中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (7): 806-817 DOI: 10.7536/PC150149 Previous Articles   Next Articles

• Review and comments •

The Application on Nitrogen-Coordinating Transition Metal Complexes on Hydrosilylation

Chen Feng, Bai Ying, Li Jiayun*, Xiao Wenjun, Peng Jiajian*   

  1. Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education,Hangzhou Normal University, Hangzhou 311121, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21203049, 21303034) and the Natural Science Foundation of Zhejiang Province, China (No.LY14B030007).
PDF ( 1196 ) Cited
Export

EndNote

Ris

BibTeX

The study of nitrogen-coordinating transition metal complexes has been a significant development in the recent decades. Designing different excellent nitrogen ligands coordinated with various transition metal complexes, which its of great value in hydrosilylation reaction. In this paper, the latest progress of the application in nitrogen-coordinating transition metal(Rh, Fe, Re, Co, Zn and so on)complexes to ketone hydrosilylation or alkene hydrosilylation is reviewed. The design of optimized bisoxazolines or dihydropyrrolo nitrogen-containing ligands will greatly facilitate the successful development of nitrogen-containing iron, rhenium, cobalt complexes in the hydrosilylation of ketone or imine.

Contents
1 Introduction
2 The application on nitrogen-coordinating transition metal complexes on hydrosilylation
2.1 The application on nitrogen-coordinating rhodium complexes on hydrosilylation
2.2 The application on nitrogen-coordinating iron complexes on hydrosilylation
2.3 The application on nitrogen-coordinating rhenium complexes on hydrosilylation
2.4 The application on nitrogen-coordinating cobalt complexes on hydrosilylation
2.5 The application on nitrogen-coordinating zinc complexes on hydrosilylation
2.6 The application on nitrogen-coordinating titanium complexes on hydrosilylation
3 The study of mechanism
4 Conclusion

CLC Number: 

[1] Marciniec B. Comprehensive Handbook on Hydrosilylation. 2nd ed. NY: Pergamon, 1992. 754.
[2] Ojima I, Li Z, Zhu J. The Chemistry of Organic Silicon Compounds (Eds.Rappoport Z, Apeloig Y). Amsterdam: Wiley, 1998. 29.
[3] Marciniec B, Silicon Chemistry. 2nd ed. NY: CrossRef. 2002.155.
[4] Marciniec B. New J. Chem., 1997, 21: 815.
[5] Marciniec B, Cornils B. Applied Homogeneous Catalysis with Organometallic Compounds. (Eds.Herrman W). Amsterdam: Wiley-VCH, 2002. 491.
[6] Littke A F, Dai C, Fu G C. J. Am. Chem. Soc., 2000, 122: 4020.
[7] Kirchhoff J H, Dai C, Fu G C. Angew. Chem. Int. Ed. Engl., 2002, 41: 1945.
[8] Littke A F, Fu G C. Angew. Chem. Int. Ed. Engl., 2002, 41: 4176.
[9] Kataoka N, Shelby Q, Stambuli J P, Hartwig J F. J. Organomet. Chem., 2002, 67: 5553.
[10] Walker S D, Barder T E, Martinelli J R, Buchwald S L. Angew. Chem. Int. Ed., 2004, 43: 1871.
[11] Goto K, Okumura T, Kawashima T. Chem. Lett., 2001, 12: 1258.
[12] Goto K, Nagahama M, Mizushima T, Shimada K, Kawashima T, Okazaki R.Org. Lett., 2001, 3: 3569.
[13] Ohzu Y, Goto K, Kawashima T. Angew. Chem. Int. Ed., 2003, 42: 5714.
[14] Naiki M, Shirakawa S, Kon-i K, Kondo Y, Maruoka K. Tetrahedron. Lett., 2001, 42: 5467.
[15] Niyomura O, Iwasawa T, Sawada N, Tokunaga M,Obora Y, Tsuji Y.Organometallics, 2005, 24: 3468.
[16] Hill J E, Nile T A. J. Organomet. Chem., 1977, 137: 293.
[17] Lappert M F. Transition Met. Chem., 1981, 287.
[18] Lappert M F, Maskell R K. J. Organomet. Chem., 1984, 264: 217.
[19] 厉嘉云(Li J Y), 彭家建(Peng J J), 白赢(Bai Y), 胡应乾(Hu Y Q), 张国栋(Zhang G D), 来国桥(Lai G Q).有机化学(Chin. J.Org.Chem), 2009, 12: 1938.
[20] Nishiyama H. Comprehensive Chirality. Nagoya University, 2012.
[21] Delepine M. Bull. Soc. Chim. France., 1929, 45: 235.
[22] Delepine M. Compl. Rend., 1953, 236: 559.
[23] Brunner H, Kuerzinger A. J. Organomet.Chem., 1988, 346: 413.
[24] Brunner H, Riepl G, Weitzer H. Angew. Chem. Int. Ed. Engl., 1983, 22: 331.
[25] Nishiyama H, Sakaguchi H, Nakamura T. Organometallics, 1989, 8: 846.
[26] Nishiyama H, Kondo M, Nakamura T, Itoh K. Organometallic, 1991, 10: 500.
[27] Michael E W, Steven A S. Inorg. Chim. Acta, 1990, 175: 13.
[28] Brunner H, Nherr M S, Zabel M. Tetrahedron. Asymmetry., 2003, 14: 1115.
[29] Brunner H, Henning F, Weber M. Tetrahedron. Asymmetry., 2002, 13: 37.
[30] Takahiro S, Teruyuki M, Norihiro T. Polyhedron, 2010, 29: 425.
[31] Teruyuki M, Takahiro S, Hideaki M, Norihiro T. Organometallic, 2014, 33: 1341.
[32] Salim T A, Hadi J S, Al-Nasir E A, Hassen M A. J. Sci. Res., 2010, 2: 501.
[33] Kharasch M S, Fields E K. J. Am. Chem. Soc., 1941, 63: 2316.
[34] Bolm C, Legros J, Le Paih J, Zani L. Chem. Rev., 2004, 104: 6217.
[35] Fuerstner A, Martin R. Chem. Lett., 2005, 34: 624.
[36] Plietker B.Iron Catalysis in Organic Chemistry. (Eds.Plietker B). Amsterdam: Wiley-VCH, 2008. 125.
[37] Sherry B D, Fuerstner A. Chem. Res., 2008, 41: 1500.
[38] Correa A, Garcia M O, Bolm C.Chem. Soc. Rev., 2008, 37: 1108.
[39] Wu J Y, Benjamin N S, Tobias R. J. Am. Chem. Soc., 2010, 132: 13214.
[40] Plietker B, Dieskau A, Mows K, Jatsch A. Angew. Chem. Int. Ed., 2008, 47: 198.
[41] Holzwarth M, Dieskau A, Tabassam M, Plietker B. Angew. Chem. Int. Ed., 2009, 48: 7251.
[42] Boddien A, Loges B, Gartner F, Torberg C, Fumino K, Junge H, Ludwig R, Beller M. J. Am. Chem. Soc., 2010, 132: 8924.
[43] Carbonaro A, Greco A, Dall'A G. J. Organomet. Chem., 1969, 20: 177.
[44] Knoelker H J. Chem. Rev., 2000, 100: 2941.
[45] Bart S C, Lobkovsky E, Chirik P J. J. Am. Chem. Soc., 2004, 126: 13794.
[46] Russell S K, Darmon J M, Lobkovsky E, Chirik P J. Inorg. Chem., 2010, 49: 2782.
[47] Tondreau A M, Atienza C C H, Weller K J, Nye S A, Lewis K M, Delis J G P, Chirik P J. Science, 2012, 335: 567.
[48] Tondreau A M, Atienza C C H, Darmon J M, Milsmann C, Hoyt H M, Weller J, Nye S A, Lewis K M, Boyer J, Delis J G P. Organometallic, 2012, 31: 4886.
[49] Brunner H, Roetzer M. J. Organomet. Chem., 1992, 425: 119.
[50] Nishiyama H, Furuta A. Chem. Commun., 2007, 7: 760.
[51] Langlotz B K,Wadepohl H, Gade L H. Angew. Chem. Int. Ed., 2008, 47: 4670.
[52] Tondreau A M, Darmon J M, Wile B M. Organometallics, 2009, 28: 3928.
[53] Inagaki T, Phong L T, Furuta A, Ito J, Nishiyama H. Chem. Eur. J., 2010, 16: 3090.
[54] Nolin K A, Ahn R W, Kobayashi Y, Kennedy-Smith J J, Toste F D. Chem. Eur. J., 2010, 16: 9555.
[55] Mimoun H. J. Org. Chem., 1999, 64: 2582.
[56] Mimoun H, de Laumer J Y, Giannini L, Scepelliti R, Floriani C. J. Am. Chem. Soc., 1999, 121: 6158.
[57] Bette V, Mortreux A, Lehmann C W, Carpentier J F. Chem. Commun., 2003, 3: 332.
[58] Bette V, Mortreux A, Savoia D, Carpentier J F. Tetrahedron., 2004, 60: 2837.
[59] Mastranzo V M, Quintero L, de Parrodi C A, Juaristi E, Walsh P J. Tetrahedron, 2004, 60: 1781.
[60] Gerard S, Pressel Y, Riant O. Tetrahedron. Asymmetry, 2005, 16: 1889.
[61] Bandini M, Melucci M, Piccinelli F. Chem. Commun., 2007, 43: 4519.
[62] Liu S, Peng J J, Yang H, Bai Y, Li J Y, Lai G Q. Tetrahedron, 2012, 68: 1371.
[63] Ireland T, Fontanet F, Tchao G G. Tetrahedron Lett., 2004, 45: 4383.
[64] Park B M, Mun S, Yun J. Adv. Synth. Catal., 2006, 348: 1029.
[65] Cozzi P G, Floriani C, Angiola C V, Rizzoli C. Inorg. Chem., 1995, 34: 2921.
[66] Bandini M, Cozzi P G, Negro L, Achille U R. Chem. Commun., 1999, 1: 39.
[67] Bandini M, Bernardi F, Bottoni A, Cozzi P G, Miscione G P, Achille U R. Eur. J. Org. Chem., 2003, 15: 2972.
[68] Brunner H, Becker R, Riepl G A. Organometallics, 1984, 3: 1354.
[69] Lipshutz B H, Chrisman W, Noson K. J. Organomet. Chem., 2001, 624: 367.
[70] Lipshutz B H, Noson K, Chrisman W T. J. Am. Chem. Soc., 2001, 123: 12917.
[71] Yun J, Buchwald S L. Org. Lett., 2001, 3: 1129.
[72] Lipshutz B H, Lower A, Noson K. Org. Lett., 2002, 4: 4045.
[73] Lipshutz B H, Lower A, Kucejko R J, Noson K. Org. Lett., 2006, 8: 2969.
[74] Issenhuth J T, Dagorne S, Bellemin-Laponnaza S. Adv. Synth. Catal., 2006, 348: 1991.
[75] Lee D W, Yun J. Tetrahedron Lett., 2004, 45: 5415.
[76] Junge K, Wendt B, Addis D, Zhou S, Das S, Beller M. Chem. Eur. J., 2010, 16: 68.
[77] Sirol S, Courmarcel J M, Ostefai N, Riant O. Org. Lett., 2001, 3: 4111.
[78] Zhang X C, Wu Y, Yu F, Wu F F, Wu J, Chand A S C. Chem. Eur. J., 2009, 15: 5888.
[79] Zhang X C, Wu F F, Li S J, Zhou J N, Wu J, Li N, Fang W J, Lam K H, Chand A S C. Adv. Synth. Catal., 2011, 353: 1457.
[80] Issenhuth J T, Notter F P, Dagorne S, Dedieu A, Bellemin- Laponnaz S. Eur. J. Inorg. Chem., 2010, 4: 529.
[81] Bantu B, Wang D, Wurst K, Buchmeiser M R. Tetrahedron, 2005, 61: 12145.
[82] Albright A E, Gawley R. J. Am. Chem. Soc., 2011, 133: 19680.
[83] 陈玲珍 (Chen L Z), 彭家建 (Peng J J), 厉嘉云 (Li J Y), 白赢 (Bai Y), 邱化玉(Qiu H Y), 来国桥 (Lai G Q). 有机化学(Chin. J. Org. Chem), 2008, 28: 761.
[84] Bell N A, Moseley P T, Shearer H M M, Spencer C B. Chem.Commun., 1980, 8: 359.
[85] Bell N A, Kassyk A L. Inorg. Chim. Acta, 1996, 250: 345.
[86] Zuo Z Y, Sun H J, Wang L, Li X Y. Dalton Trans., 2014, 43: 11716.
[87] Peterson E, Khalimon A Y, Simionescu R, Kuzmina L G, Howard J A K, Nikonov G I. J. Am. Chem. Soc., 2009, 131: 908.
[88] Shambayati S, Crowe W E, Schreiber S L. Angew. Chem. Int. Ed. Engl., 1990, 29: 256.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[6] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[7] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[8] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[9] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[10] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[11] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[12] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[13] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[14] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[15] Meng Pengfei, Zhang Xiaorong, Liao Shijun, Deng Yijie. Enhancing the Performance of Atomically Dispersed Carbon-Based Catalysts Through Metallic/Nonmetallic Elements Co-Doping Towards Oxygen Reduction [J]. Progress in Chemistry, 2022, 34(10): 2190-2201.