中文
Announcement
More
Progress in Chemistry 2012, Vol. Issue (10): 1897-1905 Previous Articles   Next Articles

• Review •

Photoelectrocatalytic Reduction of CO2

Zhou Tianchen, He Chuan, Zhang Yanan, Zhao Guohua*   

  1. Department of Chemistry, Tongji University, Shanghai 200092, China
  • Received: Revised: Online: Published:
PDF ( 2149 ) Cited
Export

EndNote

Ris

BibTeX

Carbon dioxide (CO2) is a main component part of greenhouse gases. Since catalytic reduction of CO2 to hydrocarbon fuels can realize the recyclable utilization of carbon materials, this topic has been intensively looked into. In this article, the recent progress on the conversion of CO2 has been reviewed and discussed in detail by comparing and analyzing the catalytic efficiency and catalytic selectivity of different methods, three of which, photocatalytic reduction, electrocatalytic reduction, and photoelectrocatalytic reduction are covered. The respective catalysis mechanisms of each method,as well as the effects of different catalysts and catalytic systems on reduction of CO2 have been described. According to previous studies in this area, catalytic performance, photo-electric converting,catalytic selectivity, and energy consumption are the primary criteria on evaluating the method of reduction of CO2. On this basis, the advantages and disadvantages of catalysts and methods for reducing CO2 to useable energy are summarized and analyzed. In the last part of the article, prospects and challenges for the further development in this field are presented. Contents 1 Introduction
2 Photocatalytic reduction of CO2
2.1 TiO2-based photo-catalytic system
2.2 Ternary metal oxide photo-catalytic system
2.3 Metal complex photo-catalytic system
3 Electrocatalytic reduction of CO2
3.1 Metal electro-catalytic system
3.2 Metal complex electro-catalytic system
3.3 Ionic liquid electrochemical reaction system
4 Photoelectrocatalytic reduction of CO2
5 Outlook

CLC Number: 

[1] Kleeberg C, Cheung M S, Lin Z Y, Marder T B. J. Am. Chem. Soc., 2011, 133: 19060-19063
[2] Wang C, Xie Z G, de Krafft K E, Lin W B. J. Am. Chem. Soc., 2011, 133: 13445-13454
[3] Rail M D, Berben L A. J. Am. Chem. Soc., 2011, 133: 18577-18579
[4] Finn C, Schnittger S, Yellowlees L J, Love J B. Chem. Commun., 2012, 48: 1392-1399
[5] Dimitrijevic N M, Vijayan B K, Poluektov O G, Rajh T, Gray K A, He H, Zapol P. J. Am. Chem. Soc., 2011, 133: 3964-3971
[6] Fujishima A, Honda K. Nature, 1972, 238: 37-38
[7] Halmann M. Nature, 1978, 275: 115-116
[8] Inoue T, Fujishima A, Konish S, Honda K. Nature, 1979, 277: 637-638
[9] Varghese O K, Paulose M, LaTempa T J, Grimes C A. Nano Lett., 2009, 9: 731-737
[10] Yui T, Kan A, Saitoh C, Koike K, Ibusuki T, Ishitani O. ACS Appl. Mater. Interfaces, 2011, 3: 2594-2600
[11] Srinivas B, Shubhamangala B, Lalitha K, Reddy P A K, Kumari V D, Subrahmanyam M, De B R. Photochem. Photobiol., 2011, 87: 995-1001
[12] Wang C J, Thompson R L, Ohodnicki P, Baltrus J, Matranga C. J. Mater. Chem., 2011, 21: 13452-13457
[13] Wang C J, Thompson R L, Baltrus J, Matranga C. J. Phys. Chem. Lett., 2009, 1: 48-53
[14] Liang Y T, Vijayan B K, Gray K A, Hersam M C. Nano Lett., 2011, 11: 2865-2870
[15] Li S F, Guo Z X. J. Phys. Chem. C, 2010, 114: 11456-11459
[16] Pan J, Wu X, Wang L Z, Liu G, Lu G Q, Cheng H M. Chem. Commun., 2011, 47: 8361-8363
[17] Lee J, Sorescu D C, Deng X Y. J. Am. Chem. Soc., 2011, 133: 10066-10069
[18] Liu Q, Zhou Y, Tian Z P, Chen X Y, Gao J, Zou Z G. J. Mater. Chem., 2012, 22: 2033-2038
[19] Zhou Y, Tian Z P, Zhao Z Y, Liu Q, Kou J H, Chen X Y, Gao J, Yan S C, Zou Z G. ACS Appl. Mater. Interfaces, 2011, 3: 3594-3601
[20] Shi H F, Wang T Z, Chen J, Zhu C, Ye J H, Zou Z G. Catal. Lett., 2011, 141: 525-530
[21] Yan S C, Ouyang S X, Gao J, Yang M, Feng J Y, Fan X X, Wan L J, Li Z S, Ye J H, Zhou Y, Zou Z G. Angew. Chem. Int. Ed., 2010, 49: 6400-6404
[22] Liu Q, Zhou Y, Kou J H, Chen X Y, Tian Z P, Gao J, Yan S C, Zou Z G. J. Am. Chem. Soc., 2010, 132: 14385-14387
[23] Zhang N, Ouyang S X, Kako T, Ye J H. Chem. Commun., 2012, 48: 1269-1271
[24] Teramura K, Okuoka S, Tsuneoka H, Shishido T, Tanaka T. Appl. Catal. B-Environ., 2010, 96: 565-568
[25] Wang X, Cao L, Lu F S, Meziani M J, Li H T, Qi G, Zhou B, Harruff B A, Kermarrec F, Sun Y P. Chem. Commun., 2009, 48: 3774-3776
[26] Cao L, Sahu S, Anilkumar P, Bunker C E, Xu J, Fernando K A S, Wang P, Guliants E A, Tackett K N, Sun Y P. J. Am. Chem. Soc., 2011, 133: 4754-4757
[27] Cokoja M, Bruckmeier C, Rieger B, Herrmann W A, Kuhn F E. Angew. Chem. Int. Ed., 2011, 50: 8510-8537
[28] Doherty M D, Grills D C, Muckerman J T, Polyansky D E, Fujita E. Coord. Chem. Rev., 2010, 254: 2472-2482
[29] Gafney H D, Adamson A W. J. Am. Chem. Soc., 1972, 94: 8238-8239
[30] Lehn J M, Ziessel R. Proc. Natl. Acad. Sci. USA, 1982, 79: 701-704
[31] Woolerton T W, Sheard S, Reisner E, Pierce E, Ragsdale S W, Armstrong F A. J. Am. Chem. Soc., 2010, 132: 2132-2133
[32] Sato S, Morikawa T, Saeki S, Kajino T, Motohiro T. Angew. Chem. Int. Ed., 2010, 49: 5101-5105
[33] Hori H, Johnson F P A, Koike K, Ishitani O, Ibusuki T. J. Photochem. Photobiol. A: Chem., 1996, 96: 171-174
[34] Takeda H, Koike K, Inoue H, Ishitani O. J. Am. Chem. Soc., 2008, 130: 2023-2031
[35] West-Eberhard M J, Smith J A C, Winter K. Science, 2011, 332: 311-312
[36] Benson E E, Kubiak C P, Sathrum A J, Smieja J M. Chem. Soc. Rev., 2009, 38: 89-99
[37] Paik W, Andersen T N, Eyring H. Electrochim. Acta, 1969, 14: 1217-1232
[38] Szklarczyk M, Kainthla R, Bockris J O M. J. Electrochem. Soc., 1989, 136: 2512-2521
[39] Chandrasekaran K, Bockris L O M. Surf. Sci., 1987, 185: 495-514
[40] Azuma M, Hashimoto K, Hiramoto M, Watanabe M, Sakata T. J. Electrochem. Soc., 1990, 137: 1772-1778
[41] Arvia A J, Salvarezza R C, Triaca W E. J. New Mater. Electrochem. Syst., 2004, 7: 133-143
[42] Eneau-Innocent B, Pasquier D, Ropital F, Léger J M, Kokoh K B. Appl. Catal. B-Environ., 2010, 98: 65-71
[43] Hoshi N, Sato E, Hori Y. J. Electroanal. Chem., 2003, 540: 105-110
[44] Hoshi N, Hori Y. Electrochim. Acta, 2000, 45: 4263-4270
[45] Hoshi N, Kawatani S, Kudo M, Hori Y. J. Electroanal. Chem., 1999, 467: 67-73
[46] Hoshi N, Suzuki T, Hori Y. J. Phys. Chem. B, 1997, 101: 8520-8524
[47] Tian N, Zhou Z Y, Sun S G. J. Phys. Chem. C, 2008, 112: 19801-19817
[48] Hori Y, Takahashi I, Koga O, Hoshi N. J. Phys. Chem. B, 2002, 106: 15-17
[49] Le M, Ren M, Zhang Z, Sprunger P T, Kurtz R L, Flake J C. J. Electrochem. Soc., 2011, 158: E45-E49
[50] Durand W J, Peterson A A, Studt F, Abild-Pedersen F, Nørskov J K. Surf. Sci., 2011, 605: 1354-1359
[51] Chardon-Noblat S, Deronzier A, Ziessel R, Zsoldos D. J. Electroanal. Chem., 1998, 444: 253-260
[52] Chen Z F, Chen C C, Weinberg D R., Kang P, Concepcion J J, Harrison D P, Brookhart M S, Meyer T J. Chem. Commun., 2011, 47: 12607-12609
[53] Sullivan B P, Bolinger C M, Conrad D, Vining W J, Meyer T J. J. Chem. Soc. Chem. Commun., 1985, (20): 1414-1416
[54] Bourrez M, Molton F, Chardon-Noblat S, Deronzier A. Angew. Chem. Int. Ed., 2011, 50: 9903-9906
[55] Angamuthu R, Byers P, Lutz M, Spek A L, Bouwman E. Science, 2010, 327: 313-315
[56] Obert R, Dave B C. J. Am. Chem. Soc., 1999, 121: 12192-12193
[57] Yuhas B D, Prasittichai C, Hupp J T, Kanatzidis M G. J. Am. Chem. Soc., 2011, 133: 15854-15857
[58] Bara J E, Camper D E, Gin D L, Noble R D. Acc. Chem. Res., 2009, 43: 152-159
[59] Feroci M, Chiarotto I, Orsini M, Sotgiu G, Inesi A. Electrochim. Acta, 2011, 56: 5823-5827
[60] Rosen B A, Salehi-Khojin A, Thorson M R, Zhu W, Whipple D T, Kenis P J A, Masel R I. Science, 2011, 334: 643-644
[61] Snuffin L L, Whaley L W, Yu L. J. Electrochem. Soc., 2011, 158: F155-F158
[62] Xie K, Zhang Y Q, Meng G Y, Irvine J T S J. Mater. Chem., 2011, 21: 195-198
[63] Machunda R L., Lee J, Lee J. Surf. Interface Anal., 2010, 42: 564-567
[64] Taniguchi I, Aurian-Blajeni B, Bockris J O M. Electrochim. Acta, 1984, 29: 923-932
[65] Kaneco S, Katsumata H, Suzuki T, Ohta K. Appl. Catal. B-Environ., 2006, 64: 139-145
[66] Barton E E, Rampulla D M, Bocarsly A B. J. Am. Chem. Soc., 2008, 130: 6342-6344
[67] Seshadri G, Lin C, Bocarsly A B. J. Electroanal. Chem., 1994, 372: 145-150
[68] Cole E B, Lakkaraju P S, Rampulla D M, Morris A J, Abelev E, Bocarsly A B. J. Am. Chem. Soc., 2010, 132: 11539-11551
[69] Arai T, Sato S, Uemura K, Morikawa T, Kajino T, Motohiro T. Chem. Commun., 2010, 46: 6944-6946
[70] Sato S, Arai T, Morikawa T, Uemura K, Suzuki T M, Tanaka H, Kajino T. J. Am. Chem. Soc., 2011, 133: 15240-15243
[71] Leu J Y, Lin Y H, Chang F L. Chem. Eng. Res. Des., 2011, 89: 1879-1890
[72] Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M. Bioresour. Technol., 2010, 101: 3085-3090
[73] Li X S, Zhu B, Shi C, Xu Y, Zhu A M. AIChE J., 2011, 57: 2854-2860
[1] Anqi Chen, Zhiwei Jiang, Juntao Tang, Guipeng Yu. Photocatalytic Production of Hydrogen Peroxide from Covalent Organic Framework Materials [J]. Progress in Chemistry, 2024, 36(3): 357-366.
[2] Xiaoyu Wang, Ruiyi Wang, Xiangpeng Kong, Yulan Niu, Zhanfeng Zheng. Catalytic Conversion of Hydroxyl Compounds : Conversion of Phenols and Alcohols to Ethers and Esters [J]. Progress in Chemistry, 2024, 36(3): 335-356.
[3] Shun Lu, Yuan Liu, Hong Liu. Conductive Phthalocyanine-Based Metal-Organic Frameworks for Efficient Electrocatalysis [J]. Progress in Chemistry, 2024, 36(3): 285-296.
[4] Longhao Li, Wei Zhou, Liang Xie, Chaowei Yang, Xiaoxiao Meng, Jihui Gao. Degradation Mechanisms and Durability Improvement Strategies of Fe-N-C Catalysts for Oxygen Reduction Reaction [J]. Progress in Chemistry, 2024, 36(3): 376-392.
[5] Yuan Wang, Yulv Yu, Xin Tan. Metal Nanocluter Catalysts for Hydrogenation of Carbon Dioxide to Multicarbon Compounds [J]. Progress in Chemistry, 2023, 35(6): 918-927.
[6] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[7] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[8] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[9] Sun Hanxue, Wang Juanjuan, Zhu Zhaoqi, Li An. Carbon-Based Electrocatalyst Derived from Porous Organic Polymer in Oxygen Reduction Reaction for Fuel Cells [J]. Progress in Chemistry, 2023, 35(11): 1638-1654.
[10] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[11] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[12] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[13] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[14] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[15] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
Viewed
Full text


Abstract