中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (2): 319-327 DOI: 10.7536/PC210111 Previous Articles   Next Articles

• Review •

Transition Metal Chalcogenide Cathode Materials Applied in Aluminum-Ion Batteries

Xiaoqiong Feng1,2, Yunlong Ma3, Hong Ning2, Shiying Zhang1, Changsheng An1(), Jinfeng Li2()   

  1. 1 College of Biology and Environment Enginering, Changsha University,Changsha 410022, China
    2 College of Materials Science and Engineering, Central South University,Changsha 410083, China
    3 Beijing Institute of Aerospace System Engineering,Beijing 100076, China
  • Received: Revised: Online: Published:
  • Contact: Changsheng An, Jinfeng Li
Richhtml ( 19 ) PDF ( 548 ) Cited
Export

EndNote

Ris

BibTeX

As a promising cathode of aluminum ion batteries (AIBs), transition metal chalcogenides (MX2 (X=S, Se, Te)) have excellent theoretical specific capacity and lower electronegativity, which endow it with great potential in commercial AIBs. Here, the relationship between the aluminum storage mechanism and the electrochemical properties of the transition metal sulfide compound (MX2 (X = S, Se, Te)) is summarized. According to the current problems of transition metal chalcogenides, we propose the corresponding solutions proposed by researchers and summarize the main material modification techniques. Finally, the development direction of transition metal chalcogenide cathode materials is prospected, and feasible strategies to improve its overall electrochemical performance are discussed.

Contents

1 Introduction

2 Aluminum storage of transition metal chalcogenides

2.1 Intercalation mechanism

2.2 Conversion mechanism

3 Transition metal chalcogenide based on conversion mechanism

3.1 Metal sulfide

3.2 Metal selenide

3.3 Metal telluride

3.4 Other chalcogenide

4 Conclusion and outlook

Fig. 1 Schematic representation of (a) a MoX2 crystal structure with possible intercalation sites at M1 and M2; (b) intercalation at M1 site; and (c) intercalation at M2 site[27]. Copyright 2020, Wiley.
Fig. 2 The SEM of (a) MoS2[36], (b) MoS2/CNFs[37] and Schematic diagram of preparation method (c). Copyright 2018, ACS
Fig. 3 The schematic diagram of Co9S8@CNT-CNF material (a) and electrochemical performance (b)[41]. Copyright 2019, Elsevier
Fig. 4 The SEM (a, b), mapping diagram (c) and cycle performance curve (d) of CoSe2[45]. Copyright 2018, RSC
Fig. 5 (a) The Schematic preparation, SEM image (b, c) and electrochemical performance curve (d, e) of the positive electrode of Al-S battery[60]. Copyright 2018, Wiley
[1]
An C S, Yuan Y F, Zhang B, Tang L B, Xiao B, He Z J, Zheng J C, Lu J. Adv. Energy Mater., 2019, 9(18): 1900356.

doi: 10.1002/aenm.v9.18
[2]
Herfurth H J. Nature, 2008, 451: 652.

doi: 10.1038/451652a
[3]
Hueso K B, Armand M, Rojo T. Energy Environ. Sci., 2013, 6(3): 734.

doi: 10.1039/c3ee24086j
[4]
Zhang Y, Liu S Q, Ji Y J, Ma J M, Yu H J. Adv. Mater., 2018, 30(38): 1706310.

doi: 10.1002/adma.v30.38
[5]
An C S, Zhang B, Tang L B, Xiao B, Zheng J C. Electrochimica Acta, 2018, 283: 385.

doi: 10.1016/j.electacta.2018.06.149
[6]
Niu J, Zhang S, Niu Y, Song H H, Chen X H, Zhou J S. Prog. Chem., 2015, 27(9): 1275.

doi: 10.7536/PC150155
( 牛津, 张苏, 牛越, 宋怀河, 陈晓红, 周继升. 化学进展, 2015, 27(9): 1275.)

doi: 10.7536/PC150155
[7]
Holleck G L, Giner J. J. Electrochem. Soc., 1972, 119(9): 1161.

doi: 10.1149/1.2404433
[8]
Lin M C, Gong M, Lu B G, Wu Y P, Wang D Y, Guan M Y, Angell M, Chen C X, Yang J, Hwang B J, Dai H J. Nature, 2015, 520(7547): 324.

doi: 10.1038/nature14340
[9]
Tu J G, Lei H P, Yu Z J, Jiao S Q. Chem. Commun., 2018, 54(11): 1343.

doi: 10.1039/C7CC09376D
[10]
Gu S C, Wang H L, Wu C, Bai Y, Li H, Wu F. Energy Storage Mater., 2017, 6: 9.
[11]
Wang H L, Bai Y, Chen S, Luo X Y, Wu C, Wu F, Lu J, Amine K. ACS Appl. Mater. Interfaces, 2015, 7(1): 80.

doi: 10.1021/am508001h
[12]
Geng L X, Scheifers J P, Fu C Y, Zhang J, Fokwa B P T, Guo J C. ACS Appl. Mater. Interfaces, 2017, 9(25): 21251.

doi: 10.1021/acsami.7b04161
[13]
Zhang R, Qin Y, Liu P, Jia C K, Tang Y G, Wang H Y. ChemSusChem, 2020, 13(6): 1354.

doi: 10.1002/cssc.201903320 pmid: 32017468
[14]
Remskar M, Mrzel A, Skraba Z. Science, 2001, 292: 479.

pmid: 11313488
[15]
Dong X Z, Xu H Y, Chen H, Wang L Y, Wang J Q, Fang W Z, Chen C, Salman M, Xu Z, Gao C. Carbon, 2019, 148: 134.

doi: 10.1016/j.carbon.2019.03.080
[16]
Hu H Y, Cai T H, Bai P, Xu J, Ge S H, Hu H, Wu M B, Xue Q Z, Yan Z F, Gao X L, Xing W. Chem. Commun., 2020, 56(10): 1593.

doi: 10.1039/C9CC06895C
[17]
Bhauriyal P, Mahata A, Pathak B. Phys. Chem. Chem. Phys., 2017, 19(11): 7980.

doi: 10.1039/c7cp00453b pmid: 28263339
[18]
Kaveevivitchai W, Hua A, Wang S. Small, 2017, 13: 1701296.

doi: 10.1002/smll.v13.34
[19]
Li C X, Dong S H, Tang R, Ge X L, Zhang Z W, Wang C X, Lu Y P, Yin L W. Energy Environ. Sci., 2018, 11(11): 3201.

doi: 10.1039/C8EE01046C
[20]
Liu Y P, Li Y G. Chin. Sci. Bull., 2015, 60: 1723.

doi: 10.1360/csb2015-60-18-1723
( 刘玉平, 李彦光. 科学通报, 2015, 60: 1723.)
[21]
Ye D L, Luo B, Lu G M, Wang L Z. Sci. Bull., 2015, 60(11): 1042.

doi: 10.1007/s11434-015-0808-x
[22]
Kong D S, Wang H T, Judy J, Mauro P, Kristie J, Yao J, Cui Y. Nano Letters, 2013, 13: 3.
[23]
Zhang Y, Liu S Q, Ji Y J, Ma J M, Yu H J. Adv. Mater., 2018, 30(38): 1706310.

doi: 10.1002/adma.v30.38
[24]
Tian H, Zhang S, Meng Z, Meng, Zhen H, Wei H, Wei Q. ACS Energy Letters, 2017: 1170.
[25]
Wang D Y, Wei C Y, Lin M C, Pan C J, Chou H L, Chen H A, Gong M, Wu Y P, Yuan C Z, Angell M, Hsieh Y J, Chen Y H, Wen C Y, Chen C W, Hwang B J, Chen C C, Dai H J. Nat. Commun., 2017, 8(1): 1.

doi: 10.1038/s41467-016-0009-6
[26]
Hu Y X, Luo B, Ye D L, Zhu X B, Lyu M Q, Wang L Z. Adv. Mater., 2017, 29(48): 1606132.

doi: 10.1002/adma.v29.48
[27]
Zhao Z C, Hu Z Q, Li Q, Li H S, Zhang X, Zhuang Y D, Wang F, Yu G H. Nano Today, 2020, 32: 100870.

doi: 10.1016/j.nantod.2020.100870
[28]
Divya S, Johnston J H, Nann T. Energy Technol., 2020, 8(6): 2000038.

doi: 10.1002/ente.v8.6
[29]
Takahashi K, Wang Y, Cao G Z. J. Phys. Chem. B, 2005, 109(1): 48.

doi: 10.1021/jp044772j
[30]
Jiang J L, Li H, Fu T, Hwang B J, Li X, Zhao J B. ACS Appl. Mater. Interfaces, 2018, 10(21): 17942.

doi: 10.1021/acsami.8b03259
[31]
Hu Z Q, Zhang H, Wang H Z, Zhang F L, Li Q, Li H S. ACS Mater. Lett., 2020, 2(8): 887.
[32]
Bai L, Wang Y F, Huo S H, Lu X Q. Prog. Chem., 2019, 31(1): 191.
( 白蕾, 王艳凤, 霍淑慧, 卢小泉. 化学进展, 2019, 31(1): 191.)

doi: 10.7536/PC180527
[33]
Yang H, Li H, Li J, Sun Z, He K, Cheng H, Li F. Angew Chem Int Ed, 2019, 58: 11978.

doi: 10.1002/anie.v58.35
[34]
Zhang R, Qin Y, Liu P, Jia C K, Tang Y G, Wang H Y. ChemSusChem, 2020, 13(6): 1354.

doi: 10.1002/cssc.201903320 pmid: 32017468
[35]
Jeong J M, Kyoung G, Sung J, Jung W K, Young K H, Seok J L, Bong G C. Nanoscale, 2015, 7: 324.

doi: 10.1039/C4NR06215A
[36]
Li Z Y, Niu B B, Liu J, Li J L, Kang F Y. ACS Appl. Mater. Interfaces, 2018, 10(11): 9451.

doi: 10.1021/acsami.8b00100
[37]
Yang W, Lu H, Cao Y. ACS Sustainable Chem., 2019, 7: 4861.
[38]
Mori T, Orikasa Y, Nakanishi K, Chen K Z, Hattori M, Ohta T, Uchimoto Y. J. Power Sources, 2016, 313: 9.

doi: 10.1016/j.jpowsour.2016.02.062
[39]
Takami N, Koura N. Electrochimica Acta, 1988, 33(1): 69.

doi: 10.1016/0013-4686(88)80034-3
[40]
Zhao Z C, Hu Z Q, Jiao R S, Tang Z H, Dong P, Li Y D, Li S D, Li H S. Energy Storage Mater., 2019, 22: 228.
[41]
Hu Y X, Luo B, Ye D L, Zhu X B, Lyu M Q, Wang L Z. Adv. Mater., 2017, 29(48): 1606132.

doi: 10.1002/adma.v29.48
[42]
Wang S, Jiao S Q, Wang J X, Chen H S, Tian D H, Lei H P, Fang D N. ACS Nano, 2017, 11(1): 469.

doi: 10.1021/acsnano.6b06446
[43]
Wang S, Yu Z J, Tu J G, Wang J X, Tian D H, Liu Y J, Jiao S Q. Adv. Energy Mater., 2016, 6(13): 1600137.

doi: 10.1002/aenm.201600137
[44]
Liang K, Ju L C, Koul S, Kushima A, Yang Y. Adv. Energy Mater., 2019, 9(2): 1802543.

doi: 10.1002/aenm.v9.2
[45]
Hu Z Q, Zhi K K, Li Q, Zhao Z C, Liang H Y, Liu X, Huang J Y, Zhang C X, Li H S, Guo X X. J. Power Sources, 2019, 440: 227147.

doi: 10.1016/j.jpowsour.2019.227147
[46]
Cai T H, Zhao L M, Hu H Y, Li T G, Li X C, Guo S, Li Y P, Xue Q Z, Xing W, Yan Z F, Wang L Z. Energy Environ. Sci., 2018, 11(9): 2341.

doi: 10.1039/C8EE00822A
[47]
Guan W, Wei L J, Jiao S Q. Nanoscale, 2019, 11: 16437.

doi: 10.1039/c9nr06481h pmid: 31441921
[48]
Zhou Q P, Wang D W, Lian Y, Hou S Y, Ban C L, Wang Z F, Zhao J, Zhang H H. Electrochimica Acta, 2020, 354: 136677.

doi: 10.1016/j.electacta.2020.136677
[49]
Feng X Q, Li J M, Ma Y L, Yang C Y, Zhang S Y, Li J F, An C S. ACS Appl. Energy Mater., 2021, 4(2): 1575.

doi: 10.1021/acsaem.0c02797
[50]
Song G S, Liang C, Gong H, Li M F, Zheng X C, Cheng L, Yang K, Jiang X Q, Liu Z. Adv. Mater., 2015, 27(40): 6110.

doi: 10.1002/adma.201503006
[51]
Du Y Q, Zhao S M, Xu C. ChemElectroChem, 2019, 6: 4437.

doi: 10.1002/celc.v6.17
[52]
Jiang L, Zhu Y J, Cui J B. J. Solid State Chem., 2010, 183(10): 2358.

doi: 10.1016/j.jssc.2010.08.004
[53]
Xu J, Yin Y Q, Xiong H Q, Du X D, Jiang Y J, Guo W, Wang Z, Xie Z Z, Qu D Y, Tang H L, Deng Q B, Li J S. Appl. Surf. Sci., 2019, 490: 516.

doi: 10.1016/j.apsusc.2019.06.080
[54]
Seo J U, Seong G K, Park C M. Sci. Rep., 2015, 5(1): 1.
[55]
Yu Z J, Jiao S Q, Tu J G. ACS Nano, 2020, 14: 3469.

doi: 10.1021/acsnano.9b09550
[56]
Zhang B, Zhang Y, Li J L, Liu J, Huo X G, Kang F Y. J. Mater. Chem. A, 2020, 8(11): 5535.

doi: 10.1039/D0TA00674B
[57]
Manthiram A, Fu Y Z, Chung S H, Zu C X, Su Y S. Chem. Rev., 2014, 114(23): 11751.

doi: 10.1021/cr500062v pmid: 25026475
[58]
Wang H L, Yang Y, Liang Y Y, Robinson J T, Li Y G, Jackson A, Cui Y, Dai H J. Nano Lett., 2011, 11(7): 2644.

doi: 10.1021/nl200658a
[59]
Cohn G, Ma L, Archer L A. J. Power Sources, 2015, 283: 416.

doi: 10.1016/j.jpowsour.2015.02.131
[60]
Gao T, Li X, Wang X, Han J K, Fan F D, Suo X L, Pearse L M, Alex J L, Rubloff S B, Gary W, Gaskell K J, Noked M, Wang C S. Angew. Chem., 2016, 12: 1.
[61]
Zhang X F, Jiao S Q, Tu J G, Song W L, Xiao X, Li S J, Wang M Y, Lei H P, Tian D H, Chen H S, Fang D N. Energy Environ. Sci., 2019, 12(6): 1918.

doi: 10.1039/C9EE00862D
[62]
Liu S Q, Zhang X, He S M, Tang Y S, Wang J, Wang B Y, Zhao S, Su H, Ren Y, Zhang L Q, Huang J Y, Yu H J, Amine K. Nano Energy, 2019, 66: 104159.

doi: 10.1016/j.nanoen.2019.104159
[1] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[2] Shihao Zhou, Xianwen Wu, Yanhong Xiang, Ling Zhu, Zhixiong Liu, Caixian Zhao. Manganese-Based Cathode Materials for Aqueous Zinc Ion Batteries [J]. Progress in Chemistry, 2021, 33(4): 649-669.
[3] Jianwen Liu, Heyang Jiang, Chihang Sun, Wenbin Luo, Jing Mao, Kehua Dai. P2-Structure Layered Composite Metal Oxide Cathode Materials for Sodium Ion Batteries [J]. Progress in Chemistry, 2020, 32(6): 803-816.
[4] Guange Wang, Huaning Zhang, Tong Wu, Borui Liu, Qing Huang, Yuefeng Su. Recycling and Regeneration of Spent Lithium-Ion Battery Cathode Materials [J]. Progress in Chemistry, 2020, 32(12): 2064-2074.
[5] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[6] Yanchen Liu, Bin Huang, Yijia Shao, Muyuan Shen, Li Du, Shijun Liao. Potassium-Ion Battery and Its Recent Research Progress [J]. Progress in Chemistry, 2019, 31(9): 1329-1340.
[7] Yijia Shao, Bin Huang, Quanbing Liu, Shijun Liao. Preparation and Modification of Ni-Co-Mn Ternary Cathode Materials [J]. Progress in Chemistry, 2018, 30(4): 410-419.
[8] Rong Yang, Lan Li, Bing Ren, Dan Chen, Liping Chen, Yinglin Yan. Doped-Graphene in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2018, 30(11): 1681-1691.
[9] Zhang Songtao, Zheng Mingbo, Cao Jieming, Pang Huan. Porous Carbon/Sulfur Composite Cathode Materials for Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2016, 28(8): 1148-1155.
[10] Yi Luocai, Ci Suqin, Sun Chengli, Wen Zhenhai. Cathode Materials of Non-Aqueous Lithium-Oxygen Battery [J]. Progress in Chemistry, 2016, 28(8): 1251-1264.
[11] Chen Jun, Ding Nengwen, Li Zhifeng, Zhang Qian, Zhong Shengwen. Organic Cathode Material for Lithium Ion Battery [J]. Progress in Chemistry, 2015, 27(9): 1291-1301.
[12] Liu Yuping, Xie Jian, Li Tingting, Deng Ling, Chen Changguo, Zhang Dingfei. Development of Mg-Transition Metal Complex as Cathode Materials [J]. Progress in Chemistry, 2014, 26(09): 1596-1608.
[13] Bai Ying, Li Yu, Zhong Yunxia, Chen Shi, Wu Feng, Wu Chuan. Li-Rich Transition Metal Oxide xLi2MnO3·(1-x)LiMO2 (M=Ni, Co or Mn) for Lithium Ion Batteries [J]. Progress in Chemistry, 2014, 26(0203): 259-269.
[14] Wang Fuqing, Chen Jian, Zhang Feng, Yi Baolian. Polyanion-Type Cathode Materials for Li-Ion Batteries [J]. Progress in Chemistry, 2012, 24(08): 1456-1465.
[15] Li Yuejiao, Hong Liang, Wu Feng. Preparation of Li3V2(PO4)3 Cathode Material for Power Li-Ion Batteries [J]. Progress in Chemistry, 2012, 24(01): 47-53.