中文
Announcement
More
Progress in Chemistry 2024, Vol. 36 Issue (3): 285-296 DOI: 10.7536/PC231115   Next Articles

• Review •

Conductive Phthalocyanine-Based Metal-Organic Frameworks for Efficient Electrocatalysis

Shun Lu, Yuan Liu, Hong Liu()   

  1. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400715, China
  • Received: Revised: Online: Published:
  • Contact: * email: liuhong@cigit.ac.cn (Liu H)
  • Supported by:
    National Natural Science Foundation of China(52131003); National Natural Science Foundation of China(52122007); National Natural Science Foundation of China(52200076); Specific Research Fellowship of Chinese Academy of Sciences(E329620101); Natural Science Foundation of Chongqing(cstb2022nscq-bhx0035)
Richhtml ( 16 ) PDF ( 95 ) Cited
Export

EndNote

Ris

BibTeX

The development of innovative catalysts for various electrochemical scenarios is crucial in satisfying the growing demands for sustainable energy and environmental conservation. Conductive metal-organic frameworks (c-MOFs) based on phthalocyanine complexes known as phthalocyanine-based c-MOFs, have shown promising potential in electrochemical energy conversion and environmental research. These c-MOFs represent a new category of layer-stacked porous MOFs with in-plane extended π-conjugation structure, which can enhance electrocatalytic activity by facilitating the mass diffusion of reactants and electron/charge transfer. The exceptional promising for a variety electrocatalytic reactions, such as water, oxygen, CO2, and nitrogen conversion. In this work, we focus primarily on phthalocyanine-based c-MOFs rather than other types of c-MOFs, providing a comprehensive overview of their conductive mechanisms and main electrocatalytic reactions. We also cover recent progress in the utilization of phthalocyanine-based c-MOFs as heterogeneous catalysts in electrocatalysis. Furthermore, we explore the challenges related to the utilization of phthalocyanine-based c-MOFs in electrocatalysis. The state-of-the-art research and insights into the future perspectives of phthalocyanine-based c-MOFs as electrocatalysts are also presented and discussed. This work aim to guide the development of phthalocyanine-based c-MOF electrocatalysts with enhanced activity.

Contents

1 Introduction

2 Conductive mechanisms

3 Electrocatalysis

3.1 Water electrolysis

3.2 Oxygen reduction reaction

3.3 Carbon dioxide reduction reaction

3.4 Nitrogen reduction reaction

4 Challenges and outlook

4.1 Catalytic activity

4.2 Conductivity

4.3 Selectivity

4.4 Stability

4.5 Other possible reactions

5 Summary

Fig. 1 (a) Synthetic illustration for phthalocyanine-based c-MOFs; (b) top and side view of a general structural representation of phthalocyanine-based c-MOFs in eclipsed stacking mode. Reproduced with permission from Ref 19. Copyright 2021. American Chemical Society
Fig. 2 (a) The through-bond pathway. (b) The extended conjugation pathway also involves π-d conjugation. (c) The through-space pathway involves π-π stacking of organic moieties. Reproduced with permission from Ref 12. Copyright 2021. American Chemical Society
Fig. 3 Scheme of electron/charge transport via (a) a redox hopping mechanism and (b) a guest-promoted pathway. Reproduced with permission from Ref 12. Copyright 2020. American Chemical Society
Fig. 4 (a) Schematic model structure of MPc-pz. (b) DFT calculation: free energy diagrams of HER on MPc-pz. Reproduced with permission from Ref 34. Copyright 2020. American Chemical Society
Fig. 5 (a) Strategy for constructing MPc-M’-MOF; (b) TEM image of NiPc-Ni c-MOF; (c) linear sweep voltammetry (LSV) curves of MPc-M’ c-MOF; (d) PDOS of different dual-metal c-MOFs; (e) scheme of Ni-O4 and Ni-N4 sites in NiPc-Ni c-MOF. Reproduced with permission from Ref 35. Copyright 2021. Royal Society of Chemistry
Fig. 6 (a) Simulated structure of PcCu-O8-M (red: O, blue: C, white: H, brown: Cu, green: metal atoms, M = Co, Fe, Ni, Cu). (b) ORR polarization curves of PcCu-O8-Co/CNT. (c) In situ Raman analysis during the ORR process. (d) proposed reaction mechanism. Reproduced with permission from Ref 38. Copyright 2021. Wiley-VCH GmbH
Fig. 7 (a) Scheme of NiPc-NiO4 c-MOF nanosheets. Top and side view of their structures with 2 × 2 square grids in AA-stacking mode; (b) LSV curves of NiPc-based c-MOFs in CO2/Ar-saturated 0.5 M KHCO3; (c) Illustration of the CO2RR. Reproduced with permission from Ref 46. Copyright 2021. Wiley-VCH GmbH
Fig. 8 (a) Scheme of MPc-pz; (b) XRD patterns of MPc-pz; (c) charge density differences of N2 adsorbed on FePc-pz; (d) optimized structures of various intermediates for NRR. (e) Free energy profiles of NRR along the alternating pathway on MPc-pz. Reproduced with permission from Ref 34. Copyright 2021. American Chemical Society
Fig. 9 The challenges in phthalocyanine-based c-MOFs
[1]
Zhong H X, Wang M C, Chen G B, Dong R H, Feng X L. ACS Nano, 2022, 16(2): 1759.

doi: 10.1021/acsnano.1c10544
[2]
Lu S, Hummel M, Gu Z R, Wang Y C, Wang K L, Pathak R, Zhou Y, Jia H X, Qi X Q, Zhao X H, Xu B B, Liu X T. ACS Sustainable Chem. Eng., 2021, 9(4): 1703.

doi: 10.1021/acssuschemeng.0c07614
[3]
Wang H D, Zheng X Q, Fang L, Lu S. ChemElectroChem, 2023, 10(13): e202300249.

doi: 10.1002/celc.v10.13
[4]
Huang H, Zhao Y, Bai Y M, Li F M, Zhang Y, Chen Y. Adv. Sci., 2020, 7(9): 2000012.

doi: 10.1002/advs.v7.9
[5]
Lu S, Hummel M, Gu Z R, Gu Y, Cen Z S, Wei L, Zhou Y, Zhang C Z, Yang C. Int. J. Hydrog. Energy, 2019, 44(31): 16144.
[6]
Lu S, Zheng X Q, Fang L, Yin F J, Liu H. Electrochem. Commun., 2023, 157: 107599.

doi: 10.1016/j.elecom.2023.107599
[7]
Cu H Y, Wang T Y, Wang C C. Progress in Chemistry, 2022, 34(12): 2700.
(楚弘宇, 王天予, 王崇臣. 化学进展, 2022, 34(12): 2700.)
[8]
Zhuang Y, Liu Y L, Tang Z Y. Progress in Chemistry, 2021, 33(1): 25.
(严壮, 刘雅玲, 唐智勇. 化学进展, 2021, 33(1): 25.)
[9]
Jia H X, Lu S, Ra Shin S H, Sushko M L, Tao X P, Hummel M, Thallapally P K, Liu J, Gu Z R. J. Power Sources, 2022, 526: 231163.

doi: 10.1016/j.jpowsour.2022.231163
[10]
Lu S, Jia H X, Hummel M, Wu Y N, Wang K L, Qi X Q, Gu Z R. RSC Adv., 2021, 11(8): 4472.

doi: 10.1039/D0RA10522H
[11]
Yan B Y, Li X F, Huang W Q. Progress in Chemistry, 2022, 34(11): 2417.
(闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 化学进展, 2022, 34 (11): 2417.
[12]
Xie L S, Skorupskii G, Dincă M. Chem. Rev., 2020, 120(16): 8536.

doi: 10.1021/acs.chemrev.9b00766
[13]
Kousar N, Giddaerappa, Sannegowda L K. Int. J. Hydrog. Energy, 2024, 50: 37.
[14]
Monama G R, Mdluli S B, Mashao G, Makhafola M D, Ramohlola K E, Molapo K M, Hato M J, Makgopa K, Iwuoha E I, Modibane K D. Renew. Energy, 2018, 119: 62.

doi: 10.1016/j.renene.2017.11.084
[15]
Lu S, Hummel M, Kang S, Gu Z R. J. Electrochem. Soc., 2020, 167(4): 046515.

doi: 10.1149/1945-7111/ab7982
[16]
Zhang P P, Wang M C, Liu Y N, Fu Y B, Gao M M, Wang G, Wang F X, Wang Z Y, Chen G B, Yang S, Liu Y W, Dong R H, Yu M H, Lu X, Feng X L. J. Am. Chem. Soc., 2023, 145(11): 6247.

doi: 10.1021/jacs.2c12684
[17]
Mani P, Son Y, Yoon M. CrystEngComm, 2023, 25(31): 4395.

doi: 10.1039/D3CE00407D
[18]
Jia H X, Yao Y C, Zhao J T, Gao Y Y, Luo Z L, Du P W. J. Mater. Chem. A, 2018, 6(3): 1188.

doi: 10.1039/C7TA07978H
[19]
Meng Z, Luo J M, Li W Y, Mirica K A. J. Am. Chem. Soc., 2020, 142(52): 21656.

doi: 10.1021/jacs.0c07041
[20]
Liu K K, Meng Z, Fang Y, Jiang H L. eScience, 2023, 3(6): 100133.

doi: 10.1016/j.esci.2023.100133
[21]
Wang M C, Dong R H, Feng X L. Chem. Soc. Rev., 2021, 50(4): 2764.

doi: 10.1039/D0CS01160F
[22]
Gao Z Q, Wang C Y, Li J J, Zhu Y T, Zhang Z C, Hu W P. Acta Phys. Chim. Sin., 2021, 37(7): 2010025.
[23]
Guo L Z, Sun J F, Wei J X, Liu Y, Hou L R, Yuan C Z. Carbon Energy, 2020, 2(2): 203.

doi: 10.1002/cl2.v2.2
[24]
Liu J J, Song X Y, Zhang T, Liu S Y, Wen H R, Chen L. Angew. Chem., 2021, 133(11): 5672.

doi: 10.1002/ange.v133.11
[25]
Varsha M V, Nageswaran G. J. Electrochem. Soc., 2020, 167(13): 136502.

doi: 10.1149/1945-7111/abb4f5
[26]
Yang M R, Xie Y X, Zhu D R. Progress in Chemistry, 2023, 35(5): 683.
(杨孟蕊, 谢雨欣, 朱敦如. 化学进展, 2023, 35(5): 683.).
[27]
Xu G Y, Zhu C Y, Gao G. Small, 2022, 18(44): 2203140.

doi: 10.1002/smll.v18.44
[28]
Zhang M D, Si D H, Yi J D, Yin Q, Huang Y B, Cao R. Sci. China Chem., 2021, 64(8): 1332.

doi: 10.1007/s11426-021-1022-3
[29]
Zeng Q, Xian W R, Zhong Y H, Chung L H, Liao W M, He J. J. Solid State Chem., 2020, 285: 121234.

doi: 10.1016/j.jssc.2020.121234
[30]
Zheng X Q, Wang Z C, Zhou Q, Wang Q M, He W, Lu S. J. Energy Chem., 2024, 88: 242.

doi: 10.1016/j.jechem.2023.08.051
[31]
Yan C H, Shen Y, Lu S, Yuan J H, Li Y D, Yang X H, Han E S, He Y Z. Ind. Eng. Chem. Res., 2023, 62(19): 7373.

doi: 10.1021/acs.iecr.3c00479
[32]
Liao W Y, Zhao Q, Wang S S, Ran Y L, Su H, Gan R, Lu S, Zhang Y. J. Catal., 2023, 428: 115161.

doi: 10.1016/j.jcat.2023.115161
[33]
Nie M, Liu X W, He B, Li Q, Du S J, Lu S, Jiang C Y, Lei D. J. Electrochem. Soc., 2016, 163(7): H485.

doi: 10.1149/2.0201607jes
[34]
Zhong H X, Wang M C, Ghorbani-Asl M, Zhang J C, Ly K H, Liao Z Q, Chen G B, Wei Y D, Biswal B P, Zschech E, Weidinger I M, Krasheninnikov A V, Dong R H, Feng X L. J. Am. Chem. Soc., 2021, 143(47): 19992.

doi: 10.1021/jacs.1c11158
[35]
Li J W, Liu P, Mao J X, Yan J Y, Song W B. J. Mater. Chem. A, 2021, 9(3): 1623.

doi: 10.1039/D0TA10870G
[36]
Zhu Y X, Zhao W Y, Li C Z, Liao S J. Progress in Chemistry, 2022, 34(6): 1337.
(朱月香, 赵伟悦, 李朝忠, 廖世军. 化学进展, 2022, 34(6): 1337.)
[37]
Dominic A M, Wang Z Y, Kuc A, Petkov P, Ly K H, Pham T L H, Kutzschbach M, Cao Y Y, Bachmann J, Feng X L, Dong R H, Weidinger I M. J. Phys. Chem. C, 2023, 127(15): 7299.

doi: 10.1021/acs.jpcc.2c08819
[38]
Zhong H X, Ly K, Wang M C, Krupskaya Y, Han X C, Zhang J C, Zhang J, Kataev V, Büchner B, Weidinger I, Kaskel S, Liu P, Chen M W, Dong R H, Feng X L. Angewandte Chemie, 2019, 58(31): 10677)
[39]
Li H F, Wei P F, Gao D F, Wang G X. Curr. Opin. Green Sustain. Chem., 2022, 34: 100589.
[40]
Li J Y, Zhang P, Pan Y. Progress in Chemistry, 2023, 35(4): 643.
(李佳烨, 张鹏, 潘原. 化学进展, 2023, 35(4): 643.).
[41]
Wang J W, Zhou X C, Wang Y, Li Y F. J. Phys. Chem. C, 2023, 127(30): 14733.

doi: 10.1021/acs.jpcc.3c02140
[42]
Lu S, Wang Y C, Xiang H, Lei H H, Xu B B, Xing L, Yu E H, Liu T X. J. Energy Storage, 2022, 52: 104764.

doi: 10.1016/j.est.2022.104764
[43]
Mei X H, Xu W L. iScience, 2023, 26(12): 108499.

doi: 10.1016/j.isci.2023.108499
[44]
Yin C Y, Li Q, Zheng J, Ni Y Q, Wu H Q, Kjøniksen A L, Liu C T, Lei Y P, Zhang Y. Adv. Powder Mater., 2022, 1(4): 100055.
[45]
Zhang M D, Si D H, Yi J D, Zhao S S, Huang Y B, Cao R. Small, 2020, 16(52): 2005254.

doi: 10.1002/smll.v16.52
[46]
Yi J D, Si D H, Xie R K, Yin Q, Zhang M D, Wu Q, Chai G L, Huang Y B, Cao R. Angew. Chem., 2021, 133(31): 17245.

doi: 10.1002/ange.v133.31
[47]
He X T, Ling Z Q, Peng X W, Yang X H, Ma L, Lu S. Electrochem. Commun., 2023, 148: 107441.

doi: 10.1016/j.elecom.2023.107441
[48]
Fang L, Wang S, Lu S, Yin F J, Dai Y J, Chang L, Liu H. Chin. Chemical Lett., 2024, 35(4): 108864.

doi: 10.1016/j.cclet.2023.108864
[1] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[2] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[3] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[4] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[5] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[6] Yaqi Wang, Qiang Wu, Junling Chen, Feng Liang. Diels-Alder Reaction Catalyst [J]. Progress in Chemistry, 2022, 34(2): 474-486.
[7] Xiangjuan Chen, Huan Wang, Weijia An, Li Liu, Wenquan Cui. Study on Photoelectrocatalysis of Organic Carbon Materials [J]. Progress in Chemistry, 2022, 34(11): 2361-2372.
[8] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[9] Xiaolu Liu, Yuxiao Geng, Ran Hao, Yuping Liu, Zhongyong Yuan, Wei Li. Electrocatalytic Nitrogen Reduction Reaction under Ambient Condition: Current Status, Challenges, and Perspectives [J]. Progress in Chemistry, 2021, 33(7): 1074-1091.
[10] Jiaqi Han, Zhida Li, Deqiang Ji, Dandan Yuan, Hongjun Wu. Single-Atom-Modified MoS2 for Efficient Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(12): 2392-2403.
[11] Xuechen Liu, Juanjuan Xing, Haipeng Wang, Yuanyi Zhou, Ling Zhang, Wenzhong Wang. Selective HMF Oxidation into Bio-Based Polyester Monomer FDCA [J]. Progress in Chemistry, 2020, 32(9): 1294-1306.
[12] Jining Zhang, Shuang Cao, Wenping Hu, Lingyu Piao. Hydrogen Production by Photoelectrocatalytic Seawater Splitting [J]. Progress in Chemistry, 2020, 32(9): 1376-1385.
[13] Yu Du, Depei Liu, Shicheng Yan, Tao Yu, Zhigang Zou. NiFe Layered Double Hydroxides for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2020, 32(9): 1386-1401.
[14] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[15] Lingli Zhou, Ruigang Xie, Linjiang Wang. Application of Layered Double Hydroxides in Electrocatalysis [J]. Progress in Chemistry, 2019, 31(2/3): 275-282.