中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (2/3): 351-367 DOI: 10.7536/PC180704 Previous Articles   Next Articles

The Synthesis and Catalytic Activity of Sugar-Based NHCs and Their Transition Metal Complexes

Zhonggao Zhou**(), Yangyang Yuan, Guohai Xu, Zhengwang Chen, Mei Li   

  1. 1. College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
  • Received: Online: Published:
  • Contact: Zhonggao Zhou
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21562002); Key Laboratory of Jiangxi University for Functional Materials Chemistry(FMC16201)
Richhtml ( 12 ) PDF ( 574 ) Cited
Export

EndNote

Ris

BibTeX

N-Heterocyclic carbenes(NHCs) and their stable transition metal complexes rank among the most popular subjects for research in organometallic chemistry that have been widely used in the field of catalysis. Researchers are investigating NHCs metal complexes with increasingly complex NHCs components, adding new functional substituents to the NHCs heterocyclic ring. Sugar compounds are extremely abundant molecules and well known for their biocompatibility, water solubility, chirality and nontoxicity. It is not surprising that sugar substituents have been introduced into NHCs(sugar-based NHCs) to increase water solubility and chirality. Sugar-based NHCs and their metal complexes show great potential in the fields of catalysis and pharmacology. To understand the success of sugar-based NHCs, this review first presents the important research progress in sugar-based NHCs precursors and NHCs metal complexes containing monosaccharides such as D-glucopyranose, D-galactopyranose, β-glucosamine, galactosamine, and aminomannose are discussed. Overview, sugar-based NHCs and their metal complexes are divided into five categories according to the carbon-linked of sugar with fused ring(including C-1, C-2, C-3, C-6, and others). Then the main synthetic methods, handling, structure, and catalytic activity of sugar-based NHCs and their metal complexes are discussed in detail, roles of the sugar moiety, NHCs ligand and transition metal complexes related to these properties are highlighted. Finally, the catalytic activity, especially in asymmetric catalytic reaction, and the development trend of sugar-based NHCs precursors and NHCs transition metal complexes are prospected.

Fig. 1 Four types of linking modes of sugar based NHCs and their complexes
Fig. 2 Synthetic scheme of sugar C-1 type NHCs-Ir complex 3[32]
Fig. 3 Synthetic scheme of sugar C-1 type NHCs-Pd 7 and imidazole-2 thione 8[33]
Fig. 4 Synthesis of γ-butyrolactone by imidazolium salts catalyzed Umpolung reaction
Fig. 5 Synthetic scheme of sugar C-1 NHCs-Ru complexes 12[34]
Fig. 6 ROMP, RCM, CM and AROCM reactions[34]
Fig. 7 Synthetic scheme of sugar C-1 NHCs-Pt complex 19[35]
Fig. 8 Synthetic scheme of sugar C-1 NHCs-Ni complex 21[37]
Fig. 9 Synthetic scheme of sugar C-1 type NHCs-Ru, Ir complexes 22 and 23[38]
Fig. 10 Synthesis and catalytic activity of sugar C-1 Ims 27~29[39]
Fig. 11 Synthesis and catalytic activity of sugar C-1 type Ims 30[41]
Fig. 12 Synthesis and catalytic activity of sugar C-1 C-C-N type Pd complexes 33[42]
Fig. 13 Synthesis and catalytic activity of sugar C-1 C—C—N type Pd complexes 36[43]
Fig. 14 Synthesis and catalytic activity of sugar C-1 type imidazolium salt 37[44]
Fig. 15 Synthesis of sugar C-1 type imidazolium salt 39[45]
Fig. 16 Catalytic activity of sugar C-1 type imidazolium salt 39
Fig. 17 Synthesis and catalytic activity of NHCs-Ru, Ir complexes 42~44[46]
Fig. 18 Synthesis and catalytic activity of sugar C-1 type Pd complexes 47, 50~52[47]
Fig. 19 Synthesis and catalytic activity of sugar C-1 type bis-NHCs Pd complexes 54[48]
Fig. 20 Synthesis and catalytic activity of sugar C-1 type bis-NHCs precursors 55[49]
Fig. 21 Synthesis and catalytic activity of sugar C-2 type NHCs-Rh 57 and 58[50]
Fig. 22 Synthesis of sugar C-3 type NHCs-Rh 63[51]
Fig. 23 Synthesis and catalytic activity of sugar C-3 type NHCs-Pd 67[53]
Fig. 24 Synthesis of sugar C-3 type bis-Ims 70, NHCs-Pd, Au complexes 71 and 72[56,57]
Fig. 25 Synthesis of sugar C-6 NHCs precursor 73[58]
Fig. 26 Synthesis of sugar C-6 NHCs-Pd complexes 76 and 77[59]
Fig. 27 Catalytic activity of sugar C-6 type NHCs-Pd complexes 76 and 77[59]
Fig. 28 Synthesis of other type sugar based Ims 78~81[61]
Fig. 29 Synthesis of other type sugar based Ims 84 and 85[62]
[1]
Velazquez H D, Verpoort F . Chem. Soc. Rev., 2012,41:7032. https://www.ncbi.nlm.nih.gov/pubmed/22842861

doi: 10.1039/c2cs35102a pmid: 22842861
[2]
Wang W, Cui L, Sun P, Shi L, Yue C, Li F . Chem. Rev., 2018,118:9843. https://www.ncbi.nlm.nih.gov/pubmed/29847935

doi: 10.1021/acs.chemrev.8b00057 pmid: 29847935
[3]
Engel S, Fritz E C, Ravoo B J . Chem. Soc. Rev., 2017,46:2057. https://www.ncbi.nlm.nih.gov/pubmed/28272608

doi: 10.1039/c7cs00023e pmid: 28272608
[4]
Zhukhovitskiy A V, MacLeod M J, Johnson J A . Chem. Rev., 2015,115:11503. https://www.ncbi.nlm.nih.gov/pubmed/26391930

doi: 10.1021/acs.chemrev.5b00220 pmid: 26391930
[5]
Wang G, Ruhling A, Amirjalayer S, Knor M, Ernst J B, Richter C, Gao H J, Timmer A, Gao H Y, Doltsinis N L, Glorius F, Fuchs H . Nat. Chem., 2017,9:152. https://www.ncbi.nlm.nih.gov/pubmed/28282049

doi: 10.1038/nchem.2622 pmid: 28282049
[6]
Crudden C M, Horton J H, Narouz M R, Li Z, Smith C A, Munro K, Baddeley C J, Larrea C R, Drevniok B, Thanabalasingam B, McLean A B, Zenkina O V, Ebralidze I I, She Z, Kraatz H B, Mosey N J, Saunders L N, Yagi A . Nat. Commun., 2016,7:12654. https://www.ncbi.nlm.nih.gov/pubmed/27585494

doi: 10.1038/ncomms12654 pmid: 27585494
[7]
Fung S K, Zou T, Cao B, Chen T, To W P, Yang C, Lok C N, Che C M . Nat. Commun., 2016,7:10655. https://www.ncbi.nlm.nih.gov/pubmed/26883164

doi: 10.1038/ncomms10655 pmid: 26883164
[8]
Crudden C M, Horton J H, Ebralidze I I, Zenkina O V, Mclean A B, Drevniok B, She Z, Kraatz H B, Mosey N J, Seki T . Nat. Chem., 2014,6:409. https://www.ncbi.nlm.nih.gov/pubmed/24755592

doi: 10.1038/nchem.1891 pmid: 24755592
[9]
Zhong R, Lindhorst A C, Groche F J, Kühn F E . Chem. Rev., 2017,117:1970. https://www.ncbi.nlm.nih.gov/pubmed/28085269

doi: 10.1021/acs.chemrev.6b00631 pmid: 28085269
[10]
Benhamou L, Chardon E, Lavigne G, Bellemin-Laponnaz S, César V . Chem. Rev., 2011,111:2705. https://www.ncbi.nlm.nih.gov/pubmed/21235210

doi: 10.1021/cr100328e pmid: 21235210
[11]
Grabulosa A, Granell J, Muller G . Coord. Chem. Rev., 2007,251:25. https://linkinghub.elsevier.com/retrieve/pii/S001085450600169X

doi: 10.1016/j.ccr.2006.05.009
[12]
Hopkinson M N, Richter C, Schedler M, Glorius F . Nature, 2014,510:485. https://www.ncbi.nlm.nih.gov/pubmed/24965649

doi: 10.1038/nature13384 pmid: 24965649
[13]
Khramov D M, Lynch V M, Bielawski C W . Organometallics, 2007,26:6042.
[14]
Marion N, Díez-González S, Nolan S P . Angew. Chem. Int. Ed., 2007,46:2988. https://www.ncbi.nlm.nih.gov/pubmed/17348057

doi: 10.1002/anie.200603380 pmid: 17348057
[15]
Fevre M, Pinaud J, Gnanou Y, Vignolle J, Taton D . Chem. Soc. Rev., 2013,42:2142. https://www.ncbi.nlm.nih.gov/pubmed/23288304

doi: 10.1039/c2cs35383k pmid: 23288304
[16]
Díez-González S, Marion N, Nolan S P . Chem. Rev., 2009,109:3612. https://www.ncbi.nlm.nih.gov/pubmed/19588961

doi: 10.1021/cr900074m pmid: 19588961
[17]
Fortman G C, Nolan S P . Chem. Soc. Rev., 2011,40:5151. https://www.ncbi.nlm.nih.gov/pubmed/21731956

doi: 10.1039/c1cs15088j pmid: 21731956
[18]
Moore J L, Rovis T . Top. Curr. Chem., 2009,291:77. https://www.ncbi.nlm.nih.gov/pubmed/21494949

doi: 10.1007/978-3-642-02815-1_18 pmid: 21494949
[19]
Zhao W, Ferro V, Baker M V . Coord. Chem. Rev., 2017,339:1.
[20]
Monney A, Albrecht M . Coord. Chem. Rev., 2013,257:2420.
[21]
Delbianco M, Bharate P, Varelaaramburu S, Seeberger P H . Chem. Rev., 2016,116:1693. https://www.ncbi.nlm.nih.gov/pubmed/26702928

doi: 10.1021/acs.chemrev.5b00516 pmid: 26702928
[22]
Stick R V, Williams S J . Carbohydrates: The Essential Molecules of Life. Elsevier Science, Amsterdam: 2014.
[23]
Mika L T, Cséfalvay E, Németh Á . Chem. Rev., 2018,118:505. https://www.ncbi.nlm.nih.gov/pubmed/29155579

doi: 10.1021/acs.chemrev.7b00395 pmid: 29155579
[24]
Schaper L A, Hock S J, Herrmann W A, Kuhn F E . Angew. Chem. Int. Ed., 2013,52:270. https://www.ncbi.nlm.nih.gov/pubmed/23143709

doi: 10.1002/anie.201205119 pmid: 23143709
[25]
Cazin C S J . N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis. Springer: New York, 2011.
[26]
Hahn F E, Jahnke M C . Angew. Chem. Int. Ed., 2008,47:3122. https://www.ncbi.nlm.nih.gov/pubmed/18398856

doi: 10.1002/anie.200703883 pmid: 18398856
[27]
Herrmann W A, Gooβen L J, Spiegler M . J. Organomet. Chem., 1997,547:357. https://linkinghub.elsevier.com/retrieve/pii/S0022328X97004348

doi: 10.1016/S0022-328X(97)00434-8
[28]
Herrmann W A, Reisinger C P, Spiegler M . J. Organomet. Chem., 1998,557:93.
[29]
Wanzlick H W, Schönherr H J . Angew. Chem. Int. Ed., 1968,7:141.
[30]
Wang H M J, Lin I J B . Organometallics, 1998,17:972.
[31]
Barczai-Martos M . Nature, 1950,165:369.
[32]
Nishioka T, Shibata T, Kinoshita I . Organometallics, 2007,26:1126.
[33]
Tewes F, Schlecker A, Harms K, Glorius F . J. Organomet. Chem., 2007,692:4593. https://linkinghub.elsevier.com/retrieve/pii/S0022328X0700349X

doi: 10.1016/j.jorganchem.2007.05.007
[34]
Keitz B K, Grubbs R H . Organometallics, 2010,29:403. https://www.ncbi.nlm.nih.gov/pubmed/21603126

doi: 10.1021/om900864r pmid: 21603126
[35]
Skander M, Retailleau P, Bourrie B, Schio L, Mailliet P, Marinetti A . J. Med. Chem., 2010,53:2146. https://www.ncbi.nlm.nih.gov/pubmed/20148592

doi: 10.1021/jm901693m pmid: 20148592
[36]
Kalinowska-Lis U, Ochocki J, Matlawska-Wasowska K . Coord. Chem. Rev., 2008,252:1328. https://linkinghub.elsevier.com/retrieve/pii/S0010854507001506

doi: 10.1016/j.ccr.2007.07.015
[37]
Shibata T, Ito S, Doe M, Tanaka R, Hashimoto H, Kinoshita I, Yano S, Nishioka T . Dalton Trans., 2011,40:6778. https://www.ncbi.nlm.nih.gov/pubmed/21611652

doi: 10.1039/c0dt01833c pmid: 21611652
[38]
Shibata T, Hashimoto H, Kinoshita I, Yano S, Nishioka T . Dalton Trans., 2011,40:4826. https://www.ncbi.nlm.nih.gov/pubmed/21437326

doi: 10.1039/c0dt01634a pmid: 21437326
[39]
Jha A K, Jain N . Tetrahedron Lett., 2013,54:4738.
[40]
Kolb H C, Finn M G, Sharpless K B . Angew. Chem. Int. Ed., 2001,40:2004.
[41]
Zhou Z G, Qiu J B, Xie L F, Du F, Xu G H, Xie Y R, Ling Q D . Catal. Lett., 2014,144:1911.
[42]
Imanaka Y, Hashimoto H, Kinoshita I, Nishioka T . Chem. Lett., 2014,43:687.
[43]
Imanaka Y, Hashimoto H, Nishioka T . Bull. Chem. Soc. Jpn., 2015,88:1135.
[44]
Zhou Q J, Wan Y, Zhang X X, Zhang L Z, Zou H, Cui H, Zhou S L, Wang H Y, Wu H . Tetrahedron, 2015,71:7070.
[45]
Zhou Z G, Zhao Y, Zhen H Y, Lin Z H, Ling Q D . Appl. Organomet. Chem., 2016,30:924.
[46]
Pretorius R, Olguín J, Albrecht M . Inorg. Chem., 2017,56:12410. https://www.ncbi.nlm.nih.gov/pubmed/28972367

doi: 10.1021/acs.inorgchem.7b01899 pmid: 28972367
[47]
Imanaka Y, Shiomoto N, Tamaki M, Maeda Y, Nakajima H, Nishioka T . Bull. Chem. Soc. Jpn., 2017,90:59.
[48]
Imanaka Y, Nakao K, Maeda Y, Nishioka T . Bull. Chem. Soc. Jpn., 2017,90:1050.
[49]
Zhou Z G, Yuan Y Y, Xie Y R, Li M . Catal. Lett., 2018,148:2696.
[50]
Henderson A S, Bower J F, Galan M C . Org. Biomol. Chem., 2014,12:9180. https://www.ncbi.nlm.nih.gov/pubmed/25296562

doi: 10.1039/c4ob02056a pmid: 25296562
[51]
Shi J C, Lei N, Tong Q S, Peng Y R, Wei J F, Jia L . Eur. J. Inorg. Chem., 2007,2007:2221.
[52]
周中高(Zhou Z G) . 福建师范大学硕士论文(Master’s Dissetation of Fujian Normal University), 2009.
[53]
张德志(Zhang D Z) . 福建师范大学硕士论文(Master’s Dissetation of Fujian Normal University), 2009.
[54]
Yao H, Zhang Y, Sun H, Shen Q . Eur. J. Inorg. Chem., 2009,2009:1920.
[55]
Zhang J, Lu X, Li T, Wang S, Zhong G . J. Org. Chem., 2017,82:5222. https://www.ncbi.nlm.nih.gov/pubmed/28429945

doi: 10.1021/acs.joc.7b00480 pmid: 28429945
[56]
李玉杰(Li Y J) . 福建师范大学硕士论文(Master’s Dissetation of Fujian Normal University), 2011.
[57]
柳云玲(Liu Y L) . 福建师范大学硕士论文(Master’s Dissetation of Fujian Normal University), 2012.
[58]
Thomas M, Montenegro D, Castaño A, Friedman L, Leb J, Huang M L, Rothman L, Lee H, Capodiferro C, Ambinder D, Cere E, Galante J, Rizzo J, Melkonian K, Engel R . Carbohydr. Res., 2009,344:1620. https://www.ncbi.nlm.nih.gov/pubmed/19467534

doi: 10.1016/j.carres.2009.04.021 pmid: 19467534
[59]
Yang C C, Lin P S, Liu F C, Lin I J B, Lee G H, Peng S M . Organometallics, 2010,29:5959.
[60]
Li J H, Liu W J, Xie Y . J. Org. Chem., 2005,70:5409. https://www.ncbi.nlm.nih.gov/pubmed/15989320

doi: 10.1021/jo050353m pmid: 15989320
[61]
Huang J Y, Lei M, Wang Y G . Tetrahedron Lett., 2006,47:3047. https://linkinghub.elsevier.com/retrieve/pii/S0040403906004503

doi: 10.1016/j.tetlet.2006.03.002
[62]
Salman A A, Tabandeh M, Heidelberg T, Hussen R S D, Ali H M . Carbohydr. Res., 2015,412:28. https://www.ncbi.nlm.nih.gov/pubmed/26000863

doi: 10.1016/j.carres.2015.04.022 pmid: 26000863
[1] Junlan Guo, Yinghua Liang, Huan Wang, Li Liu, Wenquan Cui. The Cocatalyst in Photocatalytic Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(7): 1100-1114.
[2] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[3] Wendi Guo, Ye Liu. Carbonylation of Alkynes with Different Nucleophiles Catalyzed By Transition Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 512-523.
[4] Shifang Yuan, Yi Yan. Homonuclear Bimetallic Complex Catalysts for Olefin Polymerization [J]. Progress in Chemistry, 2019, 31(12): 1737-1748.
[5] Xin Yan, Yi-Xian Li, Yue-Mei Jia, Chu-Yi Yu. Glycosylated Iminosugars: Isolation, Synthesis and Biological Activities [J]. Progress in Chemistry, 2019, 31(11): 1472-1508.
[6] Yixian Li, Yuemei Jia, Chuyi Yu. Synthesis and Glycosidase Inhibitory Activities of Fluorinated Iminosugars [J]. Progress in Chemistry, 2018, 30(5): 586-600.
[7] Jinjun Wu, Zhen Yang, Jianmei Jiao, Pengfei Sun, Quli Fan, Wei Huang. The Synthesis and Biological Applications of Water-Soluble Perylene Diimides [J]. Progress in Chemistry, 2017, 29(2/3): 216-230.
[8] Sun Pengfei, Hou Huanzhi, Fan Quli, Huang Wei. Synthesis and Application of Water-Soluble Conjugated Glycopolymer [J]. Progress in Chemistry, 2016, 28(10): 1489-1500.
[9] Chen Feng, Bai Ying, Li Jiayun*, Xiao Wenjun, Peng Jiajian*. The Application on Nitrogen-Coordinating Transition Metal Complexes on Hydrosilylation [J]. Progress in Chemistry, 2015, 27(7): 806-817.
[10] Jiao Chengpeng, Huang Zili, Zhang Haijun, Zhang Shaowei. Bimetallic Nanocatalysts Synthesized via Galvanic Replacement Reaction [J]. Progress in Chemistry, 2015, 27(5): 472-481.
[11] Wang Xue, Tan Chen, Li Yongqi, Zhang Heng, Liu Ye. Synthesis of Ionic Phosphines and Corresponding Ionic Transition Metal Complexes and Their Applications in Homogeneous Catalysis [J]. Progress in Chemistry, 2015, 27(1): 27-37.
[12] Wu Yuxuan, Liu Ning, Ding Songdong. Water-Soluble Ligands Used in the Separation of Actinides and the Partitioning of Trivalent Lanthanides from Actinides [J]. Progress in Chemistry, 2014, 26(10): 1655-1664.
[13] Liu Yuping, Xie Jian, Li Tingting, Deng Ling, Chen Changguo, Zhang Dingfei. Development of Mg-Transition Metal Complex as Cathode Materials [J]. Progress in Chemistry, 2014, 26(09): 1596-1608.
[14] Jin Chao, Qin Yao, Yang Jinhu. Novel Non-TiO2 Semiconductor Photocatalysts [J]. Progress in Chemistry, 2014, 26(0203): 225-233.
[15] Zhao Yan, Guo Caihong, Wu Haishun. Reaction Mechanisms of Olefin Hydrosilylation Catalyzed by Several Transition Metal Complexes [J]. Progress in Chemistry, 2014, 26(0203): 345-357.