中文
Announcement
More
Progress in Chemistry 2012, Vol. Issue (10): 1974-1982 Previous Articles   Next Articles

• Review •

Synthesis of Azaindoles

Wang Zhihui*, Wang Xiao   

  1. College of Science, China University of Petroleum-Beijing, Beijing 102249, China
  • Received: Revised: Online: Published:
PDF ( 1450 ) Cited
Export

EndNote

Ris

BibTeX

Azaindoles belong to a kind of very important heterocycles, which play a role in material science and drug design and synthesis. Since azaindoles have the different molecular structure compared to indole, many kinds of indole syntheses don’t work so efficiently. Recently, the development of organometallic chemistry has supported the azaindole synthesis with more kinds of starting material and more powerful ways to build up the cyclic structure of azaindoles, so it has made the new possibilities to synthesize azaindoles. We have surveyed the development of azaindole synthesis recently. Several ways for the azaindole synthesis, such as Bartoli synthesis, Fischer indole synthesis, organolithium methods, transition-metal mediated methods and so on, have been introduced. This review summarized the very useful methods to synthesize many kinds of azaindoles (4-azaindole, 5-azaindole, 6-azaindole and 7-azaindole), that will be helpful for the application of azaindole compounds in material science and pharmaceutical synthetic chemistry. Contents 1 Introduction
2 Bartoli synthesis
3 Fischer indole synthesis
4 Organolithium methods
5 Transition-metal mediated methods
5.1 From alkynes to azaindoles
5.2 From alkenes to azaindoles catalyzed by Pd
5.3 From aldehydes, ketones or enol ethers to azaindoles
6 Other ways
7 Conclusion

CLC Number: 

[1] Zhao S B, Wang S. Chem. Soc. Rev., 2010, 39: 3142-3156
[2] Joule J A, Mills K. Heterocyclic Chemistry (5th ed.). Blackwell: Wiley, 2010. 373-431
[3] Popowycz F, Mérour J Y, Joseph B. Tetrahedron, 2007, 63: 8689-8707
[4] Popowycz F, Routier S, Joseph B, Mérour J Y. Tetrahedron, 2007, 63: 1031-1064
[5] Song J J, Reeves J T, Gallou F, Tan Z, Yee N K, Senanayake C H. Chem. Soc. Rev., 2007, 36: 1120-1132
[6] Blaazer A R, Lange J H M, van der Neut M A W, Mulder A, den Boon F S, Werkman T R, Kruse C G, Wadman W J. Eur. J. Med. Chem., 2011, 46: 5086-5098
[7] Lachance N, Bonhomme-Beaulieu L P, Joly P. Synthesis, 2009, 721-730
[8] Jeanty M, Blu J, Suzenet F, Guillaumet G. Org. Lett., 2009, 11: 5142-5145
[9] Ma Y, Breslin S, Keresztes I, Lobkovsky E, Collum D B. J. Org. Chem., 2008, 73: 9610-9618
[10] Kurhade S, Kaduskar R D, Dave B, Ramaiah P A, Palle V P, Bhuniya D. Tetrahedron Lett., 2011, 52: 1874-1877
[11] Zhang W X, Zhang S, Xi Z. Acc. Chem. Res., 2011, 44: 541-551
[12] Luo Q, Wang C, Gu L, Zhang W X, Xi Z. Chem. Asian J., 2010, 5: 1120-1128
[13] Luo Q, Gu L, Wang C, Liu J, Zhang W, Xi Z. Tetrahedron Lett., 2009, 50: 3213-3215
[14] Liu J, Zhang S, Zhang W X, Xi Z. Organometallic, 2009, 28: 413-417
[15] Yu T, Sun X, Wang C, Deng L, Xi Z. Chem. Eur. J., 2005, 11: 1895-1902
[16] Yu T, Deng L, Zhao C, Li Z, Xi Z. Tetrahedron Lett., 2003, 44: 677-679
[17] Xi Z, Fischer R, Hara R, Sun W, Obora Y, Suzuki N, Nakajima K, Takahashi T. J. Am. Chem. Soc., 1997, 119: 12842-12848
[18] Takahashi T, Xi Z, Obora Y, Suzuki N. J. Am. Chem. Soc., 1995, 117: 2665-2666
[19] Sun X, Wang C, Li Z, Zhang S, Xi Z. J. Am. Chem. Soc., 2004, 126: 7172-7173
[20] Zhang W X, Zhang S, Sun X, Nishiura M, Hou Z, Xi Z. Angew. Chem. Int. Ed., 2009, 48: 7227-7231
[21] Zhang S, Zhang W X, Zhao J, Xi Z. J. Am. Chem. Soc., 2010, 132: 14042-14045
[22] Zhang S, Sun X, Zhang W X, Xi Z. Chem. Eur. J., 2009, 15: 12608-12617
[23] Zhang S, Zhang W X, Zhao J, Xi Z. Chem. Eur. J., 2011, 17: 2442-2449
[24] Zhang S, Zhang W X, Xi Z. Chem. Eur. J., 2010, 16: 8419-8426
[25] Zhang S, Zhao J, Zhang W X, Xi Z. Org. Lett., 2011, 13: 1626-1629
[26] Calvet G, Livecchi M, Schmidt F. J. Org. Chem., 2011, 76: 4734-4740
[27] Koolman H, Heinrich T, Böttcher H, Rautenberg W, Reggelin M. Bioorg. Med. Chem. Lett., 2009, 19: 1879-1882
[28] Layek M, Kumar Y S, Islam A, Karavarapu R, Sengupta A, Halder D, Mukkanti K, Pal M. Med. Chem. Commun., 2011, 2: 478-485
[29] Suzuki Y, Ohta Y, Oishi S, Fujii N, Ohno H. J. Org. Chem., 2009, 74: 4246-4251
[30] Majumdar K C, Mondal S. Tetrahedron Lett., 2007, 48: 6951-6953
[31] Majumdar K C, Samanta S, Chattopadhyay B. Tetrahedron Lett., 2008, 49: 7213-7216
[32] Tjosaas F, Kjerstad I B, Fiksdahl A. J. Heterocyclic Chem., 2008, 45: 559-562
[33] Gorugantula S P, Carrero-Mart韓ez G M, Dantale S W, Söderberg B C G. Tetrahedron, 2010, 66: 1800-1805
[34] Hodgkinson R C, Schulz J, Willis M C. Org. Biomol. Chem., 2009, 7: 432-434
[35] Liang Y, Zhang S, Xi Z. J. Am. Chem. Soc., 2011, 133: 9204-9207
[36] Liang Y, Meng T, Zhang H J, Xi Z. Synlett, 2011, 911-914
[37] Hodgkinson R C, Schulz J, Willis M C. Tetrahedron, 2009, 65: 8940-8949
[38] Fang Y Q, Yuen J, Lautens M. J. Org. Chem., 2007, 72: 5152-5160
[39] Jia Y, Zhu J. Synlett, 2005, 2469-2472
[40] Jia Y, Bois-Choussy M, Zhu J. Angew. Chem. Int. Ed., 2008, 47: 4167-4172
[41] Wang Z, Bois-Choussy M, Jia Y, Zhu J. Angew. Chem. Int. Ed., 2010, 49: 2018-2022
[42] Velthuisen E J, Danishefsky S J. J. Am. Chem. Soc., 2007, 129: 10640-10641
[43] Xu Z, Hu W, Zhang F, Li Q, L? Z, Zhang L, Jia Y. Synthesis, 2008, 3981-3987
[44] Spergel S H, Okoro D R, Pitts W. J. Org. Chem., 2010, 75: 5316-5319
[45] Whelligan D K, Thomson D W, Taylor D, Hoelder S. J. Org. Chem., 2010, 75: 11-15
[46] Shumaila A M A, Puranik V G, Kusurkar R S. Tetrahedron, 2011, 67: 936-942
[47] Lu J, Cai X, Hecht S M. Org. Lett., 2010, 12: 5189-5191
[48] Moustafa M M A R, Pagenkopf B L. Org. Lett., 2010, 12: 3168-3171
[49] Parcerisa J, Romero M, Pujol M D. Tetrahedron, 2008, 64: 500-507
[50] Carpita A, Ribecai A, Stabile P. Tetrahedron, 2010, 66: 7169-7178
[51] Jeanty M, Suzenet F, Guillaumet G. J. Org. Chem., 2008, 73: 7390-7393
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[3] Yaqi Wang, Qiang Wu, Junling Chen, Feng Liang. Diels-Alder Reaction Catalyst [J]. Progress in Chemistry, 2022, 34(2): 474-486.
[4] Xiaoqiong Feng, Yunlong Ma, Hong Ning, Shiying Zhang, Changsheng An, Jinfeng Li. Transition Metal Chalcogenide Cathode Materials Applied in Aluminum-Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 319-327.
[5] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[6] Wendi Guo, Ye Liu. Carbonylation of Alkynes with Different Nucleophiles Catalyzed By Transition Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 512-523.
[7] Mengting Xu, Yanqing Wang, Ya Mao, Jingjuan Li, Zhidong Jiang, Xianxia Yuan. Cathode Catalysts for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2021, 33(10): 1679-1692.
[8] Nana Wang, Guanwu Wang. Investigation into Condensed-Matter Organic Synthesis under Mechanical Milling Conditions [J]. Progress in Chemistry, 2020, 32(8): 1076-1085.
[9] Miao Qian, Yang Daiyue. From Polycyclic Arenes Containing Eight-Membered Rings to Negatively Curved Nanocarbons: Progress and Outlook [J]. Progress in Chemistry, 2020, 32(11): 1835-1845.
[10] Rugang Fu, Zheng Li, Lei Gao. Direct Synthesis of Organic Compounds Using Calcium Carbide as the Acetylene Source [J]. Progress in Chemistry, 2019, 31(9): 1303-1313.
[11] Zhonggao Zhou, Yangyang Yuan, Guohai Xu, Zhengwang Chen, Mei Li. The Synthesis and Catalytic Activity of Sugar-Based NHCs and Their Transition Metal Complexes [J]. Progress in Chemistry, 2019, 31(2/3): 351-367.
[12] Lei Chen, Wen Zhao, Gangji Yi, Jianjun Zhou, Aihua Yua. Single-Ion Magnets Based on 3d Transition Metal [J]. Progress in Chemistry, 2019, 31(2/3): 337-350.
[13] Xiaowang Chi, Qunyan Wu, Jipan Yu, Qin Zhang, Zhifang Chai, Weiqun Shi. Actinide-Heterobimetal Compounds [J]. Progress in Chemistry, 2019, 31(10): 1341-1349.
[14] Xianwei Lv, Zhongpan Hu, Hui Zhao, Yuping Liu, Zhongyong Yuan. Self-Supporting Transition Metal Phosphides as Electrocatalysts for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2018, 30(7): 947-957.
[15] Yu Zhang, Jinghe Cen, Wenfang Xiong, Chaorong Qi, Huanfeng Jiang*. CO2: C1 Synthon in Carboxylation Reactions [J]. Progress in Chemistry, 2018, 30(5): 547-563.
Viewed
Full text


Abstract

Synthesis of Azaindoles