7: 045004.
[60]
Niu X L, Qin M, Xu M J, Zhao L Q, Wei Y, Hu Y C, Lian X J, Chen S, Chen W Y, Huang D. Biomed. Mater., 2021, 16(2): 025014.

doi: 10.1088/1748-605X/abd68a
[61]
Lopes-Da-silva J A, Veleirinho B, Delgadillo I. J. Nanosci. Nanotech., 2009, 9(6): 3798.

doi: 10.1166/jnn.2009.NS70
[62]
Lee B L P, Jeon H, Wang A J, Yan Z Q, Yu J, Grigoropoulos C, Li S. Acta Biomater., 2012, 8(7): 2648.

doi: 10.1016/j.actbio.2012.04.023
[63]
Sill T J, von Recum H A. Biomaterials, 2008, 29(13): 1989.

doi: 10.1016/j.biomaterials.2008.01.011
[64]
Xu S, Poirier G, Yao N. Nano Lett., 2012, 12(5): 2238.

doi: 10.1021/nl204334x
[65]
Katta P, Alessandro M, Ramsier R D, Chase G G. Nano Lett., 2004, 4(11): 2215.

doi: 10.1021/nl0486158
[66]
Rafique J, Yu J, Yu J L, Fang G, Wong K W, Zheng Z, Ong H C, Lau W M. Appl. Phys. Lett., 2007, 91(6): 063126.

doi: 10.1063/1.2768871
[67]
Zhang D, Chang J. Adv. Mater., 2007, 19(21): 3664.

doi: 10.1002/(ISSN)1521-4095
[68]
Huang Z M, Zhang Y Z, Kotaki M, Ramakrishna S. Compos. Sci. Technol., 2003, 63(15): 2223.

doi: 10.1016/S0266-3538(03)00178-7
[69]
Chew S Y, Wen J, Yim E K F, Leong K W. Biomacromolecules, 2005, 6(4): 2017.

doi: 10.1021/bm0501149
[70]
Li D, Wang Y, Xia Y. Adv. Mater., 2004, 16(4): 361.

doi: 10.1002/(ISSN)1521-4095
[71]
Smit E, Búttner U, Sanderson R D. Polymer, 2005, 46(8): 2419.

doi: 10.1016/j.polymer.2005.02.002
[72]
Khil M S, Bhattarai S R, Kim H Y, Kim S Z, Lee K H. J. Biomed. Mater. Res., 2005, 72B(1): 117.

doi: 10.1002/(ISSN)1097-4636
[73]
Teo W E, Gopal R, Ramaseshan R, Fujihara K, Ramakrishna S. Polymer, 2007, 48(12): 3400.

doi: 10.1016/j.polymer.2007.04.044
[74]
Li D, Wang Y L, Xia Y N. Nano Lett., 2003, 3(8): 1167.

doi: 10.1021/nl0344256
[75]
Ishii Y, Sakai H, Murata H. Mater. Lett., 2008, 62(19): 3370.

doi: 10.1016/j.matlet.2008.03.038
[76]
Yang D, Lu B, Zhao Y, Jiang X. Adv. Mater., 2007, 19(21): 3702.

doi: 10.1002/(ISSN)1521-4095
[77]
Liu H Q, Hsieh Y L. J. Polym. Sci. B Polym. Phys., 2002, 40(18): 2119.

doi: 10.1002/(ISSN)1099-0488
[78]
Kalra V, Lee J H, Park J H, Marquez M, Joo Y L. Small, 2009, 5(20): 2323.

doi: 10.1002/smll.v5:20
[79]
Pelipenko J, Kristl J, Jankovi B, Baumgartner S, Kocbek P. Int. J. Pharm., 2013, 456(1): 125.

doi: 10.1016/j.ijpharm.2013.07.078
[80]
Niu X L, Zhao L Q, Yin M, Huang D, Wang N N, Wei Y, Hu Y C, Lian X J, Chen W Y. Tissue Eng. C: Methods, 2020, 26(7): 352.

doi: 10.1089/ten.tec.2020.0073
[81]
Koombhongse S, Liu W X, Reneker D H. J. Polym. Sci. B Polym. Phys., 2001, 39(21): 2598.

doi: 10.1002/(ISSN)1099-0488
[82]
Ostermann R, Li D, Yin Y D, McCann J T, Xia Y N. Nano Lett., 2006, 6(6): 1297.

pmid: 16771598
[83]
Jin Y, Yang D Y, Kang D Y, Jiang X Y. Langmuir, 2010, 26(2): 1186.

doi: 10.1021/la902313t pmid: 19689141
[84]
Xie J W, Li X R, Xia Y N. Macromol. Rapid Commun., 2008, 29(22): 1775.

doi: 10.1002/marc.200800381
[85]
Liu X H, Jin X B, Ma P X. Nat. Mater., 2011, 10(5): 398.

doi: 10.1038/nmat2999
[86]
Yan G D, Yu J, Qiu Y J, Yi X H, Lu J, Zhou X S, Bai X D. Langmuir, 2011, 27(8): 4285.

doi: 10.1021/la1047936
[87]
Sun Z, Zussman E, Yarin A L, Wendorff J H, Greiner A. Adv. Mater., 2003, 15(22): 1929.

doi: 10.1002/(ISSN)1521-4095
[88]
Martins A, Alves da Silva M L, Faria S, Marques A P, Reis R L, Neves N M. Macromol. Biosci., 2011, 11(7): 978.

doi: 10.1002/mabi.201100012 pmid: 21485007
[89]
Han T, Reneker D H, Yarin A L. Polymer, 2007, 48(20): 6064.

doi: 10.1016/j.polymer.2007.08.002
[90]
Martins A, Reis R L, Neves N. iSmithers Rapra Technical Publications, 2012.
[91]
Martins A, Gang W, Pinho E D, Rebollar E, Chiussi S, Reis R L, LeÓn B, Neves N M. J. Tissue Eng. Regen. Med., 2010: 4(6): 444.

doi: 10.1002/term.255 pmid: 20112276
[92]
Oberbossel G, Probst C, Giampietro V R, von Rohr P R. Plasma Process. Polym., 2017, 14(3): 1600144.

doi: 10.1002/ppap.201600144
[93]
Martins A, Pinho E D, Faria S, Pashkuleva I, Marques A P, Reis R L, Neves N M. Small, 2009: 1195.
[94]
Fahmy T M, Samstein R M, Harness C C, Mark Saltzman W. Biomaterials, 2005, 26(28): 5727.

doi: 10.1016/j.biomaterials.2005.02.025
[95]
He W, Ma Z W, Yong T, Teo W E, Ramakrishna S. Biomaterials, 2005, 26(36): 7606.

doi: 10.1016/j.biomaterials.2005.05.049
[96]
Baek H S, Park Y H, Ki C S, Park J C, Rah D K. Surf. Coat. Technol., 2008, 202(22/23): 5794.

doi: 10.1016/j.surfcoat.2008.06.154
[97]
Yang F, Wolke J G C, Jansen J A. Chem. Eng. J., 2008, 137(1): 154.

doi: 10.1016/j.cej.2007.07.076
[98]
Turmanova S, Minchev M, Vassilev K, Danev G. J. Polym. Res., 2008, 15(4): 309.

doi: 10.1007/s10965-007-9172-0
[99]
Kou R Q, Xu Z K, Deng H T, Liu Z M, Seta P, Xu Y Y. Langmuir, 2003, 19(17): 6869.

doi: 10.1021/la0345486
[100]
Liu Z M, Xu Z K, Wang J Q, Wu J, Fu J J. Eur. Polym. J., 2004, 40(9): 2077.

doi: 10.1016/j.eurpolymj.2004.05.020
[101]
Yoo H S, Kim T G, Park T G. Adv. Drug Deliv. Rev., 2009, 61(12): 1033.

doi: 10.1016/j.addr.2009.07.007
[102]
Park K, Ju Y M, Son J S, Ahn K D, Han D K. J. Biomater. Sci. Polym. Ed., 2007, 18(4): 369.

doi: 10.1163/156856207780424997
[103]
Chua K N, Chai C, Lee P C, Tang Y N, Ramakrishna S, Leong K W, Mao H Q. Biomaterials, 2006, 27(36): 6043.

doi: 10.1016/j.biomaterials.2006.06.017
[104]
Chua K N, Chai C, Lee P C, Ramakrishna S, Leong K W, Mao H Q. Exp. Hematol., 2007, 35(5): 771.

doi: 10.1016/j.exphem.2007.02.002
[105]
Croll T I, O'Connor A J, Stevens G W, Cooper-White J J. Biomacromolecules, 2004, 5(2): 463.

doi: 10.1021/bm0343040
[106]
Chen J L, Chu B, Hsiao B S. J. Biomed. Mater. Res., 2006, 79A(2): 307.

doi: 10.1002/(ISSN)1552-4965
[107]
Wang Y, Cui W G, Zhao X, Wen S Z, Sun Y L, Han J M, Zhang H Y. Nanoscale, 2018, 11(1): 60.

doi: 10.1039/c8nr07329e pmid: 30350839
[108]
Ye K Q, Liu D H, Kuang H Z, Cai J Y, Chen W M, Sun B B, Xia L G, Fang B, Morsi Y, Mo X M. J. Colloid Interface Sci., 2019, 534: 625.

doi: 10.1016/j.jcis.2018.09.071
[109]
Li W J, Tuli R, Okafor C, Derfoul A, Danielson K G, Hall D J, Tuan R S. Biomaterials, 2005, 26(6): 599.

doi: 10.1016/j.biomaterials.2004.03.005
[110]
Chen W M, Xu Y, Li Y Q, Jia L T, Mo X M, Jiang G N, Zhou G D. Chem. Eng. J., 2020, 382: 122986.

doi: 10.1016/j.cej.2019.122986
[111]
Gomoll A H, Madry H, Knutsen G, Dijk N, Seil R, Brittberg M, Kon E. Knee Surg. Sports Traumatol. Arthrosc., 2010, 18(4): 434.

doi: 10.1007/s00167-010-1072-x
[112]
Liu Y Y, Yu H C, Liu Y, Liang G, Zhang T, Hu Q X. Polym. Eng. Sci., 2016, 56(2): 170.

doi: 10.1002/pen.24239
[113]
Zhang S F, Chen L K, Jiang Y Z, Cai Y Z, Xu G W, Tong T, Zhang W, Wang L L, Ji J F, Shi P H, Ouyang H W. Acta Biomater., 2013, 9(7): 7236.

doi: 10.1016/j.actbio.2013.04.003
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[3] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[4] Fengqi Liu, Yonggang Jiang, Fei Peng, Junzong Feng, Liangjun Li, Jian Feng. Preparation and Application of Ultralight Nanofiber Aerogels [J]. Progress in Chemistry, 2022, 34(6): 1384-1401.
[5] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[6] Xiangye Li, Tianjiao Bai, Xin Weng, Bing Zhang, Zhenzhen Wang, Tieshi He. Application of Electrospun Fibers in Supercapacitors [J]. Progress in Chemistry, 2021, 33(7): 1159-1174.
[7] Shiying Yang, Junqin Liu, Qianfeng Li, Yang Li. Modification Mechanism of Zero-Valent Aluminum by Mechanical Ball Milling [J]. Progress in Chemistry, 2021, 33(10): 1741-1755.
[8] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[9] Hao Sun, Chengwei Song, Yuepeng Pang, Shiyou Zheng. Functional Design of Separator for Li-S Batteries [J]. Progress in Chemistry, 2020, 32(9): 1402-1411.
[10] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.
[11] Lei Zhu, Jianan Wang, Jianwei Liu, Ling Wang, Wei Yan. Applications of Electrospun One-Dimensional Nanomaterials in Gas Sensors [J]. Progress in Chemistry, 2020, 32(2/3): 344-360.
[12] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[13] Liang Ma, Xuejuan Shi, Xiaoxiao Zhang, Lili Li. Preparation of the Controllable Core-Shell Structured Electrospun Polymer Fibers and Their Application [J]. Progress in Chemistry, 2019, 31(9): 1213-1220.
[14] Huiya Wang, Limin Zhao, Fang Zhang, Dannong He. High-Performance Lithium-Ion Secondary Battery Membranes [J]. Progress in Chemistry, 2019, 31(9): 1251-1262.
[15] Zhaoxiang Wang, Jun Ma, Yurui Gao, Shuai Liu, Xin Feng, Liquan Chen. Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials [J]. Progress in Chemistry, 2019, 31(11): 1591-1614.