中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (11): 1835-1845 DOI: 10.7536/PC200633 Previous Articles   Next Articles

From Polycyclic Arenes Containing Eight-Membered Rings to Negatively Curved Nanocarbons: Progress and Outlook

Miao Qian1,2,**(), Yang Daiyue1,3   

  1. 1. Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
    2. Department of Chemistry, the Chinese University of Hong Kong, Hong Kong 999077, China
    3. College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
  • Received: Revised: Online: Published:
  • Contact: Miao Qian
  • Supported by:
    the Croucher Senior Research Fellowship()
Richhtml ( 60 ) PDF ( 1076 ) Cited
Export

EndNote

Ris

BibTeX

Carbon allotropes comprised exclusively of sp2 hybridized carbon atoms present flat or curved surface, whose overall geometric feature is reflected by its curvature. Consisting of six-membered rings exclusively, graphene has zero curvature. Five-membered rings induce positive curvature as displayed in fullerenes; while seven- or eight-membered rings in a hexagonal lattice of carbon induce negative curvature as displayed in a saddle-shaped surface. Negatively curved nanocarbons of three-dimensional periodic structures are named as Mackay crystal or carbon schwarzites, which are a long-sought target in carbon nanoscience, but have not been synthesized unambiguously yet. A bottom-up approach to negatively curved nanocarbons involves synthesis of negatively curved polycyclic arenes, which can then be used as templates or monomers in synthesis of larger nanocarbons. Negatively curved polycyclic arenes, which can be designed and synthesized by introduction of seven or eight-membered rings into polycyclic aromatic frameworks, exhibit structural characteristics and properties that are not available to planar polycyclic arenes. Taking the polycyclic arenes containing eight-membered rings as examples, this review article describes research in the design, synthesis, stereochemical dynamics, and other characteristics of negatively curved polycyclic arenes, and provides an outlook for new directions in the research of negatively curved nanocarbons.

Contents

1 Introduction: negatively curved nanocarbons

2 Building blocks containing eight-membered rings

3 Design and synthesis of negatively curved polycyclic arenes

4 Stereochemistry and other characteristics of negatively curved polycyclic arenes

5 Conclusion and outlook

Fig.1 Schematic drawings for the polygonal curvature of(a) graphene and(b) C60, respectively, at a vertex. Copyright 2018, ACS
Fig.2 (a) A unit cell of the first proposed Mackay crystal with octagons highlighted in orange;(b) a toroidal carbon nanotube with heptagons and pentagons highlighted in red and blue, respectively
Fig.3 Negatively curved polycyclic arenes containing heptagons
Fig.4 Eight-membered rings with different topology
Fig.5 Octagon-containing building blocks for design and synthesis of negatively curved polycyclic arenes
Fig.6 Polycyclic arenes containing an [8]circulene unit(highlighted in red)
Fig.7 (a) Synthesis of substituted [8]circulenes(8a/b);(b) synthesis of tetrabenzo[8]circulene(4)[18, 25]
Fig.8 Synthesis of octabenzo[8]circulenes(5a/b)[27]
Fig.9 (a) Synthesis of twisted nanographenes 6a/b;(b) structures of the incompletely cyclized products from the Scholl reaction of 23a[28]
Fig.10 Synthesis of 26, a polycyclic arene containing three eight-membered rings[29]
Fig.11 Structure of 8a(a) and 4(b) in single crystals(hydrogen atoms are removed for clarity)[17, 18, 21]. Copyright 2018, ACS.
Fig.12 (a) DFT-calculated conformations of 5a;(b) the DFT-calculated stereodynamic pathway of 5a;(c) structure of 5b in single crystals(the tert-butyl groups are removed for clarity, and the carbons that are bonded to tert-butyl groups are shown in magenta)[27]. Copyright 2019, ACS.
Fig.13 Molecular packing of octabenzo[8]circulene 5b in crystals[27]. Copyright, 2019 ACS.
Fig.14 (a) Structure of 6b in single crystals with substituents and hydrogen atoms removed for clarity;(b) DFT-calculated stereodynamic path of 6a'[21, 28]. Copyright, 2019 ACS.
Fig.15 Crystal structure of monkey-saddle-shaped polycyclic arene(Sa, Sa, Sa)-26:(a) side view;(b) top view(hexyl groups are removed for clarity).
Fig.16 (a) Structures of carbon nanobelt 30 and carbon nanoring 31 in single crystals;(b) molecular models of negatively curved carbon nanobelt 32 and carbon cage33(eight- and seven-membered rings are highlighted with red and orange, respectively)[29, 32~34]
[1]
Rickhaus, M, Mayor, M, Juríek M. Chem. Soc. Rev., 2017, 46: 1643.
[2]
Venema G, A, Foundations of Geometry. 2nd ed. Pearson, 2012. Chapter 12.
[3]
Mackay A, L, Terrones H. Nature, 1991, 352: 762.
[4]
刘霞(Liu X). 全新碳形态汞黝矿结构制造成功(The New Carbon Form Was Successfully Manufactured:Schwarzite).科技日报(Science and Technology Daily),[2020-06-01]. 全新碳形态汞黝矿结构制造成功(The New Carbon Form Was Successfully Manufactured:Schwarzite).科技日报(Science and Technology Daily),[2020-06-01].
[5]
Beuerle, F, Herrmann, C, Whalley A, C, Valente, C, Gamburd, A, Ratner M, A, Stoddart J F. Chem. Eur. J., 2011, 17: 3868.
[6]
Odkhuu, D, Jung D, H, Lee, H, Han S, S, Choi, S-H, Ruoff R, S, Park N. Carbon, 2014, 66: 39.
[7]
Park, N, Yoon, M, Berber, S, Ihm, J, Osawa, E, Tománek D. Phys. Rev. Lett., 2003, 91: 237204.
[8]
Iijima, S, Ichihashi, T, Ando Y. Nature, 1992, 356: 776.
[9]
Kim, K, Lee, T, Kwon, Y, Seo, Y, Song, J, Park, J, Lee, H, Park J, Y, Ihee, H, Cho S, J, Ryoo R. Nature, 2016, 535: 131.
[10]
Braun, E, Lee, Y, Moosavi S, M, Barthel, S, Mercado, R, Baburin I, A, Proserpio D, M, Smit B. Proc. Natl. Acad. Sci. U. S. A., 2018, 115: E8116.
[11]
Yamamoto, K, Harada, T, Nakazaki, M, Naka, T, Kai, Y, Harada, S, Kasai N. J. Am. Chem. Soc., 1983, 105: 7171.
[12]
Luo J, Y, Xu X, M, Mao R, X, Miao Q. J. Am. Chem. Soc., 2012, 134: 13796.
[13]
(a) Gu, X, Li H, Y, Shan B, W, Liu Z, F, Miao Q. Org., Lett., 2017, 19: 2246;(b) Miao Q. Chin. Chem. Lett., 2019, 30: 1506.
[14]
Cheung K, Y, Xu X, M, Miao Q. J. Am. Chem. Soc., 2015, 137: 3910.
[15]
Pun S, H, Chan C, K, Luo J, Y, Liu Z, F, Miao Q. Angew. Chem. Int. Ed., 2018, 57: 1581.
[16]
Kawasumi, K, Zhang Q, Y, Segawa, Y, Scott L, T, Itami K. Nat. Chem., 2013, 5: 739.
[17]
Feng C, N, Kuo M, Y, Wu Y T. Angew. Chem. Int. Ed., 2013, 52: 7791.
[18]
Sakamoto, Y, Suzuki T. J. Am. Chem. Soc., 2013, 135: 14074.
[19]
(a) Fukui, N, Kim, T, Kim, D, Osuka A. J. Am. Chem., Soc., 2017, 139: 9075;(b) 2018, 57: 8555;(c) 2018, 140: 10430;(d) 2018, 140: 17188;(e) Campaña A G. Angew. Chem. Int. Ed., 2020, 59: 7139.
[20]
(a) Má, rquez I R, Castro-Ferná, ndez S, Millá, n A, Campañ, a A G.Chem. Commun., 2018, 54: 6705;(b) Majewski M A.Angew. Chem. Int. Ed., 2019, 58: 86.
[21]
Pun S, H, Miao Q. Acc. Chem. Res., 2018, 51: 1630.
[22]
Irngartinger, H, Reibel W R K. Acta. Cryst. B, 1981, 37: 1724.
[23]
Wong H N, C, Sondheimer F. Tetrahedron, 1981, 37: 99.
[24]
Salcedo, R, Sansores L, E, Picazo, A, Sansón L. J. Mol. Struct.: THEOCHEM, 2004, 678: 211.
[25]
Miller R, W, Duncan A, K, Schneebeli S, T, Gray D, L, Whalley A C. Chem. Eur. J., 2014, 20: 3705.
[26]
Miller R, W, Averill S, E, Van Wyck S, J, Whalley A C. J. Org. Chem., 2016, 81: 12001.
[27]
Pun S, H, Wang Y, J, Chu, M, Chan C, K, Li Y, K, Liu Z, F, Miao Q. J. Am. Chem. Soc., 2019, 141: 9680.
[28]
Cheung K, Y, Chan C, K, Liu Z, F, Miao Q. Angew. Chem. Int. Ed., 2017, 56: 9003.
[29]
Kirschbaum, T, Rominger, F, Mastalerz M. Angew. Chem. Int. Ed., 2020, 59: 270.
[30]
Feng C, N, Hsu W, C, Li J, Y, Kuo M, Y, Wu Y T. Chem. Eur. J., 2016, 22: 9198.
[31]
Grzybowski, M, Sadowski, B, Butenschö, n H, Gryko D T. Angew. Chem. Int. Ed., 2020, 59: 2998.
[32]
Esser, B, Rominger, F, Gleiter G. J. Am. Chem. Soc., 2008, 130: 6716.
[33]
Cheung K, Y, Yang, S, Miao Q. Org. Chem. Front., 2017, 4: 699.
[34]
Chen, H, Miao Q. ChemPlusChem, 2019, 84: 627.
[35]
Omachi, H, Nakayama, T, Takahashi, E, Segawa, Y, Itami K. Nature Chem., 2013, 5: 572.
[36]
Sanchez-Valencia J, R, Dienel, T, Grö, ning O, Shorubalko, I, Mueller, A, Jansen, M, Amsharov, K, Ruffieux, P, Fasel R. Nature, 2014, 512: 61.
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Nana Wang, Guanwu Wang. Investigation into Condensed-Matter Organic Synthesis under Mechanical Milling Conditions [J]. Progress in Chemistry, 2020, 32(8): 1076-1085.
[3] Rugang Fu, Zheng Li, Lei Gao. Direct Synthesis of Organic Compounds Using Calcium Carbide as the Acetylene Source [J]. Progress in Chemistry, 2019, 31(9): 1303-1313.
[4] Zou Huaibo, Wang Huahua, Mei Guangquan, Liu Haiyang, Chang Chi-Kwong. Catalytic Application of Iron Corrole Complexes in Organic Synthesis [J]. Progress in Chemistry, 2015, 27(6): 666-674.
[5] Xu Yisong, Zhang Fengxiang, Li Jiayun, Bai Ying, Xiao Wenjun, Peng Jiajian. Preparation and Applications in Organic Reactions of Polyethylene Glycol Functionalized Ionic Liquids [J]. Progress in Chemistry, 2015, 27(10): 1400-1412.
[6] Shen Haimin, Wu Hongke, Shi Hongxin, Ji Hongbing, Yu Wubin. Application of the Heterogeneous Cyclodextrins in Aqueous Phase Organic Synthesis [J]. Progress in Chemistry, 2015, 27(1): 70-78.
[7] Wang Ailing, Zheng Xueliang, Zhao Zhuangzhi, Li Changping, Zheng Xuefang. Deep Eutectic Solvents to Organic Synthesis [J]. Progress in Chemistry, 2014, 26(05): 784-795.
[8] Xu Lining, Zhang Juntao, Tao Cheng, Cao Xiaoping. Advances in the Synthesis of Vinyl Chloride Compounds [J]. Progress in Chemistry, 2013, 25(11): 1876-1887.
[9] Hou Chen, Zhu Hao, Li Yijing, Li Yanfeng. Immobilized Proline and Its Derivatives Employed in the Catalysis of Asymmetric Organic Synthesis [J]. Progress in Chemistry, 2012, (9): 1729-1741.
[10] Wang Zhihui*, Wang Xiao. Synthesis of Azaindoles [J]. Progress in Chemistry, 2012, (10): 1974-1982.
[11] Han Guangdian, Jin Shanwei, Wu Yulin. Huang-Minlon (Huang Ming-Long) —— A Pioneer of Organic Chemistry in China [J]. Progress in Chemistry, 2012, 24(07): 1229-1235.
[12] Shen Jinhai, Cheng Guolin, Cui Xiuling. Domino Reactions Based on Pd-Catalyzed C-H Bond Activation [J]. Progress in Chemistry, 2012, 24(07): 1324-1336.
[13] Bao Chunyan, Jia Huijuan, Liu Tao, Wang Yi, Peng Wei, Zhu Linyong. Synthesis of Artificial Ion Channels in Bilayer Membrane [J]. Progress in Chemistry, 2012, 24(07): 1337-1345.
[14] Liu Li Wang Dong. Organic Reactions "on Water" [J]. Progress in Chemistry, 2010, 22(07): 1233-1241.
[15] . Applications of Supercritical Methanol in Chemical Reactions [J]. Progress in Chemistry, 2010, 22(05): 796-802.