中文
Announcement
More
Progress in Chemistry 2012, Vol. Issue (9): 1742-1750 Previous Articles   Next Articles

• Review •

Synthesis of Sesquiterpenoids: Englerin A and Its Analogues

Yue Guizhou, Huang Qianming, Zou Ping   

  1. College of Biology and Science, Sichuan Agricultural University, Ya'an 625014, China
  • Received: Revised: Online: Published:
PDF ( 812 ) Cited
Export

EndNote

Ris

BibTeX

In 2008, the guaiane sesquiterpene (-)-englerin A, isolated from the genus phyllanthus engleri in East Africa, selectively inhibited the growth of renal cancer cell lines with GI50 values ranging from 1—87nm. It was found to be 1—2 orders of magnitude more potent than taxol against certain cell lines. The promising bioactivity and the structural complexity of (-)-englerin A and its analogues have attracted many organic chemists all over the world. Many studies toward the total synthesis of englerin A and its analogues were reported in three years. The article reviews the progress on the synthesis of englerin A and its analogues,We classified these syntheses according to key strategies for syntheses of englerin A and its analogues and elaboratted the characteristics of these synthetic routes. Contents 1 Introduction
2 Key strategies for syntheses of englerin A and its analogues
2.1 Ring-closing metathesis (RCM)
2.2 Gold(Ⅰ)-catalytic domino reaction
2.3 Oxopyrilium [5+2] cycloaddition
2.4 Rh(Ⅱ)-catalytic [4+3] cycloaddition
2.5 Organocatalytic [4+3] cycloaddition
2.6 Transannular epoxide opening reaction
2.7 SmI2-mediated cyclization
3 Conclusions and outlook

CLC Number: 

[1] Ratnayake R, Covell D, Ransom T T, Gustafson K R, Beuler J A. Org. Lett., 2009, 11: 57-60
[2] Beutler J A, Ratnayake R, Covell D, Johnson T R. WO 2009088854, 2009
[3] Akee R K, Ratnayake R, McMaho J B, Beutler J A. J. Nat. Prod., 2012, 75: 459-463
[4] Schuster M, Blechert S. Angew. Chem. Int. Ed., 1997, 36: 2036-2056
[5] Nicolaou K C, Bulger P G, Sarlah D. Angew. Chem. Int. Ed., 2005, 44: 4490-4527
[6] Willot M, Radtke L, Konning D, Frohlich R, Gessner V H, Strohmann C, Christmann M. Angew. Chem. Int. Ed., 2009, 48: 9105-9108
[7] Radtke L, Willot M, Sun H, Ziegler S, Sauerland S, Strohmann C, Fröhlich R, Habenberger P, Waldmann H, Christmann M. Angew. Chem. Int. Ed., 2011, 50: 3992-4002
[8] Schreiber S L, Meyers H V, Wiberg K B. J. Am. Chem. Soc., 1986, 108: 8274-8277
[9] Jimeénez-Núñez E K, Echavarren A M. Chem. Rev., 2008, 108: 3326-3350
[10] Zhou Q, Chen X, Ma D. Angew. Chem. Int. Ed., 2010, 49: 3513-3516
[11] Jiménez-Nénez E K, Claverie C, Nieto-Oberhuber C, Echavarren A M. Angew. Chem. Int. Ed., 2006, 45: 5452-5455
[12] Jiménez-Nénez E, Molawi K, Echavarren A M. Chem. Commun., 2009, 7327-7329
[13] Peng G P, Tian G, Huang X F, Lou F C. Phytochemistry, 2003, 63: 877-881
[14] Huang S X, Yang J, Xiao W L, Zhu Y L, Li R T, Li L M, Pu J X, Li X, Li S H, Sun H D. Helv. Chim. Acta, 2006, 89: 1169-1175
[15] Molawi K, Delpont N, Echavarren A M. Angew. Chem. Int. Ed., 2010, 49: 3517-3519
[16] Echavarren P, Antonio M, Molawi K, Delpont N, Nicolas P R. WO 2011120886, 2011
[17] Willot M, Christmann M. Nat. Chem., 2010, 2: 519-520
[18] Singh V, Krishna U M, Vikrant, Trivedi G K. Tetrahedron, 2008, 64: 3405-3428
[19] Pellissier H. Adv. Synth. Catal., 2011, 353: 189-218
[20] Wender P A, Kogen H, Lee H Y, Munger J D, Wilhelm R S, Williams P D. J. Am. Chem. Soc., 1989, 111: 8957-8958
[21] Wender P A, Jesudason C D, Nakahira H, Tamura N, Tebbe A L, Ueno Y. J. Am. Chem. Soc., 1997, 119: 12976-12977
[22] Ali M A, Bhogal N, Findlay J B C, Fishwick C W G. J. Med. Chem., 2005, 48: 5655-5658
[23] Roethle P A, Hernandez P T, Trauner D. Org. Lett., 2006, 8: 5901-5904
[24] Li Y, Nawrat C C, Pattenden G, Winne J M. Org. Biomol. Chem., 2009, 7: 639-640
[25] Ishida K, Kusama H, Iwasawa N. J. Am. Chem. Soc., 2010, 132: 8842-8843
[26] Burns N, Witten M R, Jacobsen E N. J. Am. Chem. Soc., 2011, 133: 14578-14581
[27] Nicolaou K C, Kang Q A, Ng S Y, Chen D Y K. J. Am. Chem. Soc., 2010, 132: 8219-8222
[28] Chen K P, Chen D Y K. ChemMedChem, 2011, 6: 420-423
[29] Doyle M P, Forbes D C. Chem. Rev., 1998, 98: 911-936
[30] Maas G. Chem. Soc. Rev., 2004, 33: 183-190
[31] Padwa A, Krumpe K E. Tetrahedron, 1992, 48: 5385-5386
[32] Navickas V, Ushakov D B, Maier M E, Stroöbele M, Meyer H J. Org. Lett., 2010, 12: 3418-3421
[33] Xu J, Caro-Diaz E J E, Theodorakis E A. Org. Lett., 2010, 12: 3708-3711
[34] Harmata M, Ghosh S K, Hong X C, Wacharasindhu S, Kirchhoefer P. J. Am. Chem. Soc., 2003, 125: 2058-2059
[35] Sun B F, Wang C L, Ding R, Xu J Y, Lin G Q. Tetrahedron Lett., 2010, 52: 2155-2158
[36] Wang C L, Sun B F, Chen S G, Lin G Q, Ding R, Xu J Y, Shan Y J. Synlett, 2012, 263-266
[37] Ushakov D B, Navickas V, Ströbele M, Maichle-Mössmer C, Sasse F, Maier M E. Org. Lett., 2011, 13: 2090-2093
[38] Namy J L, Girard P, Kagan H B. New J. Chem., 1977, 1: 5-7
[39] Nicolaou K C, Ellery P S, Chen J S. Angew. Chem. Int. Ed., 2009, 48: 7140-7165
[40] Li Z, Nakashige M, Chain W J. J. Am. Chem. Soc., 2011, 133: 6553-6556
[41] Chain W J. Synlett, 2011, 2605-2608
[42] Szostak M, Procter D J. Angew. Chem. Int. Ed., 2011, 50: 7737-7739
[43] Parmar D, Price K, Spain M, Matsubara H, Bradley P A, Procter D J. J. Am. Chem. Soc., 2011, 133: 2418-2490
[44] Pouwer R H, Richard J A, Tseng C C, Chen D Y K. Chem. Asian J., 2011, 7: 22-35
[45] 卢云宇(Lu Y Y), 姚和权(Yao H Q), 孙炳峰(Sun B F). 有机化学(Chinese Journal of Organic Chemistry), 2012, 32: 1-12
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[7] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[8] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[9] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[10] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[13] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[14] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[15] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.