中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (9): 1303-1313 DOI: 10.7536/PC190137 Previous Articles   Next Articles

Direct Synthesis of Organic Compounds Using Calcium Carbide as the Acetylene Source

Rugang Fu1,**(), Zheng Li2, Lei Gao2   

  1. 1. Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, China
    2. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
  • Received: Online: Published:
  • Contact: Rugang Fu
  • About author:
    ** E-mail:
  • Supported by:
    The Key laboratory of Hexi Corridor Resources Utilization of Gansu(No.XZ1802)
Richhtml ( 48 ) PDF ( 1298 ) Cited
Export

EndNote

Ris

BibTeX

Traditionally, calcium carbide is a widely used raw material in organic synthesis. It is always first converted into acetylene gas and subsequently used to prepare organic compounds. Acetylene gas is inflammable and explosive, posing the problem of storage and transportation. In addition, directly using acetylene gas as precursor needs harsh reaction conditions and complicated operation, which greatly limits its further application. Recently, it is shown that calcium carbide could be quickly prepared from renewable biochar at relatively low temperature. Such progress allows calcium carbide as a green and economical raw material. Therefore, the direct use of calcium carbide as a green acetylene source instead of acetylene gas and acetylene reagent to prepare various important organic chemicals will be a simple and green way. In this review, the major progress to date, as well as related reaction types and reaction mechanism towards the application of calcium carbide for specific organic reaction and synthesis have been summarized. The trend of using calcium carbide as a solid acetylene source to construct organic compounds is also prospected.

Fig. 1 Traditional production route of calcium carbide
Fig. 2 Green production route of calcium carbide
Scheme. 1 The representative reaction of acetylene
Fig. 3 Organic chemicals produced from calcium carbide
Scheme. 2 Use of calcium carbide in Aldol condensation/esterification reaction as dehydrant[20, 21]
Scheme. 3 Reaction of calcium carbide with benzyl alcohol[22]
Scheme. 4 Reaction mechanism of calcium carbide with benzyl alcohol[22]
Scheme. 5 Reaction of calcium carbide with natural alcohols[23]
Scheme. 6 Reaction of calcium carbide with epoxides/aromatic ethers[24]
Scheme. 7 Reaction of fluorine mediated calcium carbide with alcohols/phenols[25]
Scheme. 8 Reaction mechanism of alcohols/phenols in CaC2/KF system[25]
Scheme. 9 Reaction of calcium carbide with thiols[26]
Scheme. 10 Reaction mechanism of calcium carbide with thiols[26]
Scheme. 11 Reaction of calcium carbide with disulfides[27]
Scheme. 12 Reaction of calcium carbide with indole/phenol[28]
Scheme. 13 Reaction of calcium carbide and acetone[29]
Scheme. 14 Reaction of calcium carbide with aldehydes/ketones[30]
Scheme. 15 Reaction of fluorine assisted calcium carbide with aldehydes/ketones[31]
Scheme. 16 Reaction mechanism of fluorine assisted calcium carbide with cyclohexanone[31]
Scheme. 17 Reaction of calcium carbide with benzaldehydes[32]
Scheme. 18 Reaction of calcium carbide with cycloketones[33]
Scheme. 19 Reaction of calcium carbide with oximes[34]
Scheme. 20 Reaction mechanism of calcium carbide with oximes[34]
Scheme. 21 Cyclization of calcium carbide with oximes[35]
Scheme. 22 Cyclization of calcium carbide with hydrazone[36]
Scheme. 23 Cyclization of calcium carbide with salicylaldehyde p-tosylhydrazones/2-hydroxyacetopheneones[37]
Scheme. 24 Reaction mechanism of calcium carbide with Salicylaldehyde p-Tosylhydrazones[37]
Scheme. 25 Reaction of calcium carbide with tertiary amines[45]
Scheme. 26 Reaction mechanism of calcium carbide with tertiary amines[45]
Scheme. 27 Reaction of calcium carbide with azides[46]
Scheme. 28 Reaction of calcium carbide with aryl boric acids[47]
Scheme. 29 Reaction of calcium carbide with azides[48]
Scheme. 30 Reaction of calcium carbide with aldehydes and amines[49]
Scheme. 31 Reaction of calcium carbide with aromatic aldehydes and amines[50]
Scheme. 32 Reaction of calcium carbide with aliphatic aldehydes and secondary amines[51]
Scheme. 33 Reaction mechanism of calcium carbide with aliphatic aldehydes and secondary amines[51]
Scheme. 34 Reaction of calcium carbide with isoquinolines and alkyl esters[52]
Scheme. 35 Reaction mechanism of calcium carbide with isoquinoline and alkynyl ester[52]
Scheme. 36 Reaction of calcium carbide with potassium ferrocyanide and aryl iodides[53]
Scheme. 37 Reaction of calcium carbide with alkyl tin halides[54]
Scheme. 38 Reaction of calcium carbide with bromine benzene[55]
Scheme. 39 Reaction mechanism of calcium carbide with bromine benzene[55]
Scheme. 40 Reaction of calcium carbide with iodine benzene[56]
Scheme. 41 The reaction of calcium carbide with benzene diiodobenzenes[57]
Scheme. 42 The reaction of calcium carbide with benzene halides[58]
Scheme. 43 Diagram of the reaction tube of calcium carbide with aryl benzene[58]
Scheme. 44 Reaction of calcium carbide with aryl boric acids/aryl borate esters[59]
Scheme. 45 The mechanism for the reaction of calcium carbide with aryl boric acids[59]
[1]
Trotus I T, Zimmermann T, Schüth F . Chem. Rev., 2014, 114:1761. https://www.ncbi.nlm.nih.gov/pubmed/24228942

doi: 10.1021/cr400357r pmid: 24228942
[2]
Li G, Liu Q, Liu Z, Zhang Z, Li C, Wu W . Angew. Chem. Int. Ed., 2010, 49:8480. https://www.ncbi.nlm.nih.gov/pubmed/20836115

doi: 10.1002/anie.201004169 pmid: 20836115
[3]
辛采芬(Xin C F), 钱新荣(Qian X R) . 化学进展(Progress in Chemistry), 1994, 6(1):62.
[4]
Davy E . Report of the 6th Meeting of the British Association for the Advancement of Science, 1836. 5.
[5]
Kutscheroff M. Ber. Dtsch. Chem. Ges., 1881, 14:1540.
[6]
Wakatsuki Y, Yamazaki H . Tetrahedron Lett., 1973, 14:3383.
[7]
Myers A G, Tanaka D, Mannion M R . J. Am. Chem. Soc., 2002, 124:11250. https://www.ncbi.nlm.nih.gov/pubmed/12236722

doi: 10.1021/ja027523m pmid: 12236722
[8]
Nicolaou K C, Bulger P G . Sarlah D. Angew. Chem. Int. Ed., 2005, 44:4442. https://www.ncbi.nlm.nih.gov/pubmed/15991198

doi: 10.1002/anie.200500368 pmid: 15991198
[9]
Hein J E, Fokin V V . Chem. Soc. Rev., 2010, 39:1302. http://xlink.rsc.org/?DOI=b904091a

doi: 10.1039/b904091a
[10]
Zeng X . Chem. Rev., 2013, 113:6864. https://www.ncbi.nlm.nih.gov/pubmed/23659649

doi: 10.1021/cr400082n pmid: 23659649
[11]
Willis M C . Chem. Rev. 2010, 110:725. https://www.ncbi.nlm.nih.gov/pubmed/19873977

doi: 10.1021/cr900096x pmid: 19873977
[12]
Gilmore K, Alabugin I V . Chem. Rev., 2011, 111:6513. https://www.ncbi.nlm.nih.gov/pubmed/21861478

doi: 10.1021/cr200164y pmid: 21861478
[13]
Fürstner A . Angew. Chem. Int. Ed., 2013, 125:2860. http://doi.wiley.com/10.1002/ange.201204513

doi: 10.1002/ange.201204513
[14]
Salvio R, Moliterno M, Bella M, Asian J . Org. Chem., 2014, 3:340.
[15]
Shiotsuki M, Sanda F, Masuda T . Polym. Chem., 2011, 2:1044.
[16]
Oremland R S, Voytek M A . Astrobiology, 2008, 8:45. https://www.ncbi.nlm.nih.gov/pubmed/18199006

doi: 10.1089/ast.2007.0183 pmid: 18199006
[17]
Bruscaa S, Lanzafameb R, Marino Cugno Garranob A, Messinab M, Lanzafameb R . Energy Procedia, 2014, 45:889.
[18]
姜春明(Jiang C M), 姜巍巍(Jiang W W), 李奇(Li Q), 黄贤滨(Huang X B), 李俊杰(Li J J) . 中国安全科学学报(China Safety Science Journal), 2006, 16(12):110.
[19]
Davidson C . J. Am. Chem. Soc., 1918, 40:397.
[20]
Sands R D . Org. Prep. Proced. Int., 1974, 6:153.
[21]
Oppenauer R V . Monatsh. Chem. Verw. Teile Anderer Wiss., 1966, 97:62.
[22]
Matake R, Adachi Y, Matsubara H . Green Chem., 2016, 18:2614. http://xlink.rsc.org/?DOI=C5GC02977E

doi: 10.1039/C5GC02977E
[23]
Teong S P, Chua A Y H, Deng S, Li X, Zhang Y . Green Chem., 2017, 19:1659. https://www.ncbi.nlm.nih.gov/pubmed/24135372

doi: 10.1016/j.bbmt.2013.10.007 pmid: 24135372
[24]
Teong S P, Lim J, Zhang Y . ChemSusChem, 2017, 10:3198. https://www.ncbi.nlm.nih.gov/pubmed/28730737

doi: 10.1002/cssc.201701153 pmid: 28730737
[25]
Werner G, Rodygin K S, Kostin A A, Gordeev E G, Kashin A S, Ananikov V P . Green Chem., 2017, 19:3032. http://xlink.rsc.org/?DOI=C7GC00724H

doi: 10.1039/C7GC00724H
[26]
Rodygin K S, Ananikov V P . Green Chem., 2016, 18:482. https://www.ncbi.nlm.nih.gov/pubmed/29396003

doi: 10.1016/S1473-3099(18)30062-8 pmid: 29396003
[27]
Rodygin K S, Gyrdymova Y V, Zarubaev V V . Mendeleev Commun., 2017, 27:476.
[28]
Rattanangkool E, Vilaivan T, Sukwattanasinitt M, Wacharasindhu S . Eur. J. Org. Chem., 2016, 2016:4347.
[29]
Ray F E, Sawicki E, Borum O H . J. Am. Chem. Soc., 1952, 74:1247.
[30]
Sum Y N, Yu D Y, Zhang Y G . Green Chem., 2013, 15:2718.
[31]
Hosseini A, Seidel D, Miska A, Schreiner P R . Org. Lett., 2015, 17:2808. https://www.ncbi.nlm.nih.gov/pubmed/25997788

doi: 10.1021/acs.orglett.5b01219 pmid: 25997788
[32]
Li Z, He L, Fu R, Song G, Song W, Xie D, Yang J . Tetrahedron, 2016, 72:4321.
[33]
Yu Y, Chen Y, Huang W, Wu W, Jiang H . J. Org. Chem., 2017, 82:9479. https://www.ncbi.nlm.nih.gov/pubmed/28831796

doi: 10.1021/acs.joc.7b01496 pmid: 28831796
[34]
Kaewchangwat N, Sukato R, Vchirawongkwin V, Vilaivan T, Sukwattanasinitt M, Wacharasindhu S . Green Chem., 2015, 17:460.
[35]
Ledovskaya M S, Rodygin K S, Ananikov V P . Org. Chem. Front., 2018, 5:226.
[36]
Yu Y, Huang W, Chen Y, Gao B, Wu W, Jiang H . Green Chem., 2016, 18:6445.
[37]
Fu R, Li Z . Org. Lett., 2018, 20:2342. https://www.ncbi.nlm.nih.gov/pubmed/29633847

doi: 10.1021/acs.orglett.8b00676 pmid: 29633847
[38]
Xiao Q, Xia Y, Li H, Zhang Y, Wang J . Angew. Chem. Int. Ed., 2011, 50:1114. https://www.ncbi.nlm.nih.gov/pubmed/21268207

doi: 10.1002/anie.201005741 pmid: 21268207
[39]
Ye F, Wang C, Ma X, Hossain M L, Xia Y, Zhang Y, Wang J . J. Org. Chem., 2015, 80:647. https://www.ncbi.nlm.nih.gov/pubmed/25469937

doi: 10.1021/jo502316q pmid: 25469937
[40]
Hossain M L, Ye F, Zhang Y, Wang J . J. Org. Chem., 2013, 78:1236. https://www.ncbi.nlm.nih.gov/pubmed/23301614

doi: 10.1021/jo3024686 pmid: 23301614
[41]
Suárez A, Fu G C . Angew. Chem. Int. Ed., 2004, 116:3664.
[42]
Gabriele B, Mancuso R, Salerno G . J. Org. Chem., 2008, 73:7336. https://www.ncbi.nlm.nih.gov/pubmed/18729323

doi: 10.1021/jo801444n pmid: 18729323
[43]
Thirupathi N, Hari Babu M, Dwivedi V, Kant R, Sridhar Reddy M . Org. Lett., 2014, 16:2908. https://www.ncbi.nlm.nih.gov/pubmed/24819584

doi: 10.1021/ol501048x pmid: 24819584
[44]
Wongsa N, Sommart U, Ritthiwigrom T, Yazici A, Kanokmedhakul S, Kanokmedhakul K, Willis A C, Pyne S G . J. Org. Chem., 2013, 78:1138. https://www.ncbi.nlm.nih.gov/pubmed/23289721

doi: 10.1021/jo302554v pmid: 23289721
[45]
Teong S P, Yu D, Sum Y N, Zhang Y . Green Chem., 2016, 18:3499.
[46]
Jiang Y, Kuang C, Yang Q . Synlett., 2009, 19:3163.
[47]
Jiang Y, Kuang C . Helv. Chem. Acta, 2012, 95:448.
[48]
Gonda Z, Lrincz K, Novák Z . Tetrahedron Lett., 2010, 51:6275. https://linkinghub.elsevier.com/retrieve/pii/S004040391001693X

doi: 10.1016/j.tetlet.2010.09.097
[49]
Lin Z, Yu D, Sum Y N, Zhang Y . ChemSusChem, 2012, 5:625. https://www.ncbi.nlm.nih.gov/pubmed/22378645

doi: 10.1002/cssc.201100649 pmid: 22378645
[50]
Yu D, Sum Y N, Ean A C C, Chin M P, Zhang Y, . Angew. Chem. Int. Ed., 2013, 52:5125. https://www.ncbi.nlm.nih.gov/pubmed/23576293

doi: 10.1002/anie.201301019 pmid: 23576293
[51]
Fu R, Li Z . J. Chem. Res., 2017, 41:341.
[52]
Samzadeh-Kermani A . Synlett., 2017, 28:2126.
[53]
Song G, Li Z . Eur. J. Org. Chem., 2018, 2018:1326.
[54]
Cochran J, C , Lemieux R P, Giacobbe R, Roitstein A . Synth. React. Inorg. Met. Chem., 1990, 20:251.
[55]
Zhang W, Wu H, Liu Z, Zhong P, Zhang L, Huang X, Cheng J . Chem. Commun., 2006, 46:4826. https://www.ncbi.nlm.nih.gov/pubmed/17345742

doi: 10.1039/b607809e pmid: 17345742
[56]
Chuentragool P, Vongnam K, Rashatasakhon P, Sukwattanasinitt M, Wacharasindhu S . Tetrahedron, 2011, 67:8177.
[57]
Thavornsin N, Sukwattanasinitt M, Wacharasindhu S . Polym. Chem., 2014, 5:48.
[58]
Matake R, Niwa Y, Matsubara H . Org. Lett., 2015, 17:2354. https://www.ncbi.nlm.nih.gov/pubmed/25950272

doi: 10.1021/acs.orglett.5b00827 pmid: 25950272
[59]
Fu R, Li Z . Eur. J. Org. Chem., 2017, 2017:6648.
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Nana Wang, Guanwu Wang. Investigation into Condensed-Matter Organic Synthesis under Mechanical Milling Conditions [J]. Progress in Chemistry, 2020, 32(8): 1076-1085.
[3] Miao Qian, Yang Daiyue. From Polycyclic Arenes Containing Eight-Membered Rings to Negatively Curved Nanocarbons: Progress and Outlook [J]. Progress in Chemistry, 2020, 32(11): 1835-1845.
[4] Zou Huaibo, Wang Huahua, Mei Guangquan, Liu Haiyang, Chang Chi-Kwong. Catalytic Application of Iron Corrole Complexes in Organic Synthesis [J]. Progress in Chemistry, 2015, 27(6): 666-674.
[5] Xu Yisong, Zhang Fengxiang, Li Jiayun, Bai Ying, Xiao Wenjun, Peng Jiajian. Preparation and Applications in Organic Reactions of Polyethylene Glycol Functionalized Ionic Liquids [J]. Progress in Chemistry, 2015, 27(10): 1400-1412.
[6] Shen Haimin, Wu Hongke, Shi Hongxin, Ji Hongbing, Yu Wubin. Application of the Heterogeneous Cyclodextrins in Aqueous Phase Organic Synthesis [J]. Progress in Chemistry, 2015, 27(1): 70-78.
[7] Wang Ailing, Zheng Xueliang, Zhao Zhuangzhi, Li Changping, Zheng Xuefang. Deep Eutectic Solvents to Organic Synthesis [J]. Progress in Chemistry, 2014, 26(05): 784-795.
[8] Xu Lining, Zhang Juntao, Tao Cheng, Cao Xiaoping. Advances in the Synthesis of Vinyl Chloride Compounds [J]. Progress in Chemistry, 2013, 25(11): 1876-1887.
[9] Hou Chen, Zhu Hao, Li Yijing, Li Yanfeng. Immobilized Proline and Its Derivatives Employed in the Catalysis of Asymmetric Organic Synthesis [J]. Progress in Chemistry, 2012, (9): 1729-1741.
[10] Wang Zhihui*, Wang Xiao. Synthesis of Azaindoles [J]. Progress in Chemistry, 2012, (10): 1974-1982.
[11] Shen Jinhai, Cheng Guolin, Cui Xiuling. Domino Reactions Based on Pd-Catalyzed C-H Bond Activation [J]. Progress in Chemistry, 2012, 24(07): 1324-1336.
[12] Bao Chunyan, Jia Huijuan, Liu Tao, Wang Yi, Peng Wei, Zhu Linyong. Synthesis of Artificial Ion Channels in Bilayer Membrane [J]. Progress in Chemistry, 2012, 24(07): 1337-1345.
[13] Liu Li Wang Dong. Organic Reactions "on Water" [J]. Progress in Chemistry, 2010, 22(07): 1233-1241.
[14] . Applications of Supercritical Methanol in Chemical Reactions [J]. Progress in Chemistry, 2010, 22(05): 796-802.
[15] Du Zhengyin Li Yanchun. Indium Reagent Mediated Reactions in Aqueous Media and Their Applications in Organic Synthesis [J]. Progress in Chemistry, 2010, 22(01): 71-80.