中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (4): 497-506 DOI: 10.7536/PC150718 Previous Articles   Next Articles

• Review and comments •

Highly Efficient Synthesis of Amides

Xiong Xingquan*, Fan Guanming, Zhu Rongjun, Shi Lin, Xiao Shangyun, Bi Cheng   

  1. The Key Laboratory for Functional Materials of Fujian Higher Education, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21004024),the Natural Science Foundation of Fujian Province(No.2016J01063),the Program for New Century Excellent Talents in Fujian Province(No.2012FJ-NCET-ZR03), the University Distinguished Young Research Talent Training Program of Fujian Province(No.11FJPY02)and the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University(No.ZQN-YX103).
PDF ( 1855 ) Cited
Export

EndNote

Ris

BibTeX

Amides have been one of the most popular compounds in organic chemistry. There are plenty of important applications in many fields such as medicinal chemistry, biochemistry and polymer synthesis. Highly efficient synthesis of amides has become a hot topic in recent years. In this review, the application of transition metal catalysis and small molecule organocatalysis in the synthesis of amides in the last few years is briefly summarized, and the prospects of the synthesis of amides are also discussed.

Contents
1 Introduction
2 Amides synthesis of transition metal
2.1 Synthesis of amides by gold catalysts
2.2 Synthesis of amides by ruthenium-based catalysts
2.3 Synthesis of amides by copper catalysts
2.4 Synthesis of amides by iron and nickel catalysts
2.5 Synthesis of amides by palladium catalysts
3 Synthesis of amides by small molecule organic catalysts
4 Synthesis of amides by other methods
5 Conclusion

CLC Number: 

[1] Chitra S, Vishal K, Upendra S, Neeraj K, Bikram S. Current Organic Synthesis, 2013, 10: 241.
[2] Ghosh S C, Ngiam J S Y, Seayad A M, Tuan D T, Chai C L L, Chen A Q. J. Org. Chem., 2012, 77: 8007.
[3] Nordstrøm L U, Vogt H, Madsen R. J. Am. Chem. Soc., 2008, 130: 17672.
[4] Cadoni R, Porcheddu A, Giacomelli G, Luca L D. Org. Lett., 2012, 14: 5014.
[5] Allen C L, Williams J M. J. Chem. Soc. Rev., 2011, 40, 3405.
[6] Klitgaard S K, Egeblad K, Mentzel U V, Popov A G, Jensen T, Taarning E, Nielsen I S, Christensen C H. Green Chem., 2008, 10: 419.
[7] Wang Y, Zhu D P, Tang L, Wang S J, Wang Z Y. Angew. Chem Int. Ed., 2011, 123: 9079.
[8] Francois S J, Miyamura H, Kobayashi S. J. Am. Chem. Soc., 2011, 133: 18550.
[9] Zhu J L, Zhang Y, Shi F, Deng Y Q. Tetrahedron Lett., 2012, 53: 3178.
[10] Kegnæs S, Mielby J, Mentzel U V, Jensen T, Fristrup P, Riisager A. Chem. Commun., 2012, 48: 2427.
[11] Tanaka S, Minato T, Ito E, Hara M, Kim Y, Yamamoto Y, Asao N. Chem. Eur. J., 2013, 19: 11832.
[12] Guo X F, Tang L, Yang Y, Zha Z G, Wang Z Y.Green Chem., 2014, 16: 2443.
[13] Chng L L, Yang J H, Ying J Y. ChemSusChem, 2015, 8: 1916.
[14] Li F, Ma J, Lu L, Bao X F, Tang W Y. Catal. Sci. Technol., 2015, 5: 1953.
[15] Gunanathan C, Milstein D. Science, 2007, 317: 790.
[16] Zhang J, Leitus G, Ben-David Y, Milstein D. J. Am. Chem. Soc., 2005, 127: 10840.
[17] Gnanaprakasam B, Milstein D. J. Am. Chem. Soc., 2011, 133: 1682.
[18] Srimani D, Balaraman E, Hu P, Ben-David Y, Milstein D. Adv. Synth. Catal., 2013, 355: 2525.
[19] Han Q, Xiong X Q, Li S Z. Catal. Commun., 2015, 58: 85.
[20] Nordstrøm L U, Vogt H, Madsen R. J. Am. Chem. Soc., 2008, 130: 17672.
[21] Ghosh S C, Muthaiah S, Zhang Y, Xu X Y, Hong S H. Adv. Synth. Catal., 2009, 351: 2643.
[22] Chen, C, Zhang Y, Hong S H. J. Org. Chem., 2011, 76: 10005.
[23] Malineni J, Merkens C, Keul H, Möller M. Catal. Commun., 2013, 40: 80.
[24] Zhu M W, Fujita K, Yamaguchi R. J. Org. Chem., 2012, 77: 9102.
[25] Qu G R, Song Y W, Niu H Y, Guo H M, Fossey J S. RSC Adv., 2012, 2: 6161.
[26] Li X Y, Li Z K, Deng H, Zhou X G. Tetrahedron Lett., 2013, 54: 2212.
[27] Yang S Z, Yan H, Ren X Y, Shi X K, Li J, Wang Y L, Huang G S. Tetrahedron, 2013, 69: 6431.
[28] Xie Y X, Song R J, Yang X H, Xiang J N, Li J H. Eur. J. Org. Chem., 2013, 5737.
[29] Mali S M, Bhaisare R D, Gopi H N. J. Org. Chem., 2013, 78: 5550.
[30] Qin C, Zhou W, Chen F, Ou Y, Jiao N. Angew. Chem. Int. Ed., 2011, 50: 12595.
[31] Porcheddua A, Luca L D. Adv. Synth. Catal., 2012, 354: 2949.
[32] Ghosh S C, Ngiam J S Y, Chai C L L, Seayad A M, Dang T T, Chen A Q. Adv. Synth. Catal., 2012, 354: 1407.
[33] Whittaker A M, Dong V M. Angew. Chem. Int. Ed. 2015, 54:1312.
[34] Martinelli J R, Clark T P, Watson D A, Munday R H, Buchwald S L. Angew. Chem. Int. Ed., 2007, 46: 8460.
[35] Ren W, Yamane M. J. Org. Chem., 2009, 74: 8332.
[36] Dang T T, Zhu Y H, Ngiam J S Y, Ghosh S C, Chen A Q, Seayad A M. ACS Catal., 2013, 3: 1406.
[37] List B, Lerner R A, Barbas C F. J. Am. Chem. Soc., 2000, 122: 2395.
[38] Vora H U, Rovis T. J. Am. Chem. Soc., 2007, 129: 13796.
[39] Sabot C, Kumar K A, Meunier S, Mioskowski C. Tetrahedron Lett., 2007, 48: 3863.
[40] Sanz R, Martínez A, Guilarte V, Gutiérrez J M A, Rodríguez F. Eur. J. Org. Chem., 2007, 4642.
[41] Yang X, Birman V B. Org. Lett., 2009, 11: 1499.
[42] Vanjari R, Guntreddi T, Singh K N. Green Chem., 2014, 16: 351.
[43] Lanigan R M, Starkov P, Sheppard T D. J. Org. Chem., 2013, 78: 4512.
[44] Chen Z K, Fu R Z, Chai W, Zheng H, Sun L, Lu Q, Yuan R X. Tetrahedron, 2014, 70: 2237.
[45] Kumari S, Shekhar A, Mungse H P, Khatri O P, Pathak D D. RSC Adv., 2014, 4: 41690.
[1] Yaqi Wang, Qiang Wu, Junling Chen, Feng Liang. Diels-Alder Reaction Catalyst [J]. Progress in Chemistry, 2022, 34(2): 474-486.
[2] Yaoyang Liu, Zhibin Liu, Chuang Zhao, Yu Zhou, Yang Gao, Hui He. Separation of Actinides: Extraction Chemistry and Application of Unsymmetric Diglycolamides [J]. Progress in Chemistry, 2020, 32(2/3): 219-229.
[3] Yongyin Kang, Zhicheng Song, Peisheng Qiao, Xiangpeng Du, Fei Zhao. Research and Application of Photo-Luminescent Colloidal Quantum Dots [J]. Progress in Chemistry, 2017, 29(5): 467-475.
[4] Li Chao, Fan Meiqiang, Chen Haichao, Chen Da, Tian Guanglei, Shu Kangying. Thermodynamics and Kinetics Modifications on the Li-Mg-N-H Hydrogen Storage System [J]. Progress in Chemistry, 2016, 28(12): 1788-1797.
[5] Wang Jiaxi, Wei Xiaojun, Shen Jiayu, Lü Xiaomeng, Xie Jimin, Chen Min. Photocatalytic Selective Transformation of Organics [J]. Progress in Chemistry, 2014, 26(09): 1460-1470.
[6] Ma Wenchan, Zhou Qiao, Zhang Yuecheng, Zhao Jiquan. Direct and Oxidatively Dehydrogenative Coupling of Alcohols with Amines to Amides [J]. Progress in Chemistry, 2014, 26(0203): 334-344.
[7] Xu Lining, Zhang Juntao, Tao Cheng, Cao Xiaoping. Advances in the Synthesis of Vinyl Chloride Compounds [J]. Progress in Chemistry, 2013, 25(11): 1876-1887.
[8] Huang Yanmin, Cui Jianguo, Gan Chunfang, Yao Qiucui, Jia Linyi. Steroidal Amides with Biological Activities [J]. Progress in Chemistry, 2012, 24(01): 61-69.
[9] Jiang Shikun, Wang Pu, Wu Yanling, Zhang Wen. The Role of Aliphatic Chains in Pyrrole-Imidazole Polyamides and Their Conjugates Binding to DNA [J]. Progress in Chemistry, 2011, 23(11): 2339-2352.
[10] Wang Dexian, Wang Meixiang. Biotransformations of Three-Membered (Hetero) Cyclic Nitriles and Their Applications in Organic Synthesis [J]. Progress in Chemistry, 2010, 22(07): 1397-1402.
[11] Chen Mao Weng Yue Lei Aiwen. Asymmetric Cycloisomerization of 1,n-Enynes Catalyzed by Transition Metals [J]. Progress in Chemistry, 2010, 22(07): 1341-1352.
[12] Huang Peiqiang,Gao Jingxing. Green Synthesis: an Emerging Frontier in Organic Synthesis [J]. Progress in Chemistry, 1998, 10(03): 265-.
Viewed
Full text


Abstract

Highly Efficient Synthesis of Amides