中文
Announcement
More
Progress in Chemistry 2024, Vol. 36 Issue (3): 357-366 DOI: 10.7536/PC230724 Previous Articles   Next Articles

• Review •

Photocatalytic Production of Hydrogen Peroxide from Covalent Organic Framework Materials

Anqi Chen, Zhiwei Jiang, Juntao Tang(), Guipeng Yu   

  1. College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: gilbertyu@csu.edu.cn
  • About author:
    † These authors contributed equally to this work.
  • Supported by:
    Hunan province Funds for Distinguished Young Scientists(2022JJ10080); Hunan Provincial Science and Technology Plan Project, China(2021GK2014); National Natural Science Foundation of China(52173212); National Natural Science Foundation of China(52103275); Hunan Provincial Natural Science Foundation(2021JJ30795)
Richhtml ( 6 ) PDF ( 51 ) Cited
Export

EndNote

Ris

BibTeX

Hydrogen peroxide (H2O2) is an important green oxidizing agent, but the main anthraquinone process for production thereof suffers high energy consumption and large safety risks. Artificial photosynthesis H2O2 from water and oxygen features safe, environmentally friendly and energy-saving characteristics and has gradually become a research focus. Covalent organic frameworks (COFs) have been widely used in the photocatalytic production of H2O2 for their high specific surface area, good photocatalytic performance and structural tunability. This review summarizes the recent research progress in the field of COFs photocatalytic production of H2O2, discussing the reaction mechanisms for the production of H2O2 through oxygen reduction, water oxidation, and dual-channel processes. It introduces methods to improve the photocatalytic production of H2O2 by regulating the optical bandgap, enhancing charge separation capability, and improving carrier mobility of COFs through structural design and functional group modification. These methods contribute to the design of efficient, stable, and sustainable COFs for photocatalytic production of H2O2.

Contents

1 Introduction

2 Hydrogen peroxide production by ORR pathway

2.1 Direct one-step two-electron oxygen reduction mechanism

2.2 Indirect two-step single-electron oxygen reduction mechanism

3 Hydrogen peroxide production by WOR pathway

4 Dual-channel path production of hydrogen peroxide

5 Conclusion and outlook

Fig. 1 Schematic diagram of band structure of H2O2 production by photocatalyst
Fig. 2 Schematic diagram of photocatalytic production of hydrogen peroxide by two-electron oxygen reduction
Fig. 3 Schematic diagram of the synthesis route of (a) TAPD-(Me)2 and TAPD-(OMe)2 COF[31]; (b) Schematic diagram of the mechanism of photocatalytic hydrogen peroxide production[31]; (c) Synthesis diagram of C-COFS, S-COFs and FS-COFs[32]; (d) Free energy diagram of reduction of O2 via C-COFs and FS-COFs to H2O2 and possible steps of H2O2 production by FS-COFs[32]
Fig. 4 (a) Schematic diagram of synthesis paths of CoPc-BTM-COF and COPc-DAB-COF; (b) EPR spectrum; (c) Calculated oxygen adsorption energy of Co atom and N atom in CoPc-BTM-COF; (d) FT-IR spectra of COPc-BTM-COF photocatalytic systems in situ (e) Free energy diagrams of 2e-(orange) and 4e-(cyan)ORR processes on CoPc[33]
Fig. 5 (a) Schematic diagram of the composite route of Bpy-TAPT; (b) Photocatalytic production of H2O2 by three COFs; (c) EPR spectra of Bpy-TAPT and Bpy-TAPB; (d) Mechanism of H2O2 production by Bpy-TAPT photocatalysis[34]
Fig. 6 (a) Synthesis diagram of COF;(b) the free energy change of water oxidation reaction on DETH-COF;(c) Schematic diagram of the reaction mechanism[41]
Fig. 7 Schematic diagram of COF photocatalytic production of H2O2 through dual channels
Fig. 8 (a) The chemical structure of CTFs[42]; (b) Oxygen adsorption Gibbs free energy variable map[42]; (c) Direct two-electron water oxidation reaction path synthesis of hydrogen peroxide Gibbs free energy variation[42]; (d) The chemical structure of CHFs[43]; (e) Synthesis diagram of HEP-TAPT-COF and HEP-TAPB-COF[45]
Fig. 9 (a) Schematic diagram of the synthesis of COF-TfpByy from the active site of bipyridine (b) g-C3N4 structure (c) and (d) in situ infrared at 900~1650 cm?1 and 3000~3500 cm?1 during photocatalytic production of H2O2 (e) in situ infrared at 900~1650 cm?1 during photocatalytic production of H2O2[46]; (f) The chemical structure of TTF-BT-COF[47]; (g)The chemical structures of TD-COF and TT-COF [48]
Fig. 10 (a) Preparation of TDB-COF based on multi- component strategy and photocatalysis schematic diagram; (b) WOR path Gibbs free energy change and (c) ORR path Gibbs free energy change[50]
Table 1 COFs materials are applied to photocatalytic hydrogen peroxide production via ORR path
Photocatalyst Reaction condition Solution condition H2O2 generation rate ref
CTF-NS-5BT λ>420 nm Water:BA (9∶1) 1630 μmol·h-1·gcat-1 13
TPB-DMTP-COF λ > 420 nm Pure water 2882 μmol·h-1·gcat -1 14
TpMa/CN-5 λ>420 nm Isopropanol+water 880.46 μmol 15
COF-TTA-TTTA λ~420 nm H2O∶EtOH=9∶1 4347 μmol·h-1·gcat-1 16
TiCOF-spn \ \ 489.94 μmol·h-1·gcat-1 17
EBA-COF λ=420 nm H2O∶benzyl alcohol=9∶1 2550 μmol·h-1·gcat-1 18
Bpt-CTF λ=350~780 nm H2O 32.681 μmol/h 19
N0-COF λ=495 nm \ 15.7 μmol/h 20
1H-COF \ \ 18.3 μmol/h 21
TpDz λ>420 nm H2O 7327 umol h-1 gcat-1 22
DMCR-1NH λ = 420~700 nm Water∶IPA (10∶1) 2588 μmol·h-1·gcat-1 23
Py-Da-COF λ >420 nm H2O∶BA = 9∶1 1242 μmol·h-1·gcat-1 24
4PE-N-S λ > 420 nm Real seawater∶EtOH= 9∶1 2556 μmol·h-1·gcat-1 25
PMCR-1 λ= 420~700 nm Water∶BA (10∶1) 129 028 μmol/g (60 h) 26
COF-TpHt λ>420 nm H2O∶BnOH=9∶1 11 986 μmol·h-1·gcat-1 28
TpAQ-COF-12 λ > 420 nm pure water 420 μmol·h-1·gcat-1 29
TAPD-(Me)2-COF λ=420~700nm H2O∶EtOH=1∶9 234.52 μmol·h-1·gcat-1 31
FS-COFs λ > 420 nm H2O 3904 μmol·h-1·gcat-1 32
CoPc-BTM-COF λ>400 nm H2O∶EtOH=9∶1 2096 μmol·h-1·gcat-1 33
Bpy-TAPT λ>420 nm H2O 4038 μmol·h-1·gcat-1 34
COF-TAPB-BPDA λ > 420 nm H2O∶BA (4∶1) 1240 μmol·h-1·gcat-1 35
TZ-COF \ H2O∶Benzyl alcohol (1∶1) 4951 μmol·h-1·gcat-1 36
SonoCOF-F2 λ>420 nm \ 197 μmol(24 h) 37
TF50-COF λ>400 nm H2O∶EtOH=9∶1 1739 μmol·h-1·gcat-1 38
CN-COF λ>400 nm H2O∶EtOH (9∶1) 2623 μmol·h-1·gcat-1 39
TAPB-PDA-OH λ=420 nm H2O∶EtOH=9∶1 2117.6 μmol·h-1·gcat-1 40
Table 2 COFs materials used for photocatalytic hydrogen peroxide production via WOR and dual-channel pathways
[1]
Chen Z, Yao D C, Chu C C, Mao S. Chem. Eng. J., 2023, 451: 138489.

doi: 10.1016/j.cej.2022.138489
[2]
Fu Y J, Liu C A, Zhang M l, Zhu C, Li H, Wang H B, Song Y X, Huang H, Liu Y, Kang Z H. Adv. Energy Mater., 2018, 8: 1802525.

doi: 10.1002/aenm.v8.34
[3]
Liu Y, Zhao Y, Wang J L. J. Hazard. Mater., 2021, 404: 124191.

doi: 10.1016/j.jhazmat.2020.124191
[4]
Sang Y J, Cao F F, Li W, Zhang L, You Y W, Deng Q Q, Dong K, Ren J S, Qu X G. J. Am. Chem. Soc., 2020, 142(11): 5177.

doi: 10.1021/jacs.9b12873
[5]
Zhao C, Shi C J, Li Q, Wang X Y, Zeng G, Ye S, Jiang B J, Liu J. Mater. Today Energy, 2022, 24: 100926.
[6]
Melchionna M, Fornasiero P, Prato M. Adv. Mater., 2019, 31(13): 1802920.

doi: 10.1002/adma.v31.13
[7]
Song X. Master’s Dissertation of Yanshan University, 2020.
(宋鑫. 燕山大学硕士论文, 2020)
[8]
Wu M J. Master’s Dissertation of Beijing University of Chemical Technology, 2019.
(吴敏杰. 北京化工大学硕士论文, 2019)
[9]
Fukuzumi S, Lee Y M, Nam W. Chin. J. Catal., 2021, 42(8): 1241.
[10]
Li X L. Master's dissertation of Zhengzhou University, 2020.
(李新立. 郑州大学硕士论文, 2020 )
[11]
Yang X R, Deng M Y, Zhang X X, Applied Chemical Industry, 2023, 52 (5): 1508.
(杨晓茹, 邓明杨, 张晓昕. 应用化工, 2023, 52 (5): 1508.).
[12]
Zhang T, Zhang G, Chen L. Acc. Chem. Res., 2022, 55(6): 795.

doi: 10.1021/acs.accounts.1c00693
[13]
Yu X H, Viengkeo B, He Q, Zhao X, Huang Q L, Li P P, Huang W, Li Y G. Adv. Sustain. Syst., 2021, 5(10): 2100184.

doi: 10.1002/adsu.v5.10
[14]
Li L J, Xu L P, Hu Z F, Yu J C. Adv. Funct. Mater., 2021, 31: 2106120.

doi: 10.1002/adfm.v31.52
[15]
Wang H, Almatrafi E, Wang Z W, Yang Y, Xiong T, Yu H B, Qin H, Yang H L, He Y Z, Zhou C Y, Zeng G M, Xu P. J. Colloid Interface Sci., 2022, 608: 1051.

doi: 10.1016/j.jcis.2021.10.036
[16]
Tan F L, Zheng Y Y, Zhou Z P, Wang H L, Dong X, Yang J, Ou Z W, Qi H Y, Liu W, Zheng Z K, Chen X D. CCS Chem., 2022, 4(12): 3751.

doi: 10.31635/ccschem.022.202101578
[17]
Han W K, Lu H S, Fu J X, Liu X, Zhu X M, Yan X D, Zhang J W, Jiang Y Q, Dong H L, Gu Z G. Chem. Eng. J., 2022, 449: 137802.

doi: 10.1016/j.cej.2022.137802
[18]
Zhai L P, Xie Z P, Cui C X, Yang X B, Xu Q, Ke X T, Liu M H, Qu L B, Chen X, Mi L W. Chem. Mater., 2022, 34(11): 5232.

doi: 10.1021/acs.chemmater.2c00910
[19]
Wu C B, Teng Z Y, Yang C, Chen F S, Yang H B, Wang L, Xu H X, Liu B, Zheng G F, Han Q. Adv. Mater., 2022, 34: 2110266.

doi: 10.1002/adma.v34.28
[20]
Chai S M, Chen X W, Zhang X R, Fang Y X, Sprick R S, Chen X. Environ. Sci. Nano, 2022, 9(7): 2464.

doi: 10.1039/D2EN00135G
[21]
Hu H, Tao Y L, Wang D, Li C L, Jiang Q C, Shi Y X, Wang J, Qin J P, Zhou S J, Kong Y. J. Colloid Interface Sci., 2023, 629: 750.

doi: 10.1016/j.jcis.2022.09.111
[22]
Liao Q, Sun Q, Xu H, Wang Y, Xu Y, Li Z, Hu J, Wang D, Li H, Xi K. Angew. Chem. Int. Ed., 2023, e202310556.
[23]
Das P, Chakraborty G, Roeser J, Vogl S, Rabeah J, Thomas A. J. Am. Chem. Soc., 2023, 145(5): 2975.

doi: 10.1021/jacs.2c11454
[24]
Sun J M, Sekhar Jena H, Krishnaraj C, Singh Rawat K, Abednatanzi S, Chakraborty J, Laemont A, Liu W L, Chen H, Liu Y Y, Leus K, Vrielinck H, Van Speybroeck V, Van Der Voort P. Angew. Chem. Int. Ed., 2023, 62(19): 2216719.
[25]
Deng M J, Sun J M, Laemont A, Liu C H, Wang L Y, Bourda L, Chakraborty J, Van Hecke K, Morent R, De Geyter N, Leus K, Chen H, Van Der Voort P. Green Chem., 2023, 25(8): 3069.

doi: 10.1039/D2GC04459E
[26]
Das P, Roeser J, Thomas A. Angew. Chem. Int. Ed., 2023, 62(29): 2304349.
[27]
Yang S, Lu L L, Li J, Cheng Q Q, Mei B B, Li X W, Mao J N, Qiao P Z, Sun F F, Ma J Y, Xu Q, Jiang Z. SusMat, 2023, 3(3): 379.

doi: 10.1002/sus2.v3.3
[28]
Shao C C, He Q, Zhang M C, Jia L, Ji Y J, Hu Y P, Li Y Y, Huang W, Li Y G. Chin. J. Catal., 2023, 46: 28.
[29]
Zhang X C, Zhang J Z, Miao J, Wen X, Chen C, Zhou B X, Long M C. Chem. Eng. J., 2023, 466: 143085.

doi: 10.1016/j.cej.2023.143085
[30]
Trenker S, Grunenberg L, Banerjee T, Savasci G, Poller L M, Muggli K I M, Haase F, Ochsenfeld C, Lotsch B V. Chem. Sci., 2021, 12(45): 15143.

doi: 10.1039/D1SC04143F
[31]
Krishnaraj C, Sekhar Jena H, Bourda L, Laemont A, Pachfule P, Roeser J, Chandran C V, Borgmans S, Rogge S M J, Leus K, Stevens C V, Martens J A, Van Speybroeck V, Breynaert E, Thomas A, Van Der Voort P. J. Am. Chem. Soc., 2020, 142(47): 20107.

doi: 10.1021/jacs.0c09684
[32]
Luo Y, Zhang B P, Liu C C, Xia D H, Ou X W, Cai Y P, Zhou Y, Jiang J, Han B. Angew. Chem. Int. Ed., 2023, 62(26): 2305355.
[33]
Zhi Q J, Liu W P, Jiang R, Zhan X N, Jin Y C, Chen X, Yang X Y, Wang K, Cao W, Qi D D, Jiang J Z. J. Am. Chem. Soc., 2022, 144(46): 21328.

doi: 10.1021/jacs.2c09482
[34]
Liu Y, Han W K, Chi W W, Mao Y Q, Jiang Y Q, Yan X D, Gu Z G. Appl. Catal. B Environ., 2023, 331: 122691.

doi: 10.1016/j.apcatb.2023.122691
[35]
Yang T, Chen Y, Wang Y C, Peng X Q, Kong A G. ACS Appl. Mater. Interfaces, 2023, 15(6): 8066.

doi: 10.1021/acsami.2c20506
[36]
Mou Y, Wu X D, Qin C C, Chen J Y, Zhao Y L, Jiang L B, Zhang C, Yuan X Z, Huixiang Ang E, Wang H, Angew. Chem. Int. Ed., 2023, e202309480.
[37]
Zhao W, Yan P Y, Li B Y, Bahri M, Liu L J, Zhou X, Clowes R, Browning N D, Wu Y, Ward J W, Cooper A I. J. Am. Chem. Soc., 2022, 144(22): 9902.

doi: 10.1021/jacs.2c02666
[38]
Wang H Z, Yang C, Chen F S, Zheng G F, Han Q. Angew. Chem. Int. Ed., 2022, 61: e202202328.

doi: 10.1002/anie.v61.19
[39]
Di X, Lv X M, Wang H Z, Chen F S, Wang S Y, Zheng G F, Wang B, Han Q. Chem. Eng. J., 2023, 455: 140124.

doi: 10.1016/j.cej.2022.140124
[40]
Yang Y P, Kang J X, Li Y, Liang J J, Liang J X, Jiang L, Chen D M, He J, Chen Y J, Wang J Q. New J. Chem., 2022, 46(45): 21605.

doi: 10.1039/D2NJ03744K
[41]
Pan G D, Hou X S, Liu Z Y, Yang C K, Long J L, Huang G C, Bi J H, Yu Y, Li L Y. ACS Catal., 2022, 12(24): 14911.

doi: 10.1021/acscatal.2c03878
[42].
Chen L, Wang L, Wan Y Y, Zhang Y, Qi Z M, Wu X J, Xu H X. Adv. Mater., 2020, 32: 1904433.

doi: 10.1002/adma.v32.2
[43].
Cheng H, Lv H F, Cheng J, Wang L, Wu X J, Xu H X. Adv. Mater., 2022, 34: 2107480.

doi: 10.1002/adma.v34.7
[44]
Wan Y Y, Wang L, Xu H X, Wu X J, Yang J L. J. Am. Chem. Soc., 2020, 142(9): 4508.

doi: 10.1021/jacs.0c00564
[45]
Chen D, Chen W B, Wu Y T, Wang L, Wu X J, Xu H X, Chen L. Angew. Chem. Int. Ed., 2023, 62(9): 2217479.
[46]
Kou M P, Wang Y Y, Xu Y X, Ye L Q, Huang Y P, Jia B H, Li H, Ren J Q, Deng Y, Chen J H, Zhou Y, Lei K, Wang L, Liu W, Huang H W, Ma T Y. Angew. Chem. Int. Ed., 2022, 61(19): 2200413.
[47]
Chang J N, Li Q, Shi J W, Zhang M, Zhang L, Li S, Chen Y F, Li S L, Lan Y Q. Angew. Chem. Int. Ed., 2023, 62(9): 2218868.
[48]
Yue J Y, Song L P, Fan Y F, Pan Z X, Yang P, Ma Y, Xu Q, Tang B. Angew. Chem. Int. Ed., 2023, 62(38): 2309624.
[49]
Wu M M, Shan Z, Wang J J, Liu T T, Zhang G. Chem. Eng. J., 2023, 454: 140121.

doi: 10.1016/j.cej.2022.140121
[50]
Zhou Z M, Sun M H, Zhu Y B, Li P Z, Zhang Y R, Wang M K, Shen Y. Appl. Catal. B Environ., 2023, 334: 122862.

doi: 10.1016/j.apcatb.2023.122862
[1] Xiaoyu Wang, Ruiyi Wang, Xiangpeng Kong, Yulan Niu, Zhanfeng Zheng. Catalytic Conversion of Hydroxyl Compounds : Conversion of Phenols and Alcohols to Ethers and Esters [J]. Progress in Chemistry, 2024, 36(3): 335-356.
[2] Wenbo Zhou, Xiaoman Li, Min Luo. Covalent Organic Frameworks as Cathode Materials for Metal Ion Batteries [J]. Progress in Chemistry, 2024, 36(3): 430-447.
[3] Longhao Li, Wei Zhou, Liang Xie, Chaowei Yang, Xiaoxiao Meng, Jihui Gao. Degradation Mechanisms and Durability Improvement Strategies of Fe-N-C Catalysts for Oxygen Reduction Reaction [J]. Progress in Chemistry, 2024, 36(3): 376-392.
[4] Jingze Yu, Tengfeng Xie. In-situ Preparation Methods of Hydrogen Peroxide via Water Oxdation [J]. Progress in Chemistry, 2024, 36(2): 177-186.
[5] Ziqing Wang, Jinfeng Du, Futai Lu, Qiliang Deng. Tetraphenylethene-Based Covalent Organic Frameworks (COFs): Design, Synthesis and Applications [J]. Progress in Chemistry, 2024, 36(1): 67-80.
[6] Weiyu Zhang, Jie Li, Hong Li, Jiaqi Ji, Chenliang Gong, Sanyuan Ding. Covalent Organic Frameworks for Proton Exchange Membranes [J]. Progress in Chemistry, 2024, 36(1): 48-66.
[7] Yunchao Ma, Yuxin Yao, Yue Fu, Chunbo Liu, Bo Hu, Guangbo Che. Progress of Covalent Organic Frameworks in Iodine Capture [J]. Progress in Chemistry, 2023, 35(7): 1097-1105.
[8] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[9] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[10] Feng Li, Qingyun He, Fang Li, Xiaolong Tang, Changlin Yu. Materials for Hydrogen Peroxide Production via Photocatalysis [J]. Progress in Chemistry, 2023, 35(2): 330-349.
[11] Sun Hanxue, Wang Juanjuan, Zhu Zhaoqi, Li An. Carbon-Based Electrocatalyst Derived from Porous Organic Polymer in Oxygen Reduction Reaction for Fuel Cells [J]. Progress in Chemistry, 2023, 35(11): 1638-1654.
[12] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[13] Wenyan Gao, Xuan Zhao, Xilin Zhou, Yaran Song, Qingrui Zhang. Strategies, Research Progress and Enlightenment of Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Critical Review [J]. Progress in Chemistry, 2022, 34(5): 1191-1202.
[14] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[15] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.