中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Heavier Homologues of Transition Metal Carbynes: Syntheses, Structures and Reactivity

Wu Xian   

  1. Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
  • Received: Revised: Online: Published:
PDF ( 934 ) Cited
Export

EndNote

Ris

BibTeX

Transition metal silylynes, germylynes, stannylynes and plumbylynes containing metal-element triple bonds are heavier homologues of transition metal carbynes. Since the discovery of the first transition metal germylyne complex in 1996, the whole series have been synthesized including the successful preparation of a molybdenum silylyne complex in 2010, which could be considered as a milestone in the transition metal chemistry of main group elements. These novel complexes have extended our knowledge of the bonding types between transition metals and main group elements and reveal the rich chemistry of metal-element triple bonds. This review covers the syntheses, structures and reactivity of transition metal germylynes, stannylynes, plumbylynes and silylynes which were reported from 1996 to present. Future developments in this area are discussed. Contents
1 Introduction
2 Syntheses and structures
2.1 Transition metal germylynes
2.2 Transition metal stannylynes
2.3 Transition metal plumbylynes
2.4 Transition metal silylynes
3 Reactivity
3.1 Substitution reactions
3.2 Addition reactions
3.3 Coupling reactions
4 Conclusions and outlook

CLC Number: 

[1] Fischer H, Hofmann H, Kreissl F R, Schrock R R, Schubert U, Weiss K. Carbyne Complexes. Weinheim-New York: VCH Publishers, 1988
[2] Nugent W A, Mayer J M. Metal-Ligand Multiple Bonds. New York: John Wiley & Sons, 1988
[3] Astruc D. Organometallic Chemistry and Catalysis. Berlin-Heidelberg: Springer-Verlag, 2007. 215
[4] Riedel E, Ed. Moderne Anorganische Chemie. 3. Aufl. Berlin-New York: Walter de Gruyter, 2007. 685-686
[5] Jutzi P. Angew. Chem. Int. Ed., 2000, 39: 3797-3800
[6] Balázs G, Gregoriades L J, Scheer M. Organometallics, 2007, 26: 3058-3075
[7] Gerdes C, Müller T. Angew. Chem. Int. Ed., 2010, 49: 4860-4862
[8] Pandey K K, Lein M, Frenking G. J. Am. Chem. Soc., 2003, 125: 1660-1668
[9] Pandey K K, Lledós A. Inorg. Chem., 2009, 48: 2748-2759
[10] Simons R S, Power P P. J. Am. Chem. Soc., 1996, 118: 11966-11967
[11] Simons R S, Pu L, Olmstead M M, Power P P. Organometallics, 1997, 16: 1920-1925
[12] Pu L, Twamley B, Haubrich S T, Olmstead M M, Mork B V, Simons R S, Power P P. J. Am. Chem. Soc., 2000, 122: 650-656
[13] Pu L, Olmstead M M, Power P P, Schiemenz B. Organometallics, 1998, 17: 5602-5606
[14] Filippou A C, Philippopoulos A I, Portius P, Neumann D U. Angew. Chem. Int. Ed., 2000, 39: 2778-2781
[15] Kohl F X, Jutzi P. J. Organomet. Chem., 1983, 243: 31-34
[16] Jutzi P, Kohl F, Hofmann P, Krüger C, Tsay Y H. Chem. Ber., 1980, 113: 757-769
[17] Winter J G, Portius P, Kociok-Köhn G, Steck R, Filippou A C. Organometallics, 1998, 17: 4176-4182
[18] Filippou A C, Portius P, Philippopoulos A I. Organometallics, 2002, 21: 653-661
[19] Filippou A C, Schnakenburg G, Philippopoulos A I, Weidemann N. Angew. Chem. Int. Ed., 2005, 44: 5979-5985
[20] Filippou A C, Weidemann N, Philippopoulos A I, Schnakenburg G. Angew. Chem. Int. Ed., 2006, 45: 5987-5991
[21] Filippou A C, Portius P, Philippopoulos A I, Rohde H. Angew. Chem. Int. Ed., 2003, 42: 445-447
[22] Filippou A C, Philippopoulos A I, Schnakenburg G. Organometallics, 2003, 22: 3339-3341
[23] Rohde H. Dissertation of University of Bonn, Germany, 2007
[24] Rohde H, Menzel M, Renz F, Filippou A C. Hyperfine Interact, 2008, 185: 129-132
[25] Filippou A C, Rohde H, Schnakenburg G. Angew. Chem. Int. Ed., 2004, 43: 2243-2247
[26] Pu L, Twamley B, Power P P. Organometallics, 2000, 19: 2874-2881
[27] Filippou A C, Weidemann N, Schnakenburg G. Rohde H, Philippopoulos A I. Angew. Chem. Int. Ed., 2004, 43: 6512-6516
[28] Filippou A C, Weidemann N, Schnakenburg G. Angew. Chem. Int. Ed., 2008, 47: 5799-5802
[29] Grumbine S D, Chadha R K, Tilley T D. J. Am. Chem. Soc., 1992, 114: 1518-1520
[30] Hostetler M J, Nuzzo R G, Girolami G S. J. Am. Chem. Soc., 1994, 116: 11608-11609
[31] Mork B V, Tilley T D. Angew. Chem. Int. Ed., 2003, 42: 357-360
[32] Wang X, Andrews L. J. Am. Chem. Soc., 2008, 130: 6766-6773
[33] Filippou A C, Chernov O, Stumpf K W, Schnakenburg G. Angew. Chem. Int. Ed., 2010, 49: 3290-3300
[34] Filippou A C, Chernov O, Blom B, Stumpf K W, Schnakenburg G. Chem. Eur. J., 2010, 16: 2866-2872
[35] Filippou A C, Philippopoulos A I, Portius P, Schnakenburg G. Organometallics, 2004, 23: 4503-4512
[36] Filippou A C, Chernov O, Schnakenburg G. Angew. Chem. Int. Ed., 2011, 50: 1122-1126
[37] Schrock R R, Hoveyda A H. Angew. Chem. Int. Ed., 2003, 42: 4592-4633
[38] Fürstner A, Davis P. Chem. Commun., 2005, 2307-2320
[39] Mortreux A, Coutelier O. J. Mol. Catal. A: Chem., 2006, 254: 96-104
[40] Zhang W, Moore J S. Adv. Synth. Catal., 2007, 349: 93-120
[41] Schrock R R, Czekelius C. Adv. Synth. Catal., 2007, 349: 55-77
[42] Tamm M, Wu X. Chemistry Today (Chimica Oggi), 2010, 28: 60-63
[43] Wu X, Tamm M. Beilstein J. Org. Chem., 2011, 7: 82-93
[1] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[2] Yaqi Wang, Qiang Wu, Junling Chen, Feng Liang. Diels-Alder Reaction Catalyst [J]. Progress in Chemistry, 2022, 34(2): 474-486.
[3] Xiaoqiong Feng, Yunlong Ma, Hong Ning, Shiying Zhang, Changsheng An, Jinfeng Li. Transition Metal Chalcogenide Cathode Materials Applied in Aluminum-Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 319-327.
[4] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[5] Wendi Guo, Ye Liu. Carbonylation of Alkynes with Different Nucleophiles Catalyzed By Transition Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 512-523.
[6] Mengting Xu, Yanqing Wang, Ya Mao, Jingjuan Li, Zhidong Jiang, Xianxia Yuan. Cathode Catalysts for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2021, 33(10): 1679-1692.
[7] Zhonggao Zhou, Yangyang Yuan, Guohai Xu, Zhengwang Chen, Mei Li. The Synthesis and Catalytic Activity of Sugar-Based NHCs and Their Transition Metal Complexes [J]. Progress in Chemistry, 2019, 31(2/3): 351-367.
[8] Lei Chen, Wen Zhao, Gangji Yi, Jianjun Zhou, Aihua Yua. Single-Ion Magnets Based on 3d Transition Metal [J]. Progress in Chemistry, 2019, 31(2/3): 337-350.
[9] Xiaowang Chi, Qunyan Wu, Jipan Yu, Qin Zhang, Zhifang Chai, Weiqun Shi. Actinide-Heterobimetal Compounds [J]. Progress in Chemistry, 2019, 31(10): 1341-1349.
[10] Xianwei Lv, Zhongpan Hu, Hui Zhao, Yuping Liu, Zhongyong Yuan. Self-Supporting Transition Metal Phosphides as Electrocatalysts for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2018, 30(7): 947-957.
[11] Yu Zhang, Jinghe Cen, Wenfang Xiong, Chaorong Qi, Huanfeng Jiang*. CO2: C1 Synthon in Carboxylation Reactions [J]. Progress in Chemistry, 2018, 30(5): 547-563.
[12] Xiong Xingquan, Fan Guanming, Zhu Rongjun, Shi Lin, Xiao Shangyun, Bi Cheng. Highly Efficient Synthesis of Amides [J]. Progress in Chemistry, 2016, 28(4): 497-506.
[13] Chen Feng, Bai Ying, Li Jiayun*, Xiao Wenjun, Peng Jiajian*. The Application on Nitrogen-Coordinating Transition Metal Complexes on Hydrosilylation [J]. Progress in Chemistry, 2015, 27(7): 806-817.
[14] Chen Ruwen, Tu Xinman, Chen Dezhi. Transition Metal Nitrides for Lithium-Ion Batteries [J]. Progress in Chemistry, 2015, 27(4): 416-423.
[15] Wang Xue, Tan Chen, Li Yongqi, Zhang Heng, Liu Ye. Synthesis of Ionic Phosphines and Corresponding Ionic Transition Metal Complexes and Their Applications in Homogeneous Catalysis [J]. Progress in Chemistry, 2015, 27(1): 27-37.