中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (9): 1402-1411 DOI: 10.7536/PC200107 Previous Articles   Next Articles

• Review •

Functional Design of Separator for Li-S Batteries

Hao Sun1, Chengwei Song1, Yuepeng Pang1, Shiyou Zheng1,**()   

  1. 1. School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received: Revised: Online: Published:
  • Contact: Shiyou Zheng
  • Supported by:
    the National Natural Science Foundation of China(51671135)
Richhtml ( 49 ) PDF ( 2052 ) Cited
Export

EndNote

Ris

BibTeX

With its excellent theoretical performance (1675 mAh·g-1 and 2600 Wh·kg-1 based on S), low cost and environmental friendliness, Li-S batteries have become one of the most promising candidates for next generation rechargeable energy storage devices. However, the severe shuttling of lithium polysulfides results in the decrease of capacity and short life. In order to promote its commercial application, it is the key point to suppress the shuttling effect. The commercial separator has a large pore size up to about 500 nm, and is ineffective in suppressing the migration of soluble lithium polysulfides. Hence, it is an effective strategy to introduce the functional modification layer to the separator. This article reviews the principles for surface modification of separator and the newly developed separator based on the principle. Moreover, the prospect of separator modification in improving Li-S batteries is prospected.

Contents

1 Introduction

2 Suppressing the diffusion of lithium polysulfides by physical process

3 Suppressing the diffusion of lithium polysulfides by chemical adsorption

4 Novel organic separators

5 Conclusion and outlook

Fig.1 (a)Schematic of the electrochemistry;(b)a typical 2-plateau charge/discharge voltage profile of lithium-sulfur batteries[11]
Fig.2 (a) Schematic of the polarization of BTO and the PS rejection tests for the bare PE separator, the PE-BTO separator, and the PE-poled BTO separator during the course of PS diffusion[33]; (b) Illustration of MOF@GO separator and its characterization, the rate performance and long cycle performance at the high rate of 1 C[36]
Fig.3 (a) Preparation procedure of MnO2 modified separator and the Li2S6 diffusion tests[49]; (b) MoS2/Celgard separator and the electrochemical parameters[51]; (c) Black-phosphorus modified separator and its characterization[56]; (d) N/S-doped carbon materials modified separator[59]
Fig.4 (a) Ion selective membrane containing S O 3 2 ? groups and its LPS transportation test[73]; (b) Pictures of PVA-based separator and its LPS diffusing test[75]
[1]
杨凯( Yang K ), 章胜男(Zhang S N), 韩东梅(Han D M), 肖敏(Xiao M), 王拴紧(Wang S J), 孟跃中(Meng Y Z). 化学进展(Prog. Chem.), 2018, 30(12): 1942.
[2]
Li G , Wang X L , Seo M H , Matthew L , Lu M , Yuan Y F , Wu T P , Yu A P , Wang S , Lu J , Chen Z W. Nature Commun., 2018, 9(1): 705.
[3]
Xiao L , Connor H , Quan P , Arnd G , Thomas W , Linda F N. Nature Commun., 2015, 6(1): 5682.
[4]
Chen M F , Jiang S X , Huang C , Wang X Y , Cai S Y , Xiang K X , Zhang Y P , Xue J X. ChemSusChem, 2017, 10(8): 803.
[5]
王惠亚( Wang H Y ), 赵立敏(Zhao L M), 张芳(Zhang F),何丹农(He D N). 化学进展(Prog. Chem.), 2019,31(9):125.
[6]
Bao W Z , Liu L , Wang C Y , Choi S H , Wang D , Wang G X. Adv. Energy Mater., 2018. 8(13): 1702485.
[7]
黄佳琦( Huang J Q ), 孙滢智(Sun Y Z), 王云飞(Wang Y F), 张强(Zhang Q). 化学学报(Acta Chimica Sinica), 2017, 75:173
[8]
He X , Shuai Y , Na L , Chen K H , Zhang Y Q , Zhang Z P , Gan F Y. Mater. Lett., 2018, 215: 91.
[9]
Peng H J , Wang D W , Huang J Q , Cheng X B , Yuan Z , Wei F , Zhang Q. Adv. Sci., 2016, 3(1): 1500268.
[10]
Xu G Y , Yan Q B , Wang S T , Kushima A , Bai P , Liu K , Zhang X G , Tang Z L , Li J. Chem. Sci., 2017, 8(9): 6619.
[11]
Seh Z W , Sun Y , Zhang Q , Cui Y. Chem. Soc. Rev., 2016, 45: 5605.
[12]
Zhou W , Yu Y , Chen H , Di Salvo F J, Abruña H D. J. Am Chem Soc., 2013, 135(44): 16736.
[13]
Peng H J , Zhang Z W , Huang J Q , Zhang G , Xie J , Xu W T , Shi J L , Chen X , Cheng X B , Zhang Q. Adv. Mater., 2016, 28(43): 9551.
[14]
Zhu M , Li S , Liu J H , Li B. Appl. Surf. Sci., 2019, 473: 1002.
[15]
Ma S , Wang L , Wang Y , Zu P J , He M X , Zhang H , Ma L , Wu T P , Yin G P. Carbon, 2019, 143: 878.
[16]
Zhao H , Peng Z , Wang W J , Chen X K , Fang J H , Xu J Q. J. Power Sources, 2014, 245: 529.
[17]
Qiu Y , Li W , Zhao W , Li G Z , Hou Y , Liu M N , Zhou L S , Ye F M , Li H F , Wei Z H , Yang S H , Duan W H , Ye Y F , Guo J H , Zhang Y G. Nano Lett., 2014, 14(8): 4821.
[18]
Chiochan P , Phattharasupakun N , Wutthiprom J , Suksomboon M , Kaewruang S , Suktha P , Sawangphruk M. Electrochim. Acta, 2017, 237: 78.
[19]
Yuan G , Wang G , Wang H , Bai J T. J. Solid State Electr., 2015, 19(4): 1143.
[20]
Xiao L F , Cao Y L , Xiao J , Schwenzer B , Engelhard M H , Saraf L V , Nie Z M , Exarhos G J , Liu J. Adv. Mater., 2012, 24(9): 1176.
[21]
Bu Y K , Wu J , Zhao X T , Ding K , Liu Q , Huang Y Y , Lv J Q , Wang Y B. RSC Adv., 2016, 6(106): 104591.
[22]
Hu G J , Sun Z , Shi C , Fang R P , Chen J , Hou P X , Liu C , Cheng H M , Li F. Adv. Mater., 2017, 29(11): 1603835.
[23]
Zheng S Y , Yi F , Li Z P , Zhu Y J , Xu Y H , Luo C , Yang J H , Wang C S. Adv. Funct. Mater., 2014, 24(26): 4156.
[24]
Wang X W , Gao T , Fan X L , Han F D , Wu Y Q , Zhang Z A , Li J , Wang C S. Adv. Funct. Mater., 2016, 26(39): 7164.
[25]
Bian Z H , Yuan T , Xu Y , Pang Y P , Yao H F , Li J , Yang J H , Zheng S Y. Carbon, 2019, 150: 216.
[26]
Chen T , Zhang Z W , Cheng B R , Chen R P , Hu Y , Ma L B , Zhu G Y , Liu J , Jin Z. J. Am. Chem. Soc., 2017, 139(36): 12710.
[27]
Zhou G M , Tian H Z , Jin Y , Tao X Y , Liu B F , Zhang R F , She W Z , Zhuo D , Liu Y Y , Sun J , Zhao J , Zu C X , Wu D S , Zhang Q F , Cui Y. PNAS, 2017, 114(5): 840.
[28]
Ghazi Z A , Zhu L , Wang H , Naeem A , Khattak A M , Liang B , Khan N A , Wei Z X , Li L S , Tang Z Y. Adv. Energy Mater., 2016, 6(24): 1601250.
[29]
Meng Y , Lin G , Ding H , Liao H P , Wang C. J. Mater. Chem. A, 2018, 6(35): 17186.
[30]
Huang J Q , Zhang Q , Wei F. Energy Storage Mater. 2015, 1:127.
[31]
Gupta A , Sivaram S. Energy Tech. 2019, 7: 1800819.
[32]
Jeong Y C , Kim J H , Nam S , Park C R , Yang S J. Adv. Funct. Mater,2018, 28: 1707411.
[33]
Yim T , Han S H , Park N H , Park M S , Lee J H , Shin J , Choi J W , Jung Y J , Yong N J , Yu J S , Kim K J. Adv. Funct. Mater., 2016. 26(43): 7817.
[34]
Raja M , Suriyakumar S , Angulakshmi N , Stephan A M. Inorg. Chem. Front., 2017, 4(6): 1013.
[35]
Song C W , Peng C X , Bian Z H , Dong F , Xu H Y , Yang J H , Zheng S Y. Energy & Environ. Mater., 2019, 2: 216.
[36]
Bai S Y , Liu X Z , Zhu K , Wu S C , Zhou H S. Nature Energy, 2016, 1(7): 16094.
[37]
Chen H H , Xiao Y W , Chen C , Yang J Y , Gao C , Chen Y S , Wu J S , Shen Y , Zhang W N , Li S , Huo F W , Zheng B. ACS Appl. Mater. Interfaces, 2019, 11: 11459.
[38]
Tian M , Pei F , Yao M S , Fu Z H , Lin L L , Wu G D , Xu G , Kitagawa H , Fang X L. Energy Storage Mater., 2019, 21:14.
[39]
He Y B , Chang Z , Wu S C , Qiao Y , Bai S Y , Jiang K Z , He P , Zhou H S. Adv. Energy Mater., 2018, 1802130.
[40]
Jiang G Y , Zheng N , Chen X , Ding G Y , Li Y H , Sun F G , Li Y S. Chem. Eng. J., 2019, 373: 1309.
[41]
Huang J Q , Zhang Q , Peng, H J , Liu X Y , Qian W Z , Wei F. Energy Environ. Sci., 2014, 7: 347.
[42]
Xu R , Sun Y Z , Wang Y F , Huang J Q , Zhang Q. Chin. Chem. Lett., 2017, 28: 2235.
[43]
Kong L , Jin Q , Zhang X T , Li B Q , Chen J X , Zhu W C , Huang J Q , Zhang Q. J. Enery Chem., 2019, 39: 17.
[44]
Zhou G M , Li L , W D W, Shan X Y, Pei S F, Li F, Cheng H M. Adv. Mater., 2015, 27: 641.
[45]
Rana M , Li M , He Q , Luo B , Wang L Z , Ian G , Ruth K. J. Energy Chem., 2020, 44: 51.
[46]
Kim M S , Ma L , Choudhury S , Archer L A. Adv. Mater. Interfaces, 2016, 3(22): 1600450.
[47]
Liu F , Xiao Q F , Wu H B , Sun F , Liu X Y , Li F , Le Z Y , Shen L , Wang G , Cai M , Lu Y F. ACS Nano, 2017, 11(3): 2697.
[48]
Yang L Q , Li G C , Jiang X , Zhang T R , Lin H B , Lee J Y. J. Mater. Chem. A, 2017, 5(24): 12506.
[49]
Song X , Chen G P , Wang S Q , Huang Y P , Jiang Z Y , Ding L X , Wang H H. ACS Appl.Mater. Interfaces, 2018, 10(31): 26274.
[50]
Kaisar N , Abbas S A , Ding J , Chen H , Pao C W , Boopathi K M , Mohapatra A , Chen Y T , Wu S H , Fang J , Jou S , Chu C W. Nanoscale, 2019, 11(6): 2892.
[51]
Ghazi Z A , He X , Khattak A M , Khan N A , Liang B , Iqbal A , Wang J X , Sin H , Li L S , Tang Z Y. Adv. Mater., 2017, 29(21): 1606817.
[52]
Pan Y , Li H Q , Chen Y , Zhang J , Tang Q , Qi W Y. Mater. Res. Express, 2019, 6: 045506.
[53]
Zeng P , Huang L W , Zhang X L , Han Y M , Chen Y G. Appl. Surf. Sci., 2018, 427: A242.
[54]
Pan H Y , Tan Z , Zhou H H , Jiang L L , Huang Z Y , Feng Q X , Zhou Q , Ma S , Kuang Y F. J. Energy Chem., 2019, 39: 101.
[55]
Chen X X , Ding X Y , Wang C S , Feng Z Y , Xu L Q , Gao X , Zhai Y J , Wang D B. Nanoscale, 2018, 10: 13694.
[56]
Sun J , Sun Y M , Pasta M , Zhou G M , Li Y Z , Liu W , Xiong F , Cui Y. Adv. Mater., 2016, 28(44): 9797.
[57]
Yin L X , Xu G Y , Nie P , Dou H , Zhang X G. Chem. Eng. J., 2018, 352: 695.
[58]
Li N , Xie Y , Peng S T , Xiong X , Han K , J. Energy Chem., 2020, 42: 116.
[59]
Yuan X Q , Wu L S , He X L , Zeinu K , Huang L , Zhu X L , Hou H J , Liu B C , Hu J P , Yang J K. Chem. Eng. J., 2017, 320: 178.
[60]
Kong L , Peng H J , Huang J Q , Zhu W C , Zhang G , Zhang Z W , Zhai P Y , Sun P P , Xie J , Zhang Q. Energy Storage Mater., 2017, 8: 153.
[61]
Ahn J H , Shin H J , Abbas S , Lee K Y , Ha H Y. J. Mater. Chem. A, 2019, 7(8): 3772.
[62]
Huang J Q , Zhuang T Z , Zhang Q , Peng H J , Chen C M , Wei F. ACS Nano, 2015, 9: 3002.
[63]
Balach J , Jaumann T , Muhlenhoff S , Eckert J , Giebeler L , Chem. Commun., 2016, 52: 8134.
[64]
Qian X , Jin L , Zhao D , Yang X , Wang S , Shen X , Rao D , Yao S , Zhou Y , Xi X. Electrochim. Acta, 2016, 192: 346.
[65]
Tang H , Yao S , Mi J , Wu X , Hou J , Shen X. Mater. Lett., 2017, 186: 127.
[66]
Imtiaz S , Zafar Z A , Razaq R , Sun D , Xin Y , Li Q , Zhang Z L , Zheng L , Huang Y H , Anderson J A. Adv. Mater. Interfaces., 2018, 5: 1800243.
[67]
Lv X X , Lei T Y , Wang B J , Chen W , Jiao Y , Hu Y , Yan Y C , Huang J W , Chu J W , Yan C Y , Wu C Y , Wang J W , Niu X B , Xiong J. Adv. Energy Mater., 2019, 9: 1901800.
[68]
Zhang L L , Chen X , Wan F , Niu Z Q , Wang Y J , Zhang Q , Chen J. ACS Nano, 2018, 12: 9578.
[69]
Zhang K , Chen Z X , Ning R Q , Xi S B , Tang W , Du Y H , Liu C B , Ren Z Y , Chi X , Bai M H , Shen C , Li X , Wang X W , Zhao X X , Leng K , Pennycook S J , Li H P , Xu H , Loh K P , Xie K Y. Mater. Interfaces, 2019, 11: 25147
[70]
Xie J , Li B Q , Peng H J , Huang J Q , Xu W T , Chen X , Zhang Q. Angew. Chem. Int. Ed., 2017, 56: 16223.
[71]
Xie J , Li B Q , Peng H J , Song Y W , Zhao M , Chen X , Zhang Q , Huang J Q. Adv. Mater., 2019, 31: 1903813.
[72]
Cheng Z B , Pan H , Chen J Q , Meng X P , Wang R H. S. Adv. Energy Chem., 2019, 9: 1901609.
[73]
Ma L , Nath P , Tu Z Y , Tikekar M , Archer L A. Chem. Mater., 2016, 28(14): 5147.
[74]
Deng N P , Wang Y , Yan J , Ju J G , Li Z J , Fan L L , Zhao H J , Kang W M , Cheng B W. J. Power Sources, 2017, 362: 243.
[75]
Jiang K , Gao S , Wang R X , Jiang M , Han J , Gu T T , Liu M Y , Cheng S J , Wang K L. ACS Appl. Mater. Interfaces, 2018, 10(21): 18310.
[76]
Jiang C , Tang M , Zhu S L , Zhang J D , Wu Y C , Chen Y , Xia C , Wang C L , Hu W P. Angew. Chem. Int. Ed., 2018. 57(49): 16072.
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[3] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[4] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[5] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[6] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[7] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[8] Xinye Liu, Zhichao Liang, Shanxing Wang, Yuanfu Deng, Guohua Chen. Carbon-Based Materials for Modification of Polyolefin Separators to Improve the Performance of Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1665-1678.
[9] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[10] Linli Guo, Xin Zhang, Min Xiao, Shuanjin Wang, Dongmei Han, Yuezhong Meng. Two-Dimensional Materials Modified Separator Strategies of Suppressing the Shuttle Effect in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(7): 1212-1220.
[11] Xiangye Li, Tianjiao Bai, Xin Weng, Bing Zhang, Zhenzhen Wang, Tieshi He. Application of Electrospun Fibers in Supercapacitors [J]. Progress in Chemistry, 2021, 33(7): 1159-1174.
[12] Yusen Ding, Pu Zhang, Hong Li, Wenhuan Zhu, Hao Wei. Research Status and Prospect of Li-Se Batteries [J]. Progress in Chemistry, 2021, 33(4): 610-632.
[13] Shiying Yang, Junqin Liu, Qianfeng Li, Yang Li. Modification Mechanism of Zero-Valent Aluminum by Mechanical Ball Milling [J]. Progress in Chemistry, 2021, 33(10): 1741-1755.
[14] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[15] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.