中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (1): 27-37 DOI: 10.7536/PC140813 Previous Articles   Next Articles

• Review •

Synthesis of Ionic Phosphines and Corresponding Ionic Transition Metal Complexes and Their Applications in Homogeneous Catalysis

Wang Xue, Tan Chen, Li Yongqi, Zhang Heng, Liu Ye*   

  1. Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21273077).

PDF ( 918 ) Cited
Export

EndNote

Ris

BibTeX

Compared to the traditional neutral phosphine-ligated transition metal complexes (PTMCs), the ionic phosphine-ligated ones as the ionic salts are composed with the ion-pairs with unusual electronic effect and varied structural configurations. In these ionic PTMCs, not only the coordinating interaction but also the strong electron-withdrawing effect of the positive-charge and the electrostatic interaction between cations and anion are involved which correspond to the unique catalytic performance. In recent decade, the study on the ionic PTMCs has been concerned as a hot topic in coordination chemistry and homogeneous catalysis. In addition, when the ionic PTMCs are used as the catalysts in combination with the room temperature ionic liquids (RTILs, as the solvents) for catalytic reactions, the advantages such as the available recovery and recyclability of the catalysts, and the avoided catalyst leaching are evidently observed, which endows theses ionic transition metal complexes great potential applications in green chemistry. In this review, the syntheses of the ionic phosphines and the corresponding ionic PTMC (M=Rh, Pd, Ru, Pt, Au, Ni, Cu) and their applications for homogeneous catalysis, which have been developed in the past ten years, are summarized.

Contents
1 Introduction
2 Syntheses of imidazolium-phosphorous neighbored ionic phosphines
3 Syntheses of ionic transition metal complexes and their applications in homogeneous catalysis
3.1 Ionic Rh-complexes
3.2 Ionic Pd-complexes
3.3 Ionic Ru-complexes
3.4 Ionic Pt-complexes
3.5 Ionic Au-complexes
3.6 Ionic Ni-complexes
3.7 Ionic Cu-complexes
4 Conclusion and outlook

CLC Number: 

[1] Kuhn N, Fahl J. Z. Anorg. Allg. Chem., 1999, 625: 729.
[2] Kuhn N, Göhner M. Z. Anorg. Allg. Chem., 1999, 625: 1415.
[3] Kuhn N, Göhner M, Steimann M. Z. Anorg. Allg. Chem., 1999, 628: 896.
[4] Azouri M, Andrieu J, Picquet M, Cattey H. Inorg. Chem., 2009, 48 : 1236.
[5] Brunet J J, Chauvin R, Commenges G, Donnadieu B, Leglaye P. Organometallics, 1996, 15 : 1752.
[6] Cadierno V, Francos J, Gimeno J. Chem. Eur. J., 2008, 22 : 6601.
[7] Chauvin R. Eur. J. Inorg. Chem., 2000, 577.
[8] Brauer D J, Kottsieper K W, Liek C, Stelzer O, Waffenschmidt H, Wasserscheid P. J. Organomet. Chem., 2001, 630: 177.
[9] 尤洪星(You H X), 王永勇(Wang Y Y), 王雪珠(Wang X Z), 刘 晔(Liu Y). 化学进展(Progress in Chemistry), 2013, 25(10):1656.
[10] Miao W, Chan T H. Acc. Chem. Res., 2006, 39 (12): 897.
[11] Wu X F, Neumann H, Beller M. Chem. Rev., 2013, 113 (1): 1.
[12] Vougioukalakis G C, Grubbs R H. Chem. Rev., 2010, 110 (3): 1746.
[13] Colby D A, Bergman R G, Ellman J A. Chem. Rev., 2010, 110 (2): 624.
[14] Li Z, Brouwer C, He C. Chem. Rev., 2008, 108 (8): 3239.
[15] Abdellah I, Lepetit C, Canac Y, Duhayon C, Chauvin R. Chem. Eur. J., 2010, 16: 13095.
[16] Franke R, Selent D, Börner A. Chem. Rev., 2012, 112: 5675.
[17] Sakai N, Mano S, Nozaki K, Takaya H. J. Am. Chem. Soc., 1993, 115: 7033.
[18] Fielder S S, Osborne M C, Lever A B P, Pietro W J. J. Am. Chem. Soc., 1995, 117: 6990.
[19] Yan Y, Chi Y, Zhang X. Tetrahedron: Asymm., 2004, 15: 2173.
[20] Tricas H, Diebolt O, van Leeuwen P W N M. J. Catal., 2013, 298: 198.
[21] Ellis B D, Ragogna P J, Macdonald C L B. Inorg. Chem., 2004, 43: 7857.
[22] Bronger R P J, Silva S M, Kamer P C J, van Leeuwen P W N M. Dalton Trans. 2004, 1590.
[23] Andrieu J, Azouri M. Inorg. Chim. Acta, 2007, 360: 131.
[24] Tolmachev A A, Yurchenko A A, Merculov A S, Semenova M G, Zarudnitskii E V, Ivanov V V, Pinchuk A M. Heteroatom Chem., 1999, 10: 585.
[25] Jalil M A, Yamada T, Fujinami S, Honjo T, Nishikawa H. Polyhedron, 2001, 20: 627.
[26] Li J, Peng J, Bai Y, Zhang G, Lai G, Li X. J. Organomet. Chem., 2010, 695(3): 431.
[27] Azouri M, Andrieu J, Picquet M, Richard P, Hanquet B, Tkatchenko I. Eur. J. Inorg. Chem., 2007, 4877.
[28] Debono N, Canac Y, Duhayon C, Chauvin R. Eur. J. Inorg. Chem., 2008, 2991.
[29] Canac Y, Debono N, Vendier L, Chauvin R. Inorg. Chem., 2009, 48(12): 5562.
[30] Barthes C, Lepetit C, Canac Y, Duhayon C, Zargarian D, Chauvin R. Inorg. Chem., 2013, 52: 48.
[31] Maaliki C, Lepetit C, Canac Y, Bijani C, Duhayon C, Chauvin R. Chem. Eur. J., 2012, 18(25): 7705.
[32] Andrieu J, Azouri M, Richard P. Inorg. Chem. Commun., 2008, 11: 1401.
[33] Moloy K G, Petersen J L. J. Am. Chem. Soc., 1995, 117: 7696.
[34] Wu M L, Desmond M J, Drago R S. Inorg. Chem., 1979, 18: 679.
[35] Andrieu J, Camus J M, Richard P, Poli R, Gonsalvi L, Vizza F, Peruzzini M. Eur. J. Inorg. Chem., 2006, 51.
[36] Dunbar K R, Haefner S C. Inorg. Chem., 1992, 31 (17): 3676.
[37] Boyd S E, Field L D, Hambley T W, Partridge M G. Organometallics, 1993, 12: 1720.
[38] Chen S, Wang Y, Yao W, Zhao X, VO-Thanh G, Liu Y. J. Mol. Catal. A, 2013, 378: 293.
[39] You H, Wang Y, Zhao X, Chen S, Liu Y. Organometallics, 2013, 32: 2698.
[40] Brink A, Roodt A, Steyl G, Visser H G. Dalton Trans., 2010, 39: 5572.
[41] Bennett M J, Donaldson P B. Inorg. Chem., 1977, 16: 655.
[42] Christoph G G, Halperk J, Khare G P, Koh Y B, Romanowski C. Inorg. Chem., 1981, 20: 3029.
[43] Burgess K, van der Donk W A, Westcott S A, Marder T B, Baker R T, Calabrese J C. J. Am. Chem. Soc., 1992, 114: 9350.
[44] Marion N, Navarro O, Mei J, Stevens E D, Scott N M, Nolan S P. J. Am. Chem. Soc., 2006, 128: 4101.
[45] Fitton P, Johnson M P, McKeon J E. J. Chem. Soc. Chem. Commun., 1968, 6.
[46] Canac Y, Debono N, Lepetit C, Duhayon C, Chauvin R. Inorg. Chem., 2011, 50 (21): 10810.
[47] Zhang J, ?akovi D? M, Popovi D? Z, Wu H, Liu Y. Catal. Commun., 2012, 17: 160.
[48] Zhou C, Zhang J, Aakovic M, Popovic Z, Zhao X, Liu Y. Eur. J. Inorg. Chem., 2012, 3435.
[49] Saleh S, Fayad E, Azouri M, Hierso J C, Andrieu J, Picquet M. Adv. Synth. Catal., 2009, 351: 1621.
[50] Wang X, Wang Y, Zhang J, Zhao X, Liu Y. J. Organomet. Chem., 2014, 762: 40.
[51] Baenziger N C, Bennett W E, Soborofe D M. Acta Crystallogr., 1976, 32: 962.
[52] Digard E, Andrieu J, Cattey H. Inorg. Chem. Commun., 2012, 25: 39.

[1] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[2] Wenqing Yang, Dale Xie, Jun Cheng, Weike Tang, Ruobing Wang, Yisi Feng. Supported BINAP-M Catalysts [J]. Progress in Chemistry, 2021, 33(10): 1706-1720.
[3] Fengguo Liu, Bo Wang, Lianyu Zhang, Aimin Liu, Zhaowen Wang, Zhongning Shi. Application of Ionic Liquids in Aluminum and Alloy Electrodeposition [J]. Progress in Chemistry, 2020, 32(12): 2004-2012.
[4] Guobin Tong, Lei E, Zhou Xu, Chunhui Ma, Wei Li, Shouxin Liu. Preparation, Modification and Application of Carbon Materials Based on Ionic Liquids [J]. Progress in Chemistry, 2019, 31(8): 1136-1147.
[5] Zhiyong Li, Ying Feng, Huiyong Wang, Xiaoqing Yuan, Yuling Zhao, Jianji Wang. Structure and Performance Modulation of Photo-Responsive Ionic Liquids [J]. Progress in Chemistry, 2019, 31(11): 1550-1559.
[6] Wenqiao Liu, Zhen Li, Chungu Xia. Preparation and Application of Acidic Ionic Liquid Hybrid Solid Catalytic Materials [J]. Progress in Chemistry, 2018, 30(8): 1143-1160.
[7] Haidong Cheng, Shuangjun Chen*. Degradation and Synthesis of Poly (Ethylene Terephthalate) by Functionalized Ionic Liquids [J]. Progress in Chemistry, 2017, 29(4): 443-449.
[8] Song Heyuan, Kang Meirong, Jin Ronghua, Jin Fuxiang, Chen Jing. Application of Ionic Liquids to the Carbonylation Reactions [J]. Progress in Chemistry, 2016, 28(9): 1313-1327.
[9] Yang Xuzhao, Wang Jun, Fang Yun. Synthesis, Properties and Applications of Dicationic Ionic Liquids [J]. Progress in Chemistry, 2016, 28(2/3): 269-283.
[10] Li Qingchuan, Cao Lixin, Hu Haifeng, Wang Kai, Yan Peisheng. Electrochemical Biosensors for Aflatoxin Analysis [J]. Progress in Chemistry, 2014, 26(04): 657-664.
[11] Lai Qingxue, Zhang Xiaogang, Liang Yanyu. Synthesis and Application of Nitrogen-Containing Carbon Nanomaterials by Ionic Liquids as Novel Precursors [J]. Progress in Chemistry, 2013, 25(10): 1703-1712.
[12] You Hongxing, Wang Yongyong, Wang Xuezhu, Liu Ye. Syntheses and Catalytic Applications of the Transition Metal Complex-Functionalized Ionic Liquids [J]. Progress in Chemistry, 2013, 25(10): 1656-1666.
[13] Liu Shuo, Ying Anguo, Ni Yuxiang, Yang Jianguo, Xu Songlin. Application of Task-Specific Ionic Liquids to Michael Additions [J]. Progress in Chemistry, 2013, 25(08): 1313-1324.
[14] Zhang Yingying, Lu Xiaohua*, Feng Xin, Shi Yijun, Ji Xiaoyan. Properties and Applications of Choline-Based Deep Eutectic Solvents [J]. Progress in Chemistry, 2013, 25(06): 881-892.
[15] Yan Fanyong, Li Chuying, Liang Xiaole, Dai Linfeng, Wang Meng, Chen Li*. Different Catalyst Systems for Baeyer-Villiger Reaction [J]. Progress in Chemistry, 2013, 25(06): 900-914.