中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (11): 1591-1614 DOI: 10.7536/PC190820 Previous Articles   Next Articles

Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials

Zhaoxiang Wang1,2,3,**(), Jun Ma1,3, Yurui Gao1,3, Shuai Liu1,2, Xin Feng1,3, Liquan Chen1   

  1. 1. Laboratory for Renewable Energy, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
    2. College of Material Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100190, China
    3. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
  • Received: Online: Published:
  • Contact: Zhaoxiang Wang
  • About author:
  • Supported by:
    National Key R&D Program of China(2016YFB0100400); National Key Development Program of China(2015CB251100); National Natural Science Foundation of China(51372268)
Richhtml ( 10 ) PDF ( 1177 ) Cited
Export

EndNote

Ris

BibTeX

The lithium ion(Li-ion) batteries, known for their high energy density and high energy conversion efficiency, have been widely applied in portable electronics and electric transportation. With reversible capacities over 300 mAh·g-1, the Li-rich layer-structured oxides are important candidiates of the cathode materials for the Li-ion batteries with energy densities of 350 Wh·kg-1 or higher. However, the issues related to the structural degradation during long-term cycling and the high surface/interface sensitivity(dissolution of the transition metal ions and the side reactions with the electrolyes) have to be well addressed before these materials can be commercially applied. This review is to present some of our efforts in stabilizing the structure and electrochemical performances of these materials by way of elemental substitution in the bulk and on the surface and by designing new structures, on the basis of comprehensive understandings on their crystalline and electronic structures and the structural evolution. Meanwhile, for the purpose of providing the audience with some overview about the world-wide research progress on these oxide materials, some important achievements are introduced including homogeneous elemental substitution in the lattice, structurally integrated surface modification(such as multilayer modification and construction of concentration-gradient materials), surface coating and surface doping. We will share our thinking on the research directions of these materials before ending this review.

[1]
Kim J S, Johnson C S, Thackeray M M . Electrochem. Commun., 2002,11:205.
[2]
Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A . J. Mater. Chem., 2007,17:3112. http://xlink.rsc.org/?DOI=b702425h

doi: 10.1039/b702425h
[3]
Johnson C S, Li N, Lefief C, Thackeray M M . Electrochem. Commun., 2007,9:787.
[4]
Kim J S, Johnson C S, Vaughey J T, Thackeray M M, Hackney S A, Yoon W, Grey C P . Chem. Mater., 2004,16:1996.
[5]
Ohzuku O, Nagayama M, Tsuji K, Ariyoshi K . J. Mater. Chem., 2011,21:10179. http://xlink.rsc.org/?DOI=c0jm04325g

doi: 10.1039/c0jm04325g
[6]
Liu J, Reeja-Jayan B, Manthiram A . J. Phys. Chem., 2011,114:9528.
[7]
Liu J, Wang Q Y, Reeja-Jayan B . Electrochem. Commun, 2010,12:750. https://linkinghub.elsevier.com/retrieve/pii/S1388248110001244

doi: 10.1016/j.elecom.2010.03.024
[8]
Zhang H Z, Qiao Q Q, Li G R, Ye S H, Gao X P . J. Mater. Chem., 2012,22:13104.
[9]
Yu H J, Kim H J, Wang Y R, He P, Asakura D, Nakamura Y, Zhou H S . Phys. Chem. Chem. Phys., 2012,14:6584. https://www.ncbi.nlm.nih.gov/pubmed/22456724

doi: 10.1039/c2cp40745k pmid: 22456724
[10]
Lee E S, Huq A, Chang H Y, Manthiram A . Chem. Mater, 2012,24:600. https://pubs.acs.org/doi/10.1021/cm2034992

doi: 10.1021/cm2034992
[11]
Xu B, Fell C R, Chi M, Meng Y S . Energy Environ. Sci., 2011,4:2223. http://xlink.rsc.org/?DOI=c1ee01131f

doi: 10.1039/c1ee01131f
[12]
Shi J L, Xiao D D, Zhang X D, Yin Y X, Guo Y G, Wan L J . Nano Research, 2017,10:4201. http://link.springer.com/10.1007/s12274-017-1489-3

doi: 10.1007/s12274-017-1489-3
[13]
Rossouw M H, Thackeray M M . Mat. Res. Bull., 1991,26:463. https://linkinghub.elsevier.com/retrieve/pii/002554089190186P

doi: 10.1016/0025-5408(91)90186-P
[14]
Armstrong A R, Holzapfel M, Novã P, Johnson C S, Kang S H, Thackeray M M, Bruce P G . J. Am. Chem. Soc., 2006,128:8694. https://www.ncbi.nlm.nih.gov/pubmed/16802836

doi: 10.1021/ja062027+ pmid: 16802836
[15]
Arunkumar Y W T A, Manthiram A . Chem. Mater., 2017,19:3067. https://pubs.acs.org/doi/10.1021/cm070389q

doi: 10.1021/cm070389q
[16]
Kang K, Ceder G . Phys. Rev. B, 2006,74:094105.
[17]
Croy J R, Kim D, Balasubramanian M, Gallagher K, Kang S H, Thackeray M M . J. Electrochem. Soc., 2012,159:A781.
[18]
Li L, Lee K S, Lu L . Funct. Mater. Lett., 2014,7:1430002.
[19]
Thackeray M M, Johnson C S, Vaughey J T, Li N, Hackney S A . J. Mater. Chem., 2005,15:2267.
[20]
Bareño J, Balasubramanian M, Kang S H, Wen J G, Lei C H, Pol S V, Petrov I, Abraham D P . Chem. Mater., 2011,23:2039.
[21]
Bareño J, Lei C H, Wen J G, Kang S H, Petrov I, Abraham D P . Adv. Mater., 2010,22:1122. https://www.ncbi.nlm.nih.gov/pubmed/20401936

doi: 10.1002/adma.200904247 pmid: 20401936
[22]
Boulineau A, Colin L S J F, Canevet E, Daniel L, Patoux S . Chem. Mater., 2012,24:3558. https://pubs.acs.org/doi/10.1021/cm301140g

doi: 10.1021/cm301140g
[23]
Yu H J, Ishikawa R, So Y G, Shibata N, Kudo T, Zhou H S, Ikuhara K . Angew. Chem, 2013,125:6085. http://doi.wiley.com/10.1002/ange.201301236

doi: 10.1002/ange.201301236
[24]
Navak P K, Erickson E M, Schipper F, Penki T R, Munichandraiah N, Adelhelm P, Sclar H, Amalraj F, Markovsky B, Aurbach D . Adv. Energy Mater., 2018,8:1702397. http://doi.wiley.com/10.1002/aenm.v8.8

doi: 10.1002/aenm.v8.8
[25]
Jarvis K A, Deng Z, Allard L F, Manthiram A, Ferreira P . Chem. Mater, 2011,23:3614. https://pubs.acs.org/doi/10.1021/cm200831c

doi: 10.1021/cm200831c
[26]
Lu Z, Chen Z, Dahn J R . Chem. Mater., 2013,15:3214.
[27]
Koga H, Croguennec L, Mannessiez P, Ménétrier M, Weill F, Bourgeois L, Duttine M, Suard E, Delmas C . J. Phys. Chem. C, 2012,116:13497. https://pubs.acs.org/doi/10.1021/jp301879x

doi: 10.1021/jp301879x
[28]
Lei C H, Bareno J, Wen J G, Petrov I, Kang S H, Abraham D P . J. Power Sources, 2008,178:422.
[29]
Ven A V D, Ceder G . Electrochem. Commun., 2004,6:1045. https://linkinghub.elsevier.com/retrieve/pii/S1388248104002073

doi: 10.1016/j.elecom.2004.07.018
[30]
Tang D C, Liu Y Y, Yang Z Z, Chen L Q . Prog. Nat. Sci.: Mater. Intl., 2014,24:388. https://linkinghub.elsevier.com/retrieve/pii/S1002007114000926

doi: 10.1016/j.pnsc.2014.07.005
[31]
Sathiya M, Abakumov A M, Foix D, Rousse G, Ramesha K, Saubanère M, Doublet M L, Vezin H, Laisa C P, Prakash A S, Gonbeau D, van Tendeloo G, Tarascon J M . Nat. Mater., 2015,14:230. https://www.ncbi.nlm.nih.gov/pubmed/25437258

doi: 10.1038/nmat4137 pmid: 25437258
[32]
Salager E, Sarou-Kanian V, Sathiya M, Tang M X, Leriche J B, Melin P, Wang Z L, Vezin H, Bessada C, Deschamps M, Tarascon J M . Chem. Mater., 2014,26:7009. https://pubs.acs.org/doi/10.1021/cm503280s

doi: 10.1021/cm503280s
[33]
Ma J, Zhou Y N, Gao Y R, Yu X Q, Kong Q Y, Gu G, Wang Z X, Yang X Q, Chen L Q . Chem. Mater., 2014,26:3256.
[34]
Lee J, Li X, Su D, Hautier G, Ceder G . Science, 2014,343:519. https://www.ncbi.nlm.nih.gov/pubmed/24407480

doi: 10.1126/science.1246432 pmid: 24407480
[35]
Ko Y N, Choi S H, Kang Y C, Park S B . J. Power Sources, 2013,244:336.
[36]
Assat G, Iadecola A, Foix D, Dedryvere R, Tarascon J M . ACS Energy Letters, 2018,3:2721. https://pubs.acs.org/doi/10.1021/acsenergylett.8b01798

doi: 10.1021/acsenergylett.8b01798
[37]
Hu E Y, Yu X Q, Lin R Q, Bi X X, Lu J, Bak S M, Nam K W, Xin H L, Jaye C, Fischer D A, Amine K, Yang X Q . Nature Energy, 2018,3:690. https://doi.org/10.1038/s41560-018-0207-z

doi: 10.1038/s41560-018-0207-z
[38]
Li J, Shunmugasundaram R, Doig R, Dahn J R . Chem. Mater., 2016,28:162.
[39]
Gent W E, Lim K, Liang Y F, Li Q H, Barnes T, Ahn S J, Stone K H, McIntire M, Hong J Y, Song J H, Li Y Y, Mehta A, Ermon S, Tyliszczak T, Kilcoyne D, Vine D, Park J H, Doo S K, Toney M F, Yang W L, Prendergast D, ChuehW C . Nat. Commun., 2017,8:12. https://www.ncbi.nlm.nih.gov/pubmed/28400552

doi: 10.1038/s41467-017-00025-5 pmid: 28400552
[40]
Sathiya M, Rousse G, Ramesha K, Laisa C P, Vezin H, Sougrati M T, Doublet M, Foix D, Gonbeau D, Walker W . Nat. Mater, 2013,12:827. https://www.ncbi.nlm.nih.gov/pubmed/23852398

doi: 10.1038/nmat3699 pmid: 23852398
[41]
McCalla E, Abakumov A M, Saubanère M, Foix D, Berg E J, Rousse G, Doublet M L, Gonbeau D, Novák P, van Tendeloo G . Science, 2015,350:1516. https://www.ncbi.nlm.nih.gov/pubmed/26680196

doi: 10.1126/science.aac8260 pmid: 26680196
[42]
Doublet M L, Saubanere M, Mccalla E, Tarascon J M, Doublet M L . Energy Environ. Sci., 2016,9:984.
[43]
Grimaud A, Hong W T, Shaohorn Y, Tarascon J M . Nat. Mater., 2016,15:121. https://www.ncbi.nlm.nih.gov/pubmed/26796721

doi: 10.1038/nmat4551 pmid: 26796721
[44]
Seo D H, Lee J, Urban A, Malik R, Kang S, Ceder G . Nat. Chem, 2016,8:692. https://www.ncbi.nlm.nih.gov/pubmed/27325096

doi: 10.1038/nchem.2524 pmid: 27325096
[45]
Luo L, Roberts M R, Hao R, Guerrini N, Pickup D M, Liu Y S, Edstrom K, Guo J, Chadwick A V, Duda L C, Bruce P G . Nat. Chem., 2016,8:684. https://www.ncbi.nlm.nih.gov/pubmed/27325095

doi: 10.1038/nchem.2471 pmid: 27325095
[46]
Li X, Qiao Y, Guo S H, Xu Z M, Zhu H, Zhang X Y, Yuan Y, He P, Ishida M, Zhou H S . Adv. Mater., 2018,30:6.
[47]
Gent W E, Lim K, Liang Y, Li Q, Barnes T, Ahn S J, Stone K H, McIntire M, Hong J, Song J H, Li Y, Mehta A, Ermon S, Tyliszczak T, Kilcoyne D, Vine D, Park J H, Doo S K, Toney M F, Yang W, Prendergast D, Chueh W C . Nat. Commun., 2017,8:2091. https://www.ncbi.nlm.nih.gov/pubmed/29233965

doi: 10.1038/s41467-017-02041-x pmid: 29233965
[48]
Tran N, Croguennec L, Ménétrier M, Weill F, Biensan P, Jordy C, Delmas C . Chem. Mater, 2008,20:4815. https://pubs.acs.org/doi/10.1021/cm070435m

doi: 10.1021/cm070435m
[49]
Gao Y R, Ma J, Wang Z X, Chen L Q . Phys. Chem. Chem. Phys., 2017,19:7025. https://www.ncbi.nlm.nih.gov/pubmed/28245015

doi: 10.1039/c6cp08441a pmid: 28245015
[50]
McCalla E, Sougrati M T, Rousse G, Berg E J, Abakumov A, Recham N, Ramesha K, Sathiya M, Dominko R, van Tendeloo G . J. Am. Chem. Soc., 2015,137:4804. https://www.ncbi.nlm.nih.gov/pubmed/25811894

doi: 10.1021/jacs.5b01424 pmid: 25811894
[51]
Hong J, Gent W E, Xiao P, Lim K, Seo D H, Wu J, Csernica P M, Takacs C J, Nordlund D, Sun C J, Stone K H, Passarello D, Yang W, Prendergast D, Ceder G, Toney M, Chueh W C . Nat. Mater., 2019,18:256. https://www.ncbi.nlm.nih.gov/pubmed/30718861

doi: 10.1038/s41563-018-0276-1 pmid: 30718861
[52]
Gao Y, Wang X, Ma J, Wang X, Chen L Q . Chem. Mater., 2015,27(9):3456. https://pubs.acs.org/doi/10.1021/acs.chemmater.5b00875

doi: 10.1021/acs.chemmater.5b00875
[53]
Wu S, Liu H . J. Power Sources, 2007,174:789 https://linkinghub.elsevier.com/retrieve/pii/S0378775307013973

doi: 10.1016/j.jpowsour.2007.06.230
[54]
Tabuchi M, Nabeshima Y, Takeuchi T, Tatsumi T, Imaizumi J, Nitta Y . J. Power Sources, 2010,195:834. https://linkinghub.elsevier.com/retrieve/pii/S0378775309014475

doi: 10.1016/j.jpowsour.2009.08.059
[55]
Tabuchi M, Nakashima A, Shigemura H, Ado K, Kobayashi H, Sakaebe H, Kageyama H, Nakamura T, Kohzaki M, Hirano A, Kanno R . J. Electrochem. Soc., 2002,149:A509. https://iopscience.iop.org/article/10.1149/1.1462791

doi: 10.1149/1.1462791
[56]
Tabuchi M, Nabeshima Y, Takeuchi T, Kageyama H, Tatsumi K, Akimoto J, Shibuya H, Imaizumi J . J. Power Sources, 2011,196:3611.
[57]
Tabuchi M, Nakashima A, Ado K, Sakaebe H, Kobayashi H, Kageyama H, Tatsumi K, Kobayashi Y, Seki S, Yamanaka A . J. Power Sources, 2005,146:287. https://linkinghub.elsevier.com/retrieve/pii/S037877530500399X

doi: 10.1016/j.jpowsour.2005.03.032
[58]
Li J G, Wang L, Wang L, Luo J, Gao J, Li J J, Wang J L, He X M, Tian G Y, Fan S S . J. Power Sources, 2013,244:652. https://linkinghub.elsevier.com/retrieve/pii/S0378775313000062

doi: 10.1016/j.jpowsour.2012.12.107
[59]
Wang C C, Manthiram A . J. Mater. Chem. A, 2013,1:10209 http://xlink.rsc.org/?DOI=c3ta11703k

doi: 10.1039/c3ta11703k
[60]
Deng Z Q, Manthiram A . J. Phys. Chem. C, 2011,115:7097. https://pubs.acs.org/doi/10.1021/jp200375d

doi: 10.1021/jp200375d
[61]
Xiang X D, Knight J C, Li W S, Manthiram A . J. Phys. Chem. C, 2014,118:21826. https://pubs.acs.org/doi/10.1021/jp506731v

doi: 10.1021/jp506731v
[62]
Wang S H, Li Y X, Wu J, Zheng B Z, McDonald M J, Yang Y . Phys. Chem. Chem. Phys., 2015,17:10151. https://www.ncbi.nlm.nih.gov/pubmed/25790778

doi: 10.1039/c5cp00853k pmid: 25790778
[63]
Singh G, Thomas R, Kumar A, Katiyar R S . J. Electrochem. Soc., 2012,159(4):A410. https://iopscience.iop.org/article/10.1149/2.059204jes

doi: 10.1149/2.059204jes
[64]
Yu H J, Zhou H S . J. Mater. Chem., 2012,22:15507.
[65]
Sun Y K, Kim M G, Kang S H, Amine K . J. Mater. Chem., 2013,13:319.
[66]
Kang S H, Kim J, Stoll M E, Abraham D, Sun Y K, Amine K . J. Power Sources, 2002,112:41.
[67]
Kang S H, Amine K . J. Power Sources, 2003,150:119.
[68]
Jafta C J, Ozoemena K I, Mathe M K, Roos W D . Electrochim. Acta, 2012,85:411. https://linkinghub.elsevier.com/retrieve/pii/S0013468612013643

doi: 10.1016/j.electacta.2012.08.074
[69]
Li N, An R, Su Y F, Wu F, Bao L Y, Chen L, Zheng Y, Shou S F, Chen S . J. Mater. Chem. A, 2013,1:9760. http://xlink.rsc.org/?DOI=c3ta11665d

doi: 10.1039/c3ta11665d
[70]
Gao Y R, Ma J, Wang X F, Lu X, Bai Y, Wang Z X, Chen L Q . J. Mater. Chem. A, 2014,2:4811. http://xlink.rsc.org/?DOI=c3ta15236g

doi: 10.1039/c3ta15236g
[71]
Ma J, Zhou Y N, Gao Y R, Kong Q Y, Wang Z X, Yang X Q, Chen L Q . Chem. Eur. J., 2014,20:8723. https://www.ncbi.nlm.nih.gov/pubmed/24939463

doi: 10.1002/chem.201402727 pmid: 24939463
[72]
Lee E S, Manthiram A . J. Mater. Chem. A, 2014,2:3932.
[73]
Boulineau A, Simonin L, Colin J F, Bourbon C, Patoux S . Nano Lett, 2013,13:3857. https://www.ncbi.nlm.nih.gov/pubmed/23876058

doi: 10.1021/nl4019275 pmid: 23876058
[74]
Gu M, Belharouak I, Zheng J M, Wu H M, Xiao J, Genc A, Amine K, Thevuthasan S, Baer D R, Zhang J G, Browning N D, Liu J, Wang C M . ACS Nano, 2013,7:760. https://www.ncbi.nlm.nih.gov/pubmed/23237664

doi: 10.1021/nn305065u pmid: 23237664
[75]
Song B H, Liu Z W, Lai M O, Lu L . Phys. Chem. Chem. Phys., 2012,14:12875. https://www.ncbi.nlm.nih.gov/pubmed/22892557

doi: 10.1039/c2cp42068f pmid: 22892557
[76]
Goodenough J B, Kim Y . Chem. Mater, 2010,22:587.
[77]
Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A . J. Mater. Chem., 2007,17:3053.
[78]
He W, Yuan D, Qian J, Ai X, Yang H, Cao Y . J. Mater. Chem. A, 2013,1:11397.
[79]
Qiu B, Wang J, Xia Y G, Liu Y Z, Qin L F, Yao X Y, Liu Z P . J. Power Sources, 2013,240:530. https://linkinghub.elsevier.com/retrieve/pii/S0378775313006459

doi: 10.1016/j.jpowsour.2013.04.047
[80]
Ates M N, Jia Q Y, Shah A, Busnaina A, Mukerjee S, Abraham K M . J. Electrochem. Soc., 2014,161:A290 https://iopscience.iop.org/article/10.1149/2.040403jes

doi: 10.1149/2.040403jes
[81]
Kang K, Meng Y S, Breger J, Grey C P, Ceder G . Science, 2006,311:977. https://www.ncbi.nlm.nih.gov/pubmed/16484487

doi: 10.1126/science.1122152 pmid: 16484487
[82]
Sallard S, Sheptyakov D, Villevieille C . J. Power Sources, 2017,359:27. https://linkinghub.elsevier.com/retrieve/pii/S0378775317306614

doi: 10.1016/j.jpowsour.2017.05.028
[83]
Ding X, Li Y X, Deng M M, Wang S, Aqsa Y, Hu Q, Chen C H . J. Alloys Compounds, 2019,791:100. https://linkinghub.elsevier.com/retrieve/pii/S0925838819311235

doi: 10.1016/j.jallcom.2019.03.297
[84]
Dahiya P P, Ghanty C, Sahoo K, Basu S, Majumder S B . J. Electrochem. Soc., 2018,165:A3114. https://iopscience.iop.org/article/10.1149/2.0751813jes

doi: 10.1149/2.0751813jes
[85]
Zubair M, Li G Y, Wang B Y, Wang L, Yu H J . ACS Appl. Energy Mater., 2019,2:503.
[86]
Feng X, Gao Y R, Ben L B, Yang Z Z, Wang Z X, Chen L Q . J. Power Sources, 2016,317:74. https://linkinghub.elsevier.com/retrieve/pii/S0378775316303184

doi: 10.1016/j.jpowsour.2016.03.101
[87]
Kam K C, Mehta A, Heron J T, Doeff M M . J. Electrochem. Soc., 2012,159:A1383.
[88]
Li L, Song B H, Chang Y L, Xia H, Yang J R, Lee K S, Lu L . J. Power Sources, 2015,283:162.
[89]
Zhang H Z, Qiao Q Q, Li G R, Gao X P . J. Mater. Chem. A, 2014,2:7454.
[90]
Park K S, Cho M H, Jin S J, Song C H, Nahm K S . Korean J. Chem. Eng., 2005,22:560.
[91]
Zheng J M, Gu M, Xiao J, Zuo P J, Wang C M, Zhang J G . Nano Lett., 2013,13:3824. https://www.ncbi.nlm.nih.gov/pubmed/23802657

doi: 10.1021/nl401849t pmid: 23802657
[92]
Lin R Q, Hu E Y, Liu M J, Wang Y, Cheng H, Wu J P, Zheng J C, Wu Q, Bak S, Tong X, Zhang R, Yang W L, Persson K, Yu X Q, Yang X Q, Xin H L . Nat. Commun., 2019,10:1650. https://www.ncbi.nlm.nih.gov/pubmed/30967531

doi: 10.1038/s41467-019-09248-0 pmid: 30967531
[93]
Li F, Wang Y Y, Gao S L, Hou P Y, Zhang L Q . J. Mater. Chem. A, 2017,5:24758. http://xlink.rsc.org/?DOI=C7TA07659B

doi: 10.1039/C7TA07659B
[94]
Zhao Y, Liu J T, Wang S B, Ji R, Xia Q B, Ding Z P, Wei W F, Liu Y, Wang P, Ivey D G . Adv. Funct. Mater., 2016,26:4760. http://doi.wiley.com/10.1002/adfm.v26.26

doi: 10.1002/adfm.v26.26
[95]
Hou P Y, Li G R, Gao X P . J. Mater. Chem. A, 2016,4:7689. http://xlink.rsc.org/?DOI=C6TA01878E

doi: 10.1039/C6TA01878E
[96]
Qing R P, Shi J L, Xiao D D, Zhang X D, Yin Y X, Zhai Y B, Gu L, Guo Y G . Adv. Energy Mater., 2016,6:1501914.
[97]
Shang H F, Ning F H, Li B, Zuo Y X, Lu S G, Xia D G . ACS Appl. Mater. Interfaces, 2018,10:21349. https://www.ncbi.nlm.nih.gov/pubmed/29862806

doi: 10.1021/acsami.8b06271 pmid: 29862806
[98]
Zhang X D, Shi J L, Liang J Y, Yin Y X, Zhang J N, Yu X Q, Guo Y G . Adv. Mater., 2018,30:1801751.
[99]
Vu N H, Im J C, Unithrattil S, Im W B . J. Mater. Chem. A, 2018,6:2200. http://xlink.rsc.org/?DOI=C7TA09118D

doi: 10.1039/C7TA09118D
[100]
Feng X, Yang Z Z, Tang D C, Kong Q Y, Gu L, Wang Z X, Chen L Q . Phys. Chem. Chem. Phys., 2015,17:1257. https://www.ncbi.nlm.nih.gov/pubmed/25420544

doi: 10.1039/c4cp04087b pmid: 25420544
[101]
Wu B, Yang X K, Jiang X, Zhang Y, Shu H B, Gao P, Liu L, Wang X Y . Adv. Funct. Mater., 2018,28:1803392 http://doi.wiley.com/10.1002/adfm.v28.37

doi: 10.1002/adfm.v28.37
[102]
Deng Y P, Fu F, Wu Z G, Yin Z W, Zhang T, Li J T, Huang L, Sun S G . J. Mater. Chem. A, 2016,4:257. http://xlink.rsc.org/?DOI=C5TA06945A

doi: 10.1039/C5TA06945A
[103]
Ma Y T, Liu P F, Xie Q S, Zhang G B, Zheng H F, Cai Y X, Li Z, Wang L S, Zhu Z Z, Mai L Q, Peng D L . Nano Energy, 2019,59:184. https://linkinghub.elsevier.com/retrieve/pii/S2211285519301533

doi: 10.1016/j.nanoen.2019.02.040
[104]
Zhang X H, Yu R Z, Huang Y, Wang X Y, Wang Y, Wu B, Liu Z S, Chen J C . ACS Sustainable Chem. Eng., 2018,6:12969. https://pubs.acs.org/doi/10.1021/acssuschemeng.8b02436

doi: 10.1021/acssuschemeng.8b02436
[105]
Liu P F, Zhang H, He W, Xiong T F, ChengY, Xie Q S, Ma Y T, Zheng H F, Wang L S, Zhu Z Z, Peng Y, Mai L Q, Peng D L . J. Am. Chem. Soc., 2019,141:10876. https://www.ncbi.nlm.nih.gov/pubmed/31203612

doi: 10.1021/jacs.9b04974 pmid: 31203612
[106]
Zhang X, Belharouak I, Li L, Lei Y, Elam J W, Nie A, Chen X, Yassar R S, Axelbaum R L . Adv. Energy Mater., 2013,3:1299. e885ff70-3d17-48bd-9153-6990b688a109http://onlinelibrary.wiley.com/doi/10.1002/aenm.201300269/abstract

doi: 10.1002/aenm.201300269
[107]
Guo S, Yu H, Liu P, Liu X, Chen M, Ishida M, Zhou H . J. Mater. Chem. A, 2014,2:4422. http://xlink.rsc.org/?DOI=c3ta15206e

doi: 10.1039/c3ta15206e
[108]
Wu F, Li N, Su Y F, Lu H Q, Zhang L J, An R, Wang Z, Bao L Y, Chen S . J. Mater. Chem., 2012,22:1489.
[109]
Liu J, Manthiram A . J. Mater. Chem., 2010,20:3961. http://xlink.rsc.org/?DOI=b925711j

doi: 10.1039/b925711j
[110]
Ahn J, Kim J H, Cho B W, Chung K Y, Kim S, Choi J W, Oh S H . Nano Lett., 2017,17:7869. https://www.ncbi.nlm.nih.gov/pubmed/29144142

doi: 10.1021/acs.nanolett.7b04158 pmid: 29144142
[111]
Sun Y K, Lee M J, Yoon C S, Hassoun J, Amine K, Scrosati B . Adv. Mater, 2012,24:1192. https://www.ncbi.nlm.nih.gov/pubmed/22362564

doi: 10.1002/adma.201104106 pmid: 22362564
[112]
Lu C, Wu H, Zhang Y, Liu H, Chen B J, Wu N T, Wang S . J. Power Sources, 2014,267:682. https://linkinghub.elsevier.com/retrieve/pii/S0378775314008155

doi: 10.1016/j.jpowsour.2014.05.122
[113]
Cho J, Kim Y W, Kim B, Lee J G, Park B . Angew. Chem. Int. Ed., 2003,42:1618. https://www.ncbi.nlm.nih.gov/pubmed/12698458

doi: 10.1002/anie.200250452 pmid: 12698458
[114]
Park M S, Lee J W, Choi W, Im D, Doo S G, Park K S . J. Mater. Chem., 2010,20:7208. http://xlink.rsc.org/?DOI=c0jm00617c

doi: 10.1039/c0jm00617c
[115]
Wang Q, Liu J, Murugan A V, Manthiram A . J. Mater. Chem., 2009,19:4965. http://xlink.rsc.org/?DOI=b823506f

doi: 10.1039/b823506f
[116]
Qiao Q Q, Zhang H Z, Li G R, Ye S H, Wang C W, Gao X P . J. Mater. Chem. A, 2013,1:5262. http://xlink.rsc.org/?DOI=c3ta00028a

doi: 10.1039/c3ta00028a
[117]
Xiao B W, Wang B Q, Liu J, Kaliyappan K, Sun Q, Liu Y L, Dadheech G, Balogh M P, Yang L, Sham T K, Li R Y, Cai M, Sun X L . Nano Energy, 2017,34:120. https://linkinghub.elsevier.com/retrieve/pii/S2211285517300848

doi: 10.1016/j.nanoen.2017.02.015
[118]
Zhang X H, Xie X, Yu R Z, Zhou J R, Huang Y, Cao S, Wang Y, Tang K, Wu C, Wang X Y . ACS Appl. Energy Mater., 2019,2:3532. https://pubs.acs.org/doi/10.1021/acsaem.9b00287

doi: 10.1021/acsaem.9b00287
[119]
Liu Y J, Zhang Z Q, Fu Y B, Wang Q L, Pan J, Su M R, Battaglia V S . J. Alloys Compounds, 2016,685:523. https://linkinghub.elsevier.com/retrieve/pii/S0925838816316899

doi: 10.1016/j.jallcom.2016.05.329
[120]
Myung S T, Izumi K, Komaba S, Sun S K, Yashiro H, Kumagai N . Chem. Mater, 2005,17:3695. https://pubs.acs.org/doi/10.1021/cm050566s

doi: 10.1021/cm050566s
[121]
Ma J, Li B, An L, Wei H, Wang H X, Yu P G, Xia D G . J. Power Sources, 2015,277:393. https://linkinghub.elsevier.com/retrieve/pii/S037877531402000X

doi: 10.1016/j.jpowsour.2014.11.133
[122]
Wu Y Q, Ming J, Zhuo L H, Yu Y C, Zhao F Y . Electrochim. Acta, 2013,113:54. https://linkinghub.elsevier.com/retrieve/pii/S0013468613018045

doi: 10.1016/j.electacta.2013.09.042
[123]
Chen Z H, Qin Y, Amine K, Sun Y K . J. Mater. Chem., 2010,20:7606. http://xlink.rsc.org/?DOI=c0jm00154f

doi: 10.1039/c0jm00154f
[124]
Bettge M, Li Y, Sankaran B, Rago N D, Spila T, Haasch R T, Petrov I, Abraham D P . J. Power Sources, 2013,233:346. https://linkinghub.elsevier.com/retrieve/pii/S0378775313001316

doi: 10.1016/j.jpowsour.2013.01.082
[125]
Wang C C, Ling J W, Yu Y H, Lai K H, Chiu K F, Kei C C . ACS Sustainable Chem. Eng., 2018,6:16941. https://pubs.acs.org/doi/10.1021/acssuschemeng.8b04285

doi: 10.1021/acssuschemeng.8b04285
[126]
Yu H, Gao Y, Liang X H . J. Electrochem. Soc., 2019,166:A2021.
[127]
Zhang W X, Liu Y T, Wu J L, Shao H X, Yang Y F . J. Electrochem. Soc., 2019,166:A863.
[128]
Lu J, Zhan C, Wu T P, Wen J G, Lei Y, Kropf A J, Wu H M, Miller D J, Elam J W, Sun Y K, Qiu X P, Amine K . Nat. Commun, 2014,5:5693. https://www.ncbi.nlm.nih.gov/pubmed/25514346

doi: 10.1038/ncomms6693 pmid: 25514346
[129]
Yu R B, Lin Y B, Huang Z G . Electrochem. Acta, 2015,173:515.
[130]
Kim H S, Kim Y, Kim S I, Martin S W . J. Power Sources, 2006,161:623.
[131]
Zhao S Q, Sun B, Yan K, Zhang J Q, Wang C Y, Wang G X . ACS Appl. Mater. Interfaces, 2018,10:33260. https://www.ncbi.nlm.nih.gov/pubmed/30188678

doi: 10.1021/acsami.8b11471 pmid: 30188678
[132]
Zhang X P, Sun S W, Wu Q, Wan N, Pan D, Bai Y . J. Power Sources, 2015,282:378.
[133]
Noh S, Kim J, Eom M, Shin D . Ceram. Int, 2013,39:8453.
[134]
Kang S H, Thackeray M M . Electrochem. Commun., 2009,11:748.
[135]
Liu B, Zhang Q, He S C, Satob Y C, Zheng J W, Li D C . Electrochim. Acta, 2011,56:6748.
[136]
Liu H, Chen C, Du C Y, He X S, Yin G P, Song B, Zuo P J, Cheng X Q, Ma Y L, Gao Y Z . J. Mater. Chem. A, 2015,3:2634.
[137]
Martha S K, Nanda J, Kim Y, Unocic R R, Pannala S, Dudney N J . J. Mater. Chem. A, 2013,1:5587.
[138]
Liu Y J, Fan X J, Huang X Z L, Liu D M, Dou A C, Su M R, Chu D W . J. Power Sources, 2018,403:27. https://linkinghub.elsevier.com/retrieve/pii/S0378775318310619

doi: 10.1016/j.jpowsour.2018.09.082
[139]
Fu Q, Du F, Bian X, Wang Y, Yan X, Zhang Y, Zhu K, Chen G, Wang C, Wei Y . J. Mater. Chem. A, 2014,2:7555. http://xlink.rsc.org/?DOI=c4ta00189c

doi: 10.1039/c4ta00189c
[140]
Cong L N, Gao X G, Ma S C, Guo X, Zeng Y P, Tai L H, Wang R S, Xie H M, Sun L Q . Electrochim. Acta, 2014,115:399. https://linkinghub.elsevier.com/retrieve/pii/S0013468613020872

doi: 10.1016/j.electacta.2013.10.117
[141]
Zhou L, Wu Y N, Huang J, Fang X, Wang T, Liu W M, Wang Y, Jin Y . J. Alloys Compounds, 2017,724:991. https://linkinghub.elsevier.com/retrieve/pii/S0925838817319540

doi: 10.1016/j.jallcom.2017.05.328
[142]
Wang D D, Xu T H, Li Y P, Pan D, Lu X, Hu Y S, Dai S, Bai Y . ACS Appl. Mater. Interfaces, 2018,10:41802. https://www.ncbi.nlm.nih.gov/pubmed/30403129

doi: 10.1021/acsami.8b16319 pmid: 30403129
[143]
Wang J H, Wang Y, Guo Y Z, Ren Z Y, Liu C W . J. Mater. Chem. A, 2013,1:4879. http://xlink.rsc.org/?DOI=c3ta00064h

doi: 10.1039/c3ta00064h
[144]
Liu Y J, Wang Q L, Lu Y F, Yang B L, Su M R, Gao Y Y, Dou A C, Pan J . J. Alloys Compounds, 2015,638:1. https://linkinghub.elsevier.com/retrieve/pii/S0925838815004855

doi: 10.1016/j.jallcom.2015.02.059
[145]
Song B, Liu H, Liu Z, Xiao P, Lai M O . LuL. Sci. Rep., 2013,3:3094. https://www.ncbi.nlm.nih.gov/pubmed/24172795

doi: 10.1038/srep03094 pmid: 24172795
[146]
Ban C M, Li Z, Wu Z C, Kirkham M J, Chen L, Jung Y S, Payzant E A, Yan Y F, Whittingham M S, Dillon A C . Adv. Energy Mater., 2011,1:58. 813c1640-7a3f-49c3-afa7-788df02783b3http://dx.doi.org/10.1002/aenm.201000001

doi: 10.1002/aenm.201000001
[147]
Fu L J, Yang L C, Shi Y, Wang B, Wu Y P . Micropor. Mesopor. Mater., 2009,117:515. https://linkinghub.elsevier.com/retrieve/pii/S1387181108003387

doi: 10.1016/j.micromeso.2008.07.008
[148]
Li X, Xu Y . Electrochem. Commun, 2007,9:2023. https://linkinghub.elsevier.com/retrieve/pii/S1388248107002123

doi: 10.1016/j.elecom.2007.05.034
[149]
Song B H, Lai M O, Liu Z W, Liu H W, Lu L . J. Mater. Chem. A, 2013,1:9954. http://xlink.rsc.org/?DOI=c3ta11580a

doi: 10.1039/c3ta11580a
[150]
Geim A K, Novoselov K S . Nat. Mater., 2007,6:183. 074d2caa-bb52-4146-b035-893ec5af5263https://www.ncbi.nlm.nih.gov/pubmed/17330084

doi: 10.1038/nmat1849 pmid: 17330084
[151]
Stoller M D, Park S, Zhu Y, An J, Ruoff R S . Nano Lett., 2008,8:3498. https://www.ncbi.nlm.nih.gov/pubmed/18788793

doi: 10.1021/nl802558y pmid: 18788793
[152]
Yoo E, Kim J, Hosono E, Zhou H S, Kudo T, Honma I . Nano Lett, 2008,8:2277. https://www.ncbi.nlm.nih.gov/pubmed/18651781

doi: 10.1021/nl800957b pmid: 18651781
[153]
Zheng F H, Deng Q, Zhong W T, Ou X, Pan Q C, Liu Y Z, Xiong X H, Yang C H, Chen Y, Liu M L . ACS Sustainable Chem. Eng., 2018,6:16399.
[154]
Zhang J, Lu Q W, Fang J H, Wang J L, Yang J, NuLi Y N . ACS Appl. Mater. Interfaces, 2014,6:17965. https://www.ncbi.nlm.nih.gov/pubmed/25229991

doi: 10.1021/am504796n pmid: 25229991
[155]
Wu C R, Fang X P, Guo X W, Mao Y, Ma J, Zhao C C, Wang Z X, Chen L Q . J. Power Sources, 2013,231:44.
[156]
Xue Q R, Li J L, Xu G F, Zhou H W, Wang X D, Kang F Y . J. Mater. Chem. A, 2014,2:18613. http://xlink.rsc.org/?DOI=C4TA04024D

doi: 10.1039/C4TA04024D
[157]
Kong J Z, Xu L P, Wang C L, Jiang Y X, Cao Y Q, Zhou F . J. Alloys Compounds, 2017,719:410.
[158]
Gao J, Manthiram A . J. Power Sources, 2009,191:644.
[159]
Martha S K, Nanda J, Veith G M, Dudney N J . J. Power Sources, 2012,199:220.
[160]
Martha S K, Nanda J, Veith G M, Dudney N J . J. Power Sources, 2012,216:179. https://linkinghub.elsevier.com/retrieve/pii/S0378775312009081

doi: 10.1016/j.jpowsour.2012.05.049
[161]
Yabuuchi N, Yoshii K, Myung S T, Nakai I, Komaba S . J. Am. Chem. Soc., 2011,133:4404. https://www.ncbi.nlm.nih.gov/pubmed/21375288

doi: 10.1021/ja108588y pmid: 21375288
[162]
Wang F X, Xiao S Y, Li M X, Wang X W, Zhu Y S, Wu Y P, Shirakawa A, Peng J . J. Power Sources, 2015,287:416. https://linkinghub.elsevier.com/retrieve/pii/S0378775315006734

doi: 10.1016/j.jpowsour.2015.04.034
[163]
Liu X Y, Huang T, Yu A S . Electrochem. Acta, 2015,163:82. https://linkinghub.elsevier.com/retrieve/pii/S0013468615004521

doi: 10.1016/j.electacta.2015.02.155
[164]
Kim I T, Knight J C, Celioa H, Manthiram A . J. Mater. Chem. A, 2014,2:8696. http://xlink.rsc.org/?DOI=c4ta00898g

doi: 10.1039/c4ta00898g
[165]
Liao J Y, Manthiram A . J. Power Sources, 2015,282:429. https://linkinghub.elsevier.com/retrieve/pii/S0378775315003122

doi: 10.1016/j.jpowsour.2015.02.078
[166]
Kraytsberg A, Ein-Eli A . Adv. Energy Mater., 2012,2:922. d9a72e6a-a0b6-439d-9a45-c2bf180a89b0http://dx.doi.org/10.1002/aenm.201200068

doi: 10.1002/aenm.201200068
[167]
Wu F, Li N, Su Y, Shou H, Bao L, Yang W, Zhang L, An R, Chen S . Adv. Mater, 2013,25:3722. https://www.ncbi.nlm.nih.gov/pubmed/23740661

doi: 10.1002/adma.201300598 pmid: 23740661
[168]
Wang D, Belharouak I, Zhou G, Amine K . Adv. Funct. Mater., 2013,23:1070. http://doi.wiley.com/10.1002/adfm.v23.8

doi: 10.1002/adfm.v23.8
[169]
Luo D, Li G, Fu C, Zheng J, Fan J, Li Q, Li L . Adv. Energy Mater., 2014,4:1400062. http://doi.wiley.com/10.1002/aenm.201400062

doi: 10.1002/aenm.201400062
[170]
Yu Dedis Y W, Yanagida K, Nakamura H . J. Electrochem. Soc., 2010,157:A1177. https://iopscience.iop.org/article/10.1149/1.3479382

doi: 10.1149/1.3479382
[171]
Xia Q B, Zhao X F, Xu M Q, Ding Z P, Liu J T, Chen L B, Ivey D G, Wei W F . J. Mater. Chem. A, 2015,3:3995. http://xlink.rsc.org/?DOI=C4TA05848H

doi: 10.1039/C4TA05848H
[172]
Liu Y J, Fan X J, Zhang Z Q, Wu H H, Liu D M, Dou A C, Su M R, Zhang Q B, Chu D W . ACS Sustainable Chem. Eng., 2019,7:2225. https://pubs.acs.org/doi/10.1021/acssuschemeng.8b04905

doi: 10.1021/acssuschemeng.8b04905
[173]
Liu S Y, Wang Z L, Huang Y K, Ni Z J, Bai J R, Kang S F, Wang Y G, Li X . J. Alloys Compounds, 2018,731:636. https://linkinghub.elsevier.com/retrieve/pii/S0925838817334035

doi: 10.1016/j.jallcom.2017.09.341
[174]
Zhang S M, Gu H T, Pan H G, Yang S H, Du W B, Li X, Gao M X, Liu Y F, Zhu M, Ouyang L Z, Jian D C, Pan F.Adv . Energy Mater, 2017,7:1601066.
[175]
Ding X, Li Y X, Wang S, Dong J M, Yasmin A, Hu Q, Wen Z Y, Chen C H . Nano Energy, 2019,61:411. https://linkinghub.elsevier.com/retrieve/pii/S2211285519303799

doi: 10.1016/j.nanoen.2019.04.078
[176]
Zhang Q G, Peng T Y, Zhan D, Hu X H . J. Power Sources, 2014,250:40. https://linkinghub.elsevier.com/retrieve/pii/S0378775313018077

doi: 10.1016/j.jpowsour.2013.10.139
[177]
Yang M C, Hu B, Geng F S, Li C, Lou X B, Hu B W . Electrochem. Acta, 2018,291:278. https://linkinghub.elsevier.com/retrieve/pii/S0013468618321303

doi: 10.1016/j.electacta.2018.09.134
[178]
Kim S, Cho W, Zhang X, Oshima Y, Choi J W . Nat. Commun. 2016,7:13598. https://www.ncbi.nlm.nih.gov/pubmed/27886178

doi: 10.1038/ncomms13598 pmid: 27886178
[179]
Li X, Zhang K J, Mitlin D, Yang Z Z, Wang M S, Tang Y, Jiang F, Du Y G, Zheng J M . Chem. Mater., 2018,30:2566. https://pubs.acs.org/doi/10.1021/acs.chemmater.7b04861

doi: 10.1021/acs.chemmater.7b04861
[180]
Huang J J, Liu H D, Hu T, Meng Y S, Luo J . J. Power Sources, 2018,375:21. https://linkinghub.elsevier.com/retrieve/pii/S037877531731515X

doi: 10.1016/j.jpowsour.2017.11.048
[181]
Liu S, Liu Z P, Shen X, Li W H, Gao Y R, Banis M N, Li M S, Chen K, Zhu L, Yu R C, Wang Z X, Sun X L, Lu G, Kong Q Y, Bai X D, Chen L Q . Adv. Energy Mater., 2018,8:1802105. http://doi.wiley.com/10.1002/aenm.v8.31

doi: 10.1002/aenm.v8.31
[182]
James A C W P, Goodenough J B . J. Solid State Chem., 1988,76:87. https://linkinghub.elsevier.com/retrieve/pii/0022459688901946

doi: 10.1016/0022-4596(88)90194-6
[183]
Park M S, Lim Y G, Kim J H, Kim K J, Cho J, Kim J S . Adv. Energy Mater., 2011,1:1002. 56f52d82-0a9d-4193-919f-fc8f9de03125http://dx.doi.org/10.1002/aenm.201100270

doi: 10.1002/aenm.201100270
[184]
Ma J, Gao Y R, Wang Z X, Chen L Q . J. Power Sources, 2014,258:314 https://linkinghub.elsevier.com/retrieve/pii/S0378775314002493

doi: 10.1016/j.jpowsour.2014.02.056
[185]
Zhou Y N, Ma J, Hu E Y, Yu X Q, Nam K W, Gu L, Chen L Q, Wang Z X, Yang X Q . Nat. Commun., 2014,5:5381. https://www.ncbi.nlm.nih.gov/pubmed/25451540

doi: 10.1038/ncomms6381 pmid: 25451540
[186]
Liu S, Feng X, Wang X L, Shen X, Hu E Y, Xiao R J, Yu R C, Yang H T, Song N N, Wang Z X, Yang X Q, Chen L Q . Adv. Energy Mater., 2018,8:1703092. http://doi.wiley.com/10.1002/aenm.201703092

doi: 10.1002/aenm.201703092
[187]
Liu S, Liu Z P, Shen X, Wang X L, Liao S C, Yu R C, Wang Z X, Hu Z W, Chen C T, Yu X Q, Yang X Q, Chen L Q . Adv. Energy Mater., 2019,9:1901530. https://onlinelibrary.wiley.com/toc/16146840/9/32

doi: 10.1002/aenm.v9.32
[188]
Yabuuchi N, Takeuchi M, Nakayama M, Shiiba H, Ogawa M, Nakayama K, Ohta T, Endo D, Ozaki T, Inamasu T, Sato K, Komaba S . Proc. Natl. Acad. Sci. U. S. A., 2015,112:7650. https://www.ncbi.nlm.nih.gov/pubmed/26056288

doi: 10.1073/pnas.1504901112 pmid: 26056288
[189]
Yabuuchi N, Nakayama M, Takeuchi M, Komaba S, Hashimoto Y, Mukai T, Shiiba H, Sato K, Kobayashi Y, Nakao A, Yonemura M, Yamanaka K, Mitsuhara K, Ohta T . Nat. Commun, 2016,7:13814. https://www.ncbi.nlm.nih.gov/pubmed/28008955

doi: 10.1038/ncomms13814 pmid: 28008955
[190]
Li B, Jiang N, Huang W, Yan H, Zuo Y, Xia D . Adv. Funct. Mater., 2018,28:1704864.
[191]
Shigemura H, Tabuchi M, Sakaebe H, Kobayashi H, Kageyama H . J. Electrochem. Soc., 2003,150:A638. https://iopscience.iop.org/article/10.1149/1.1565135

doi: 10.1149/1.1565135
[192]
Urban A, Abdellahi A, Dacek S, Artrith N, Ceder G . Phys. Rev. Lett., 2017,119:176402. https://www.ncbi.nlm.nih.gov/pubmed/29219459

doi: 10.1103/PhysRevLett.119.176402 pmid: 29219459
[193]
Fell C R, Qian D, Carroll K J, Chi M, Jones J L, Meng Y S . Chem. Mater., 2013,25:1621. https://pubs.acs.org/doi/10.1021/cm4000119

doi: 10.1021/cm4000119
[194]
Li Y J, Wang X F, Gao Y R, Zhang Q H, Tan G Q, Kong Q Y, Bak S, Lu G, Yang X Q, Gu L, Lu J, Amine K, Wang Z X, Chen L Q . Adv. Energy Mater., 2019,9:1803087.
[195]
Maitra U, House R A, Somerville J, Tapia-Ruiz N, Lozano J G, Guerrini N, Hao R, Luo K, Jin L Y, Perez-Osorio M A, Massel F, Pickup D M, Ramos S, Lu X Y, McNally D E, Chadwick A V, Giustino F, Schmitt T, DudaL C, Roberts M R, Bruce P G . Nat. Chem., 2018,7:288.
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[3] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[4] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[5] Chaolumen Xue, Wanru Liu, Tuya Bai, Mingmei Han, Ren Sha, Chuanlang Zhan. Recent Progress on Solar Cell Performance Based on Structural Tailoring on DA'D Units of Nonfullerene Acceptors [J]. Progress in Chemistry, 2022, 34(2): 447-459.
[6] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[7] Shiying Yang, Junqin Liu, Qianfeng Li, Yang Li. Modification Mechanism of Zero-Valent Aluminum by Mechanical Ball Milling [J]. Progress in Chemistry, 2021, 33(10): 1741-1755.
[8] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[9] Hao Sun, Chengwei Song, Yuepeng Pang, Shiyou Zheng. Functional Design of Separator for Li-S Batteries [J]. Progress in Chemistry, 2020, 32(9): 1402-1411.
[10] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.
[11] Deying Mu, Zhu Liu, Shan Jin, Yuanlong Liu, Shuang Tian, Changsong Dai. The Recovery and Recycling of Cathode Materials and Electrolyte from Spent Lithium Ion Batteries in Full Process [J]. Progress in Chemistry, 2020, 32(7): 950-965.
[12] Zhan Wu, Xiaohan Li, Aowei Qian, Jiayu Yang, Wenkui Zhang, Jun Zhang. Electrochromic Energy-Storage Devices Based on Inorganic Materials [J]. Progress in Chemistry, 2020, 32(6): 792-802.
[13] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[14] Huiya Wang, Limin Zhao, Fang Zhang, Dannong He. High-Performance Lithium-Ion Secondary Battery Membranes [J]. Progress in Chemistry, 2019, 31(9): 1251-1262.
[15] Ping Liu, Jing Wang, Hongye Hao, Yunfan Xue, Junjie Huang, Jian Ji. Photochemical Surface Modification of Biomedical Materials [J]. Progress in Chemistry, 2019, 31(10): 1425-1439.